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Brain is modulated by neuronal plasticity 
during postnatal development
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Abstract 

Neuroplasticity is referred to the ability of the nervous system to change its structure or functions as a result of former 
stimuli. It is a plausible mechanism underlying a dynamic brain through adaptation processes of neural structure and 
activity patterns. Nevertheless, it is still unclear how the plastic neural systems achieve and maintain their equilibrium. 
Additionally, the alterations of balanced brain dynamics under different plasticity rules have not been explored either. 
Therefore, the present article primarily aims to review recent research studies regarding homosynaptic and heter‑
osynaptic neuroplasticity characterized by the manipulation of excitatory and inhibitory synaptic inputs. Moreover, 
it attempts to understand different mechanisms related to the main forms of synaptic plasticity at the excitatory and 
inhibitory synapses during the brain development processes. Hence, this study comprised surveying those articles 
published since 1988 and available through PubMed, Google Scholar and science direct databases on a keyword-
based search paradigm. All in all, the study results presented extensive and corroborative pieces of evidence for the 
main types of plasticity, including the long-term potentiation (LTP) and long-term depression (LTD) of the excitatory 
and inhibitory postsynaptic potentials (EPSPs and IPSPs).
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Introduction
Plasticity is referred to the ability of an individual organ-
ism or cell in adjusting its phenotype in response to its 
environmental alterations. In contrast to prior views, 
recent studies have highlighted the extraordinary plas-
ticity of cells [1]. Plasticity is a common synaptic fea-
ture. Accordingly, disclosing the molecular and cellular 
mechanisms that lead to this phenomenon is a dynamic 
biology domain with promising therapeutic potentials. 
Neuroplasticity, otherwise known as brain plasticity or 
neural plasticity, is the capacity of the neural synapses 
and brain pathways to be modified by altered thoughts 

and emotions, as well as environmental, behavioral, and 
neural stimuli. These repeated modifications occur as the 
brain learns and retains new data during its development 
[2]. Synaptic pruning usually happens when the brain 
deletes unnecessary or useless neural connections; this 
process simultaneously reinforces the necessary synapses 
[3]. Generally, the reformations of the synaptic network 
are experience-dependent processes in which the nerv-
ous system fine-tunes itself for competence. Moreover, its 
restructuring could provoke physiological and anatomi-
cal changes. For instance, the brain activity associated 
with a particular function could be relocated in the brain 
[4]. Nevertheless, important progress has been achieved 
in recognizing the molecular mechanisms of the elemen-
tary plasticity processes. However, the necessity and 
adequacy of synaptic plasticity in rearranging dynamic 
cortical developments cannot be easily demonstrated.
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In this review conducted based on selected articles 
data extraction, and will be firstly discussed, homosyn-
aptic and heterosynaptic plasticity and then the synaptic 
plasticity reinforcement and depression processes. Also, 
the key synaptic plasticity mechanisms, including the 
effects of development, synapse type, brain regions, and 
dendrite biophysics, as well as the postsynaptic changes 
occurring at excitatory glutamatergic synapses on locus 
coeruleus neurons would be explored. Finally, differential 
expression of long-term plasticity will be reported. Meth-
ods for developing this review are outlined in Box 1.

Box 1 Methods
We identified articles from PubMed, Science Direct, 
and Google Scholar using the key search terms “syn-
aptic plasticity” and “heterosynaptic”, “homosynaptic” 
from 1980 to the present. In total, 1100 related articles 
were found, of which 212 were on inclusion criteria 
(full original articles, review articles, books, and any 
scientific published data). The exclusion criteria were 
abstract or conference papers.

Homosynaptic and heterosynaptic plasticity
Two plasticity types, homosynaptic and heterosynaptic 
ones, differ extensively in their necessity and respective 
presynaptic activity-dependency during the induction 
phase. Homosynaptic plasticity has shown whole-cell 
properties of neurons; however, heterosynaptic modula-
tion remains restricted to individual synapses. Neverthe-
less, both processes interact at the level of single synapses 
[5, 6].

The Hebbian theory introduces three characteristics 
about synapses: homosynaptic plasticity, associativ-
ity, and input-specificity [7]. Accordingly, homosynap-
tic plasticity referred to as input-specific or associative 
plasticity, is induced at the directly activated synapses 
in a neuron during the brain’s developmental phase. To 
induce this type of plasticity at certain synapses, their 
presynaptic activation is required because they connect 
the postsynaptic neural firing to specific presynaptic neu-
ral activities [1].

In contrast to Heb theory, Kandel and Tauc [8] pro-
posed a heterosynaptic rule for strengthening the syn-
aptic connections. Experimental pieces of evidence have 
introduced the properties that were associated with 
heterosynaptic plasticity, including its induction at non-
active synapses, weight-dependent direction and mag-
nitude, and balanced potentiation and depression [9]. 
Therefore, it could occur at any cellular synapses fol-
lowing strong postsynaptic activities. Some differences 
between these two kinds of plasticity are shown in the 
following:

Effect of plasticity on learning and memory
The heterosynaptic plasticity have been involved in 
enhanced learning and relearning capacity, as well as the 
increased spreading of inputs with intrinsic connections 
of the neural network [10]. This form of plasticity may 
play a key role in maintaining the ability to learn various 
tasks and developmental processes [11]. In dead, heter-
osynaptic plasticity is necessary for the formation, refine-
ment, and/or modification of intrinsic connectivity, as 
well as the development of response selectivity [11].

Evidence has revealed that some behavioral learning 
processes, like classical conditioning and sensitization, 
occur after a certain stimulus input [12]. Although the 
non-associative heterosynaptic modulation holds purely 
heterosynaptic properties, the associative type is activity-
dependent due to the combined features of homosynap-
tic and heterosynaptic mechanisms [8]. Homosynaptic 
and heterosynaptic types of plasticity may both contrib-
ute to memory and learning processes, mainly by modi-
fying the potency of neural connections. Since these two 
forms of plasticity have different types of computational 
properties, they affect learning differently. They have dif-
ferent properties and supply different functions, but they 
can both be provoked by classical protocols of inducing 
plasticity [13]. The input-specific properties of homosyn-
aptic plasticity lead to changes in the synaptic strength, 
occurring only at specific postsynaptic neurons that are 
already stimulated and activated [7, 14]. By contrast, in 
heterosynaptic plasticity, specific neural stimulations 
lead to non-specific input alterations in the synaptic 
weight [5]. At times, their alterations are complementary 
forms of plasticity; hence, they are both required for nor-
mal neural actions in synaptic plasticity [15].

Duration of plasticity‑induced alterations
Previously, Hebb [16] hypothesized homosynaptic rules 
for the long-term memory mechanisms; in this theory, 
those events that triggered synaptic reinforcement were 
proposed to have occurred at the same strengthened 
synapses [16]. According to the Hebbian hypothesis of 
homosynaptic plasticity, this process can always pro-
duce some distinct and short-term synaptic changes that 
cannot support long-term memory storage [5]. There-
fore, the proposed mechanism might be used to explain 
learning and short-term memory; however, it may not 
recruit the required signaling pathways or transcriptional 
events for synaptic growth and long-term memory main-
tenance. Conversely, heterosynaptic facilitation could 
cause persistent changes when presented repeatedly by 
the transcriptional induction and new synaptic connec-
tions [5]. Also, the Hebbian homosynaptic and heter-
osynaptic modulatory mechanisms could recruit together 
in behavioral patterns [5]. Nevertheless, new synaptic 
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plasticity categories could form due to their combination. 
Such joint mechanisms increase the duration of plastic 
changes in a non-additive way. Therefore, a greater level 
of synaptic specificity would be implicated that expands 
the nervous system’s ability to encode information [5]. 
Following the induction of homosynaptic changes, heter-
osynaptic plasticity was seen to be a common property of 
plastic synapses in the nervous systems. Heterosynaptic 
plasticity includes the neurons with operational stability 
that allow repetitive learning as well as the activation of 
dynamic features in sensory inputs [10]. In other words, 
the heterosynaptic changes may depend on postsynaptic 
firing and could associate with the homosynaptic plastic-
ity induction; therefore, these changes demonstrate the 
intrinsic properties of synaptic plasticity.

Research studies indicate that Hebbian homosynaptic 
plasticity needs some modulatory transmitters to cause 
persistent changes. Also, homosynaptic action alone 
has not been sufficient to induce long-lasting plastic-
ity. For instance, both homosynaptic and heterosynaptic 
processes are involved in classical conditioning. In con-
ditional stimulus, the modulator neurons would release 
5-HT with action on stimulated sensory neurons and 
undergo homosynaptic activity; then, the calcium influx 
into the sensory neurons increases the capability of 5-HT 
to activate adenylyl cyclase. Therefore, the temporal 
matching of heterosynaptic and homosynaptic activi-
ties causes an intense increase in cAMP concentrations 
and synaptic strength. Interestingly, these heterosynap-
tic and homosynaptic mechanisms have synergic effects. 
Therefore, the overall increase would be higher than the 
sum of both enhancements due to either heterosynaptic 
or homosynaptic processes alone. This event could be 
presented as a new plasticity class [5, 17, 18]: A combi-
natory mechanism that leads to a prolonged plasticity 
duration and ample synaptic specificity [5]. Additionally, 
the metaplastic effects of these combined mechanisms 
are associated with a new form of heterosynaptic syn-
aptic depression, in which postsynaptic neural activity is 
simultaneous with weakened synaptic connections at the 
inactive synapses [19].

Distance‑dependency of plasticity
Distance-dependency of heterosynaptic plasticity (from 
the stimulated synapses during the induction) leads to 
specific changes in its amplitude; the same/opposite-sign 
plasticity would, respectively, occur at shorter/longer dis-
tances [9, 20]. Moreover, this amplitude alteration pat-
tern may cause lateral inhibitions at synapses. Due to 
this class of inhibitions, plasticity occurs at a local syn-
aptic population whereas it may stimulate other synap-
tic populations against the neighboring ones. Moreover, 
the total synaptic weight would be preserved to a cell by 

balancing the homosynaptic potentiation or depression 
[21]. Heterosynaptic plasticity could also be induced by 
distance-independent mechanisms, without presynaptic 
stimulations, and by the increase in intracellular Ca2+ 
levels (evoked by photolytic release of Ca2+ reserves) [22, 
23]. Nonetheless, heterosynaptic potentiation or depres-
sion does not have identical induction rules [24]. Apart 
from the distance-dependency of the activation sites dur-
ing the plasticity induction, the homosynaptic plasticity 
sign is a contributory factor as well. The same-sign heter-
osynaptic plasticity is induced at shorter distances while 
the opposite one appears farther away from the focal 
activation point [24].

Plasticity latency
Overall, heterosynaptic and homosynaptic forms of 
plasticity (opposite terms) include different action dura-
tions. Homosynaptic plasticity has been reported to 
have needed 10  min for pairing, whereas heterosynap-
tic plasticity occurred 10–20  min after the pairing. The 
longer latency of heterosynaptic plasticity suggests that 
unpaired input changes serve as homeostatic modula-
tors in synaptic exhaustion. However, homosynaptic 
plasticity is essential for the high performance of neural 
circuits [1]. While heterosynaptic plasticity is inhibited, 
homosynaptic plasticity could be preserved; therefore, 
heterosynaptic plasticity can exist in a non-stimulated 
pathway while a neighboring pathway is being stimulated 
[25].

Homosynaptic or heterosynaptic plasticity (Hebbian-
type learning) characteristics and signal transduction are 
shown in Table 1.

Homeostatic effects of plasticity
Several forms of heterosynaptic plasticity are reported, 
among which the main form has a homeostatic role [25]. 
The ultra-structural aspects, such as the synapse size and 
surface area of the postsynaptic density (PSD) could rep-
resent homeostatic regulations. The coordinated changes 
of the PSD surface area in the hippocampal dendritic 
spines after LTP induction can be mentioned as an exam-
ple. The increased PSD surface area at some synapses and 
formation of new synapses have been accompanied by 
corresponding changes in the PSD surface area at other 
synapses. Whether it was a compensatory decrease or 
complete elimination, the total amount of PSD surface 
area stays approximately constant. Similar rules could be 
seen at individual dendritic branches as well [26–28].

Region‑specific plasticity in the brain
Different areas of the brain and nervous system 
could induce several forms of plasticity with a simi-
lar biological or experimental induction paradigm. 
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Table 1  Homosynaptic inhibitory plasticity (Hebbian-type learning) and heterosynaptic inhibitory plasticity (non-associative plasticity 
[60, 70, 184]) characteristics and signal transduction

Heterosynaptic inhibitory plasticity (non-associative) Homosynaptic inhibitory plasticity References

Characteristics

    Occurs at active synapses)presynaptic activation(  Occurs at inactive synapses of homosynaptic plasticity [52, 54–59, 62, 68, 69, 185–210]

    Activity-dependent  Activity-independent

    Input specific  Not input specific

    Mediates associative modifications of synaptic weights  Affects a larger population of synapses

    Affects a larger population of synapses  Weight-dependent for amplitude of changes and 
direction of changes

    Related to short-term synaptic changes  Dependent on the distance from the site of induction 
of homosynaptic plasticity (Mexican hat like profile of 
amplitude)

    Persists for one or more hours

    Necessary for establishing and fine-tuning neuronal 
connections

Induction protocols

    Episodes of strong postsynaptic activity at not active 
synapses

 High or low-frequency stimulation by:

    Afferent tetanization  Afferent tetanization

    Pairing stimulations  Pairing stimulations

    Intracellular tetanization  Intracellular tetanization (purely postsynaptic stimula‑
tion)

Plasticity type

    LTP, LTD  LTP, LTD

Brain areas

    Involves cortical (hippocampus, visual cortex, ventral      
tegmental area) and subcortical area (deep cerebellar 
nuclei)

 Involves cortical (neonatal and adult hippocampus, 
ventral tegmental) area

Receptors

    VGCC​  VGCC​

    Both AMPAR and NMDAR  Both NMDAR-dependent and non-NMDAR- types

    mGluR I  Both mGlu1 and mGlu2

    GABAARs  Both GABAAR and GABAB R

    D2R  D1R

    5-HT  α1 receptors

    α receptors  M1AChRs

    nAChRs

    CB1R

Signaling molecule

    Ca2+ Ca2+

    IP3

    PLC

     DG

    NO

Signaling pathway

    BDNF/TrkB  BDNF/TrkB

    cGMP- GC, PKG  cAMP-PKA

    cAMP⁄PKA  IP3

    βFGF  Sp-cAMPS

   ∆FosB,  PKC

    CREB?
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Similar spike-timing-dependent plasticity  (STDP) is 
a biological process that modulates the neural synap-
tic strength in the brain. This can lead to bidirectional 
corticostriatal  (CS) and thalamostriatal  (TS) STDP as 
anti-Hebbian CS-STDP and Hebbian TS-STDP [29] in 
physiological conditions without blocking the GABAe-
rgic transmission in the dorsolateral striatum [30–33].

In the somatosensory cortex, the deafferentation 
changes of capsaicin-induced C-fiber and the conse-
quent peripheral inputs could cause cortical plasticity 
that would have been postsynaptic originally [34]. The 
electrophysiological analyses of nucleus tractus soli-
tarii (NTS) neurons in the brainstem displayed hyper-
tension-induced plasticity of GABAergic mechanisms 
[35]. In the raphe region of the brainstem, involved in 
cutaneous vasoconstriction due to hypothermia [36, 
37], spatiotemporal developments and neural plastic-
ity alterations occur in the serotonergic nuclei [38]. In 
another brainstem region, NTS neuroplasticity pre-
cedes the functional alterations in the autonomous 
adjustment of the arterial pressure [39].

Furthermore, the impact of thalamostriatal activ-
ity (through heterosynaptic plasticity) on shaping the 
corticostriatal plasticity maps in particular time scales 
could be significant. This heterosynaptic plasticity has 
a major role in shaping the corticostriatal plasticity 
map through the parafascicular thalamic nucleus  (Pf ) 
as well as the formation of flexible behaviors in pro-
cedural learning. Additionally, heterosynaptic plastic-
ity at corticostriatal and thalamostriatal synapses has a 
significant impact on these plasticity maps. The slight 
precedence of cortical activation over the thalamic 
one or their simultaneous activation can either impose 
plasticity or disrupt corticostriatal plasticity. Also, 
thalamic inputs might strongly be modulated in cor-
ticostriatal plasticity maps through the heterosynaptic 
effects for specific timing patterns [29].

Certain signaling pathways, underlying the CS-STDP 
and TS-STDP, distinctively control the GABA lev-
els. Moreover, the TS-STDP requires single molecu-
lar coincidence detectors (e.g., NMDA receptors or 
NMDARs), whereas CS-STDP needs both NMDARs 
and endocannabinoids (ECs) as distinct signaling path-
ways [33, 40, 41]. In this regard, there is evidence of 
inhibited GABAergic transmission in these excitatory 
synapses affecting the CS-STDP/TS-STDP polarity, 
and changing the bidirectional Hebbian TS-STDP to 
unidirectional anti-Hebbian STDP with LTD for the 
post–pre/pre–post pairings [29, 40]. At last, acetylcho-
line exerted a key role in the expression and polarity 
of both hippocampal and cortical NMDAR-mediated 
STDP; thus, the impacts of other neurotransmitters/

modulators on similar mapping patterns need to be 
further explored [42, 43].

Homosynaptic and heterosynaptic plasticity mechanisms 
in different brain areas
Different brain areas have different mechanisms for 
homosynaptic or heterosynaptic plasticity; for example, 
homosynaptic and heterosynaptic forms of plasticity in 
the mouse auditory cortex and human temporal lobe of 
epileptic patients displayed different mechanisms. More-
over, in the intercalated neurons of the amygdala, synap-
tic potentiation in a pathway can result in the depression 
of non-stimulated pathways [9].

Conversely, the cortical and hippocampal neurons can 
express a different form of plasticity, known as homos-
ynaptic inhibitory plasticity (LTPi or LTDi), which is 
observed in some brain areas and circuit development 
[44]. The plasticity of GABAergic synapses from an indi-
vidual inhibitory neuron onto a postsynaptic excitatory 
one is a homosynaptic monosynaptic form of inhibitory 
plasticity [45, 46]. The induction and expression of this 
form of plasticity exhibit significant differences in the 
hippocampus and sensory neocortex [44].

Sensory information is primarily conveyed to layers 3, 
4, and 6 [47] of the neocortex via thalamocortical axons. 
The response latency to sensory stimuli is distinguished 
in layer 4 neurons [48, 49]. The sensory information prin-
cipally flows through layer 4 to layers 2/3, and then to lay-
ers 5–6 [50], or through layer 4 to layers 2/3/5, and then 
to layer 6 [48]. The layer classifications in the somatosen-
sory cortex of rats and monkeys, as well as the visual cor-
tex of cats, correspond with the size of their receptive 
fields as follows: layer 4 (the smallest one), supragranular 
layers, layer 3, and infragranular layers [48]. Occasionally, 
the sizes of layer 3 and infragranular layers are equal to 
the ones in the supragranular layers [51]. Neurons gather 
information from other neurons at the previous level 
with larger receptive fields and deviate them to the next 
level. In this way, larger and more integrated receptive 
fields are formed.

Homosynaptic LTPi and LTDi both depend on post-
synaptic Ca2+ currents. Nevertheless, the Ca2+ influx 
sources and their mechanisms have not been thoroughly 
explored yet [46]. Unlike layer  5 of the primary visual 
cortex or hippocampus, this form of inhibitory plastic-
ity does not seem to depend on the changes in potassium 
chloride cotransporter 2 (KCC2) activity or the activation 
of either GABAB receptors or NMDA ones [46].

The induction and expression of high-frequency LTPi 
in the visual cortex are dependent on intracellular Ca2+ 
storage, which is triggered by the activation of GABAB 
receptors. They are facilitated by the activation of sero-
toninergic (5-HT) or α-adrenergic receptors [52] and 
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mediated through activating IP3 [53]. GABA release is 
mediated through a brain-derived neurotrophic factor 
and tropomyosin receptor kinase B  (BDNF/TrkB) sign-
aling cascade that is initiated by an intracellular Ca2+ 
release in the developing visual cortex [54] and hip-
pocampus [55]; wherein, the high-frequency LTPi would 
be expressed presynaptically [44]. The maintenance of 
high-frequency LTPi in the visual cortex depends on 
persistent low-frequency stimulations  (LFS). However, 
in the hippocampus, it is induced and maintained after 
the high-frequency stimulation  (HFS) [56]. The ven-
tral tegmental area  (VTA) has a different mechanism. 
Its retrograde signaling pathways are mediated by nitric 
oxide  (NO), guanylate cyclase  (GC), and protein kinase 
G (PKG)-dependent pathways [57].

Also, the induction and expression mechanisms of 
heterosynaptic LTDi (long-term depression of IPSPs) 
illustrate significant differences in various circuits. For 
example, in layer  5 of the primary visual cortex, high-
frequency LTDi depends on Ca2 + currents through 
NMDARs or L-type Ca2 + channels in postsynaptic 
excitatory neurons [58, 59]. The NMDAR-dependent 
LTDi produces a focal and restricted inhibitory depres-
sion, while the L-type Ca2+ channel-dependent LTDi 
depresses many inhibitory synapses that are related to 
the same postsynaptic neurons [58]. The ECs are also 
required for the high-frequency LTDi induction in lay-
ers  2/3 of the primary visual cortex and hippocampus 
[60].

The heterosynaptic LTPi of inhibitory postsynaptic 
potentials  (IPSPs), has similar Ca2+-mediating signaling; 
nevertheless. However, it uses different sources of Ca2+ 
supply it has somewhat different underlying intracellu-
lar mechanisms for the induction and expression in the 
visual cortex [59], hippocampus [61], cerebellar nuclei 
[62], superior olivary complex [63], ventral tegmental 
area [64], brainstem [65], and other brain regions. For 
instance, the Ca2+ source is the voltage-gated calcium 
channels  (VGCCs) in the neonatal hippocampus of rats 
[66], astrocytes in the young rat hippocampus [67], the 
postsynaptic intracellular reservoir for the visual cortical 
inhibitory synapses, and the postsynaptic NMDAR acti-
vation in the ventral tegmental area slices [68].

Moreover, low-frequency heterosynaptic LTDi has also 
been induced in several brain areas, including the VTA, 
amygdala, striatum, prefrontal cortex, and corticotec-
tal cocultures [44]. Low-frequency LTDi is induced by 
the activation of glutamatergic axons, which can cause 
heterosynaptic depression in those GABAergic inputs 
that meet with the activated postsynaptic neurons and 
maintain their plasticity [69]. The EC release from the 
glutamatergic neurons to the postsynaptic ones affects 
the inhibitory synaptic strength [44]. The low-frequency 

LTDi requires the release and aggregation of Ca2+ in the 
presynaptic interneuron of the hippocampus. However, 
the presynaptic expression of low-frequency LTDi in 
the VTA occurs by GABA release in response to protein 
kinase A (PKA)-dependent modulations [60, 70].

Both homosynaptic and heterosynaptic inhibitory plas-
ticity are involved in sensory processing, sound locali-
zation, neuropathic pain modulations, neural activity 
regulations after the brain injury, and pregnancy-induced 
neural excitability alterations [44]. Developing in-depth 
knowledge of different forms of plasticity is crucial to 
elucidate their role in brain functions in healthy subjects 
or the progression and treatment of diseases. Therefore, 
further investigations are necessary to identify their 
underlying mechanisms.

Long‑term potentiation and depression
Both LTP and LTD are involved in circuit and mem-
ory improvement in the developing sensory neocortex 
[71]. Overall, long-term plasticity depends on different 
variables, including the baseline amplitude of synap-
tic strength, presynaptic and postsynaptic spiking fre-
quencies, postsynaptic membrane potentials, and the 
dendritic location of synaptic inputs [24, 72–74]. Some 
factors that affect the induction of LTP or LTD are as the 
following:

1.	 Different plasticity induction protocols have been 
used to define the direction and magnitude of 
homosynaptic plasticity and induce LTP and LTD, 
including afferent tetanization, pairing, and intracel-
lular tetanization. The afferent tetanization is applied 
by simulating the presynaptic fibers using repeated 
electric pulses at a specified frequency or pattern 
with focal inputs that are decayed by distance. As 
such, low-frequency tetanization is given at 3  Hz 
and below, whereas high-frequency stimulation is 
received at 20 Hz and higher up to 50–200 Hz [24]. 
As such, in the afferent tetanization protocol, the 
change direction depends on the frequency. There-
fore, the tetanic stimulations at higher frequencies 
(20  Hz and above) induce potentiation, but tetani-
zation at lower frequencies (3 Hz and below) causes 
depression [24].

2.	 LTP or LTD induction mainly depends on the tim-
ing of presynaptic activity in the pairing protocol 
which relates to the postsynaptic firing or current 
network activities [24]. The LTP or LTD magnitude, 
however, is determined by the frequency and number 
of postsynaptic potentials in each pairing burst, as 
well as the number of pairings in the pairing proto-
col [72–74]. Any increase in these parameters results 
in higher alterations in plasticity [24]. Conclusively, 
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high-frequency afferent tetanization induces a char-
acteristic response amplitude profile containing alter-
ations (LTP at stimulated inputs surrounded by het-
erosynaptic LTD in the hippocampus and amygdala) 
[9, 20].

3.	 Intracellular Ca2+ reserves play a major role in induc-
ing heterosynaptic LTD and heterosynaptic LTP 
facilitation in the hippocampus [9]. Furthermore, 
inactive synapses have inverse sensitivity to local 
calcium signals [9]. Hence, higher levels of intracel-
lular Ca2+ may lead to depression whereas the lower 
levels evoke potentiation at inactive synapses. This 
response profile corresponds with a hypothesis con-
cerning the Ca2+-dependent LTP and LTD. Based on 
this evidence, the direction of synaptic alterations 
was related to the Ca2+ elevation amplitude and time 
course [75]. While fast and high-amplitude Ca2+ sig-
nals cause LTP induction, slow and low-amplitude 
signals could induce LTD. A brief and submicromo-
lar increase in intracellular Ca2+ signals might lead to 
potentiation or depression changes [76].

4.	 Unlike heterosynaptic LTP, the LTD is partly medi-
ated by a decrease in release probability. Although 
plasticity is regulated by presynaptic changes, it is 
induced by postsynaptic spiking alone. This form of 
plasticity would necessarily require transsynaptic 
interactions by the postsynaptic release of a retro-
grade messenger that activates presynaptic receptors 
following a strong postsynaptic depolarization [77].

5.	 Typically, LTP and LTD are produced by the post-
synaptic activation of NMDA, α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid  (AMPA), and 
metabotropic glutamate (mGlu) receptors [78]. Among 
the molecules that underlie synaptic plasticity, AMPA-
type ionotropic glutamatergic receptors  (AMPARs) 
play a key role in both LTP [79, 80] and LTD [81]. In 
neurons, AMPARs are highly flexible and undergo 
essential and activity-dependent trafficking [82]. The 
changes in synaptic AMPAR number are crucial dur-
ing the experience-dependent synaptic modulations. 
For instance, LTP in the pyramidal CA3 and CA1 
hippocampal neurons is associated with an increase 
of synaptic AMPARs in an activity-dependent man-
ner [83]. Conversely, the reduced number of synap-
tic AMPARs occurs in LTD. However, it is not clear 
whether such alterations in the AMPAR number at 
one synapse would also affect neighboring synapses in 
a compensatory manner. The modification of synap-
tic AMPARs during the LTP and LTD induction can 
provoke compensatory heterosynaptic alterations that 
could rescale the synaptic strength of unstimulated 
synapses and modulate consequent activity-depended 
synaptic plasticity inductions. In LTP and LTD, the 

increase or decrease of synaptic AMPARs highly 
depends on the lateral diffusion of receptors [84].

6.	 The interaction of retrograde messengers with spe-
cific receptors at the presynaptic membrane plays 
a role in inducing presynaptic LTP and LTD. In this 
way, the upregulation and downregulation of these 
receptors allow retrograde signaling to modify syn-
aptic weight accordingly via certain proteins like 
protein kinase  C  (PKC) [85, 86]. Future expression 
of these postsynaptic receptors and the presynaptic 
receptors that correspond to them differ significantly 
concerning their development phases, synapse types, 
brain regions, and dendrite biophysics [78].

LTP and LTD of excitatory synapses
The depolarization pairing with the CA3 presynaptic 
inputs in the CA1 neurons enhances the EPSP amplitude. 
This phenomenon is called LTP. Concurrent presynaptic 
and postsynaptic neural activities cause potentiation of 
synaptic conduction. Therefore, the excitatory synapses 
should contain coincidence-detector neurons to display 
synchronized presynaptic and postsynaptic neural activi-
ties. NMDA receptors are ligand-gated calcium channels 
that act as such detectors of presynaptic and postsynaptic 
depolarization [87]. The ensuing transient increase in the 
intracellular Ca2+ concentrations activates Ca2+/calmo-
dulin-dependent protein kinase  II  (CAMKII) and PKC. 
Subsequently, the enzyme-catalyzed phosphorylation of 
cAMP-response element-binding protein  (CREB) gener-
ates CREB-dependent gene expression [88]. Presynaptic 
terminals mediate LTP, and retrograde messengers, such 
as NO and ECs convey messages to the presynaptic cells 
so that neurotransmitter release could be altered [89].

Three procedures lead to LTP induction: (a) pairing, 
intracellular postsynaptic depolarization paired with the 
LFS of afferent fibers, (b) theta-burst stimulation  (TBS) 
of the afferent pathways (10 brief bursts, 5 bursts/s; each 
burst four pulses at 100 Hz), and (c) tetanic stimulation 
(100 Hz, 1 s) of afferent pathways. The physiological rel-
evance of these protocols may differ significantly.

LTP that is induced by tetanus [90, 91] and pairing stimu-
lation of the white-matter  (WM) [92] can be produced in 
pyramidal neurons in layers 2/3, 5, and 6 [93]. Some factors 
increase the likelihood of LTP production: blocking GABAe-
rgic inhibition, removal of Mg2+, or taking slices from imma-
ture animals [90, 91]. Decrease of inhibition and increase of 
excitation both enhances the probability of LTP induction. 
According to Kirkwood and Bear [90], LTP could be induced 
in layers‌ 2/3 by TBS of layer 4 with a success rate of over 
80% [90]. Moreover, the visual cortex LTP mostly hap-
pens at synapses on layers 2/3, 4, and 5 [94, 95].
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In a previous study by authors, corticogeniculate cells 
in layer 6 of the visual cortex received top-down synaptic 
inputs from cortical upper layers  (Uls), and bottom-up 
synaptic inputs from the WM; also, the WM-induced and 
UL-induced plasticity could occur through NMDARs 
and mGluRs, respectively [93]. In LTD induction, 
repeated LFS reduces the synaptic efficacy [96]. How-
ever, in granular and agranular areas, homosynaptic LTD 
can be produced by layer 4 LFS (1 Hz for 15 min). LTD 
is induced by the LFS of the WM/layer  6 to layer  4 in 
immature animals in case of IPSP inhibition [97]. There is 
evidence that LTD in the visual cortex is mostly induced 
at synapses on layers 2/3, 4, and 5 [94, 95]. In our study 
regarding the CG cells of layer 6 (in the visual cortex), the 
cannabinoid type  1 receptors and calcineurin underlie 
the UL-induced and WM-induced heterosynaptic LTD, 
respectively. So, homosynaptic LTP and heterosynaptic 
LTD in corticogeniculate cells may modify the efficacy 
of synaptic transmission through different mechanisms 
[93].

LTP and LTD of inhibitory synapses
The central and peripheral nervous systems include a 
variety of inhibitory interneurons [98]. In a mature nerv-
ous system, and especially in the adult cortical networks, 
excitation is modulated by a complex set of inhibitory 
circuits [99, 100]. Gamma-aminobutyric acid  (GABA) 
is the main neurotransmitter that has major inhibitory 
functions. Inhibition is critical for many neural functions, 
including spike generation, dendritic integration, synap-
tic plasticity, sleeping, learning, and prevention of patho-
logical activities like epilepsy [101–105].

Twenty-five percent of neocortical neurons are 
GABAergic [106], and 20% of all synapses are GABAergic 
[107]. Inhibitory plasticity may play a critical role in cor-
tical remapping [108]. Besides, GABA receptors would 
be downregulated following the visual or somatosen-
sory cortex deafferentation [109] whereas they would be 
upregulated by chronic stimuli [110]. To avoid hyperac-
tivity or hypoactivity in neurons and nervous networks 
during prolonged periods, inhibitory synapses should be 
calibrated or balanced by the relative strength of excita-
tory synapses. In the sensory cortex, inhibitory responses 
and excitatory–inhibitory balance are developed in early 
postnatal developments [111]. Since the experience-
dependent regulation of excitatory synapses mandates 
corresponding alterations to inhibition, the dynamic 
excitatory–inhibitory balance should be maintained as 
well [112–115]. Previous studies have implied the plastic-
ity of excitatory synapses on inhibitory neurons, resulting 
in the discovery of highly heterogeneous rules for plastic-
ity induction in diverse types of interneurons [116, 117]. 
It is indicated that some excitatory synapses on inhibitory 

neurons have shown associative Hebbian-type plasticity. 
As such, the interneural activities could present either 
input-specific or input-non-specific types of plasticity at 
different excitatory synapses [117]. For instance, excita-
tory synapses on fast-spiking  (FS) interneurons of the 
stratum pyramidal cells lacked input-specificity in the 
hippocampal CA1 [116]. Contrastingly, the excitatory 
synapses on interneurons of the stratum radiatum and 
stratum oriens expressed strict input-specific plasticity. 
In the former instance, there is LTP expression but no 
LTD changes. In the latter instance, there is Hebbian-
type plasticity in stratum radiatum or anti-Hebbian plas-
ticity in the stratum oriens [118].

The chief inhibitory neurons in the neocortex may 
associate with one of the two common classes of 
interneurons, the FS and non-FS  (nFS) neurons. They 
show different functions and properties [119]. Also, some 
excitatory synapses on the inhibitory neurons could 
induce heterosynaptic plasticity, with weight-dependent 
properties, both in FS and nFS subtypes and also in all 
interneurons that are pooled together, such as the pyram-
idal neurons [117, 120].

Recently, weight-dependent heterosynaptic plasticity 
has been proposed as a novel understanding of plastic-
ity at the excitatory synapses on inhibitory neurons. It is 
a widespread phenomenon that may not only participate 
in preventing runaway dynamics at excitatory synapses, 
but also exhibit potentiation or depression dispositions 
[25, 117]. Despite the weight-dependency of heterosyn-
aptic plasticity in all interneurons, it displays different 
net effects in the FS and nFS cells [117]. Heterosynap-
tic changes in the FS neurons would contribute to the 
overall excitatory/inhibitory balance. Also, they balance 
the cortical network operation patterns [121–123] while 
facilitating the local rearrangement of neural activities 
and their synchronization [117].

In the nFS neurons, heterosynaptic plasticity may con-
tribute to the operation maintenance for the inhibitory 
systems by preventing the elimination of the low-prob-
ability synapses. Pruning prevention by Hebbian-type 
plasticity preserves the functional inhibitory neurons 
that were activated by low-probability synapses. That 
is because these synapses tend to be facilitatory for 
these neurons and may operate as slowly activated ones 
through repeated firing in the network. In addition to 
GABA, traces of NO involvement are found in retrograde 
signaling during the heterosynaptic plasticity induction 
in the pyramidal and inhibitory neurons [116, 124].

Recordings of the linked pyramid-to-interneuron 
pairs confirmed the possibility of plasticity induction by 
purely postsynaptic protocols without any presynaptic 
spikes; thus, the induced plasticity type was heterosyn-
aptic [117]. At GABAergic synapses on the pyramidal 
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neurons, tetanus stimulation of layer 4 in the visual cor-
tex of adult rats [56] could induce plasticity in presence 
of both NMDA and AMPA receptor blockers. Unlike the 
associative EPSP potentiation, the IPSP plasticity was 
membrane-potential-independent.

In our previous study, in the layers  2/3 of the mouse 
visual cortex, the tetanic activation of presynaptic FS-
GABA neurons induced LTP for the unitary IPSCs (uIP-
SCs); whereas a similar activation of presynaptic 
nFS-GABA neurons could not produce LTP. This evi-
dence indicated that long-term plasticity at the inhibitory 
synapses on FS-GABA neurons has pathway specificity. 
Also, it proposed that P/Q-type calcium channels may 
involve in the LTP induction at inhibitory synapses on 
FS-GABA interneurons [125]. In another study, tetanic 
stimulation of the sensory cortex induced LTP in motor 
cortical neurons [126].

Developmental plasticity
During postnatal developments in synaptic level, glu-
tamatergic synapses become mature; also, various 
AMPAR and NMDAR activities occur. In the primary 
developmental stages, some brain synapses contain only 
NMDARs; therefore, the rapid addition of AMPARs into 
these synapses leads to their maturation. In our previ-
ous study, the postsynaptic alterations at excitatory glu-
tamatergic synapses in the locus coeruleus of rats were 
analyzed to discover plasticity changes during the first 
postnatal weeks. The frequency and amplitude of NMDA 
sEPSCs and the frequency of AMPA sEPSCs in the locus 
coeruleus were increased during the second and third 
postnatal weeks compared to the first one [127]. Moreo-
ver, experience-dependent plasticity is a vital property 
of normal brain function that depends on regular LTP 
and is reduced in certain neurological and psychiatric 
disorders.

Experience-dependent plasticity can be mediated by 
the presynaptic NMDARs in the excitatory connections 
from the neurons of layer 4 and layers 2/3 in the visual 
cortex [128]. Also, the presynaptic NMDARs are involved 
in experience-dependent plasticity in excitatory con-
nections from the neurons of layer  4 and layers  2/3 in 
the barrel cortex. However, in large excitatory spines of 
the CA1 hippocampal neurons, synapse-specific media-
tion of experience-dependent plasticity is facilitated by 
the activation of type-1 metabotropic glutamate recep-
tors (mGluR1s) [128]. Synapse-type-specific variations of 
expressed proteins may be significant for synapse-type-
specific plasticity  (STSP); notably, proteins like CaMKII 
and mitogen-activated protein kinase (MAPK) are down-
stream signal pathways for neurotransmitter receptors 
[129]. However, postsynaptic signaling variations may 

control LTP. That is because the synapse-type-specific 
expression of the activity-related proteins like activity-
regulated cytoskeleton-associated  (ARC) proteins has 
affected homeostatic STSP [128].

According to previous pieces of evidence, enhancing 
NMDAR signaling could augment experience-dependent 
plasticity in the adult human brain [130].

Also, LTD in small immature dendritic spines only 
requires NMDAR activation, indicating the dynamic 
structure of dendritic spines in memory and cognition. 
However, in large mature dendritic spines, LTD needs 
activation of both NMDARs and mGluRs in addition to 
calcium release from internal reserves [131, 132]. Since 
large spines include more AMPARs [133], these findings 
correspond with metaplasticity, wherein previous activ-
ity could modify the following plasticity thresholds [134]. 
Sensory experience and neural activity adjust postsynap-
tic NMDAR subunit expression at many synapses of the 
brain [135].

Generally, age is a key factor in experience-dependent 
cortical plasticity. Significant alterations, as a result of 
stimulus-driven plasticity, occur primarily in critical 
stages of life [136]. These periods can later be revived 
according to a variety of elements, such as the damages 
of the peripheral sensory organs [136]. Such factors affect 
the plasticity changes in various life periods and do not 
function only in the critical periods of development. As 
such, these factors comprised myelin-associated pro-
teins [137], inhibitory activities of parvalbumin-positive 
cells [115], and extracellular matrix components, includ-
ing the perineuronal nets  (PNNs) [136]. The number of 
parvalbumin  (PV)- and somatostatin  (SST)-positive 
interneurons deteriorates over time (as the subject ages). 
This indicates that different interneural subtypes would 
be affected differentially by aging. These results bear 
far-reaching consequences for developing rehabilitation 
plans targeted towards aging subjects [136].

Biophysics of dendrites and their structural 
plasticity
Dendrites (or, dendrons) are distinct neural sites where 
action potentials  (APs) occur [138]. Therefore, many 
studies have focused on how biophysics of dendritic 
affect synaptic plasticity. As such, pyramidal neurons 
comprised apical and basal dendrites, extensively branch-
ing to secondary, tertiary, and fourth-degree dendrites. 
These branching patterns physically restrict biochemical 
signal transmissions that serve as defining factors for the 
signaling pattern. Dendrites of pyramidal neurons con-
tain dendritic spines, or tiny protrusions emanating from 
the dendrite surface [139].

In neocortical layer  5 pyramidal neurons, the distal 
excitatory synapses present less LTP than the proximal 
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synapses do [129]. That is because the back-propagation 
of APs, which establishes potentiation in these neurons, 
cannot reach distal arbors [73]. Nevertheless, each syn-
aptic connection is formed by various synaptic contacts 
at distal and proximal locations [140], indicating the pos-
sible region-specificity of plasticity. Therefore, while dis-
tal synapses may show LTD, proximal synapses could be 
potentiated.

In the hippocampal CA1 area, axonally coupled spine 
pairs on the same dendrite have a similar size; the ones 
on different dendrites have unidentical sizes [141, 142]. 
The strict correlation between the spine volume and syn-
aptic strength [143] could be considered the evidence for 
input-specificity of plasticity even at individual levels of 
synaptic contacts [144].

Neural dendrites generally receive information from 
many synapses (approx. 103–104) and process the 
received information in milliseconds [145, 146]. Den-
dritic spines are tiny actin-rich, micronized protrusions 
projected out of the dendritic shafts. Any modification 
in the spine size is accompanied by synaptic strengthen-
ing at the level of an individual spine. Besides, the actin 
dynamics in the dendritic spine have important roles in 
structural plasticity [147–149].

Overall, the biochemical signal transduction needs a 
longer time to modify synaptic strength, dendritic excit-
ability, and electrical information. Synaptic strength and 
electrical properties of dendrites, known as neural plas-
ticity, are regulated by changes in signaling state. These 
changes are regulated by the ion channels and transmit-
ter receptors [145, 146]. Moreover, the dendritic struc-
tures and properties have significant effects on framing 
the spatiotemporal patterns of signal transduction in 
biochemical information processing. For instance, the 
time course and spatial spreading of synaptic inputs are 
determined by the passive cable properties of dendrites 
along with the distribution and functional state of volt-
age-gated channels [150].

Long and thin dendrite are cable-like structures. Each 
of them has a conducting cytoplasmic core and plasma 
that have membrane surface area with resistance and 
capacitance [151–154], displaying cable properties. These 
properties include current flow along the length of cable 
and across the membrane, as well as the drop of volt-
age across the membrane [73]. Particularly, the decrease 
of voltage is seen in the subthreshold regime of the long 
and thin dendrites that are related to a large axial resist-
ance [155]. The asymmetric functional structure of den-
dritic trees affects the transient and steady-state voltage 
attenuation of subthreshold signals. Also, it results in an 
asymmetric activation of back- and forward propagat-
ing spikes [73]. Accordingly, the EPSP amplitude peak is 
attenuated by propagation at sites of origin to the soma 

(over 100-fold for most distal synapses in the neocorti-
cal pyramidal neurons of layer  5) [156]. This dendritic 
voltage decrement causes synapses at different den-
dritic locations to be influential (although not equally) 
on axonal spike outputs [157]. However, the synaptic 
charge attenuation in long and thin dendrites of pyrami-
dal cells significantly reduces the amplitude of somatic 
EPSP (originating from distally located synapses on den-
drites), compared to the proximally generated EPSPs 
with the same synaptic conductance. In the short spiny 
branchlets of Purkinje cells that are directly connected 
to the main thick dendrites, equal synaptic conductance 
was simulated on distal and proximal spiny branchlets 
with a similar somatic EPSP amplitude [158, 159]. The 
cable equations imply that electrotonic conduction of a 
somatic depolarization cannot fully preserve the somatic 
steady-state or transient depolarization as synaptic or 
action potential of all dendrites [160–162]. This prob-
lem is resolved by employing high-threshold VDCCs and 
their associated Na+ currents, instead of NMDARs or 
Ca+2 current [163, 164].

The dendrites could act as resistive and capacitive types 
of load on the axonal spike-initiation sites, causing dif-
ficult AP initiation. Therefore, dendritic morphology 
has a powerful impact on the neural input–output (I/O) 
function [73]. As such, the considerable increase of 
membrane area leads to large capacitive load with severe 
amplitude attenuation of fast-transient voltage; thus, it 
leads to the quick drop of AP, below the normal threshold 
of active propagation [165, 166]. Dendritic morphology 
determines which associations could occur between dif-
ferent synaptic inputs or input–output during the synap-
tic integration and plasticity [73]. Dendritic morphology 
also alters the coupling between somatic and dendritic 
spike-initiation sites in neurons [73, 167].

In addition to dendritic morphology, other dendritic 
properties, such as the kinetics, density, and spatial dis-
tribution of various voltage-gated conduction play major 
roles in spreading synaptic potentials, back-propagation 
of APs, initiation conditions, and forward propagation of 
dendritic spikes [168]. Also, regulation of channel prop-
erties and density, as well as the spatial gradients in these 
variables are functionally important neural characteris-
tics. Besides, different kinds of voltage-gated conduction 
exist at different dendritic tree locations that may selec-
tively modify the excitability of different neural types 
[168].

Some studies have proved the role of dendrites in 
input–output transformation and long-term synaptic 
plasticity. Therefore, local dendritic responses are pre-
sented as important factors that have a decisive impact 
on the nature and outcomes of synaptic plasticity [169]. 
Moreover, the biochemical synaptic transmissions reach 
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postsynaptic density  (PSD) in the dendritic spine and 
integrate with synaptic transmission [139]. Certain struc-
tural properties of the dendritic spines, such as the PSD 
surface area or spine head volume, have, respectively, 
influenced and correlated with the changes of synap-
tic efficacy [170]. Since the total surface area of PSD is 
approximately constant, any increase in the synaptic PSD 
surface area (i.e., new synapses) is balanced by a corre-
sponding decrease in the number of other synapses, or 
by their complete elimination [27]. For instance, spine 
head volume is directly related to the PSD size; or long-
term enlargement of spine size is associated with the 
LTP of synaptic transmission, so that spine head volume, 
PSD, and postsynaptic sensitivity to glutamate could 
increase [171, 172]. Any rapid increase in the sensitivity 
of the spine head volume or postsynaptic sensitivity to 
glutamate happens within few minutes despite the slow 
increase (in approximately 1  h) of PSD volume [172–
174]. Accordingly, an opposite mechanism is also pro-
posed for weak and prolonged stimulation, such as LTD 
and spine shrinkage [175–177].

Intracellular processes, as well as the extracellular 
signaling in dendritic spines, play significant roles in 
synaptic plasticity. These spines release BDNF through 
Ca2+-CaMKII-dependency. The released BDNF is bound 
to its TrkB receptors on the same spine and activates the 
receptors’ signaling to GTPase proteins Rac1 and Cdc42 
to regulate the actin. Moreover, the extracellular signal-
regulated kinase  (ERK) and PKA pathways are involved 
in protein synthesis regulation in the activated dendritic 
spines [178–181]. Other than signaling protein activation 
(through rapid spine shape modification), also, activity-
dependent protein synthesis in dendrites is contribu-
tory to the synaptic plasticity maintenance for more than 
several hours. Also, some GTPase proteins, such as Ras, 
RhoA, and Rac1 are important in facilitating the spine 
plasticity of adjacent spines. In other words, they lead to 
cooperative synaptic plasticity in adjacent spines [182, 
183].

Since both passive and active dendritic features influ-
ence the local integration and forward propagation of 
evoked potentials, the effects of certain inputs on the 
spike output are determined by them. These passive 
and active properties also play a major role in synaptic 
plasticity activation as they establish both electrical and 
chemical signals received at each synapse and the inter-
actions between the synapses. At last, the features of the 
dendritic trees could be modulated. Therefore, the elec-
trical properties of dendrites could provide a vast range 
of mechanisms for plasticity modulation [73].

Conclusion
The homosynaptic and heterosynaptic plasticity are 
two key forms of plasticity that contribute to mem-
ory and learning processes with some differences in 
processes, mainly by modifying the potency of neu-
ral connections. They have different properties and 
supply different functions. Homosynaptic plasticity 
always produce some distinct and short-term synap-
tic changes that cannot support long-term memory 
storage, while heterosynaptic facilitation could cause 
persistent changes. The longer latency of heterosyn-
aptic plasticity suggests that unpaired input changes 
serve as homeostatic modulators in synaptic exhaus-
tion. However, homosynaptic plasticity is essential for 
the high performance of neural circuits. While heter-
osynaptic plasticity is inhibited, homosynaptic plas-
ticity could be preserved; therefore, heterosynaptic 
plasticity can exist in a non-stimulated pathway while 
a neighboring pathway is being stimulated. In addition, 
different areas of the brain and nervous system are 
involved to form homo- and heterosynaptic plasticity. 
Heterosynaptic plasticity contributes to shaping the 
corticostriatal plasticity maps in particular time scales. 
This heterosynaptic plasticity has a major role in shap-
ing the corticostriatal plasticity, and has a significant 
impact on the brain plasticity maps. Different brain 
areas have different mechanisms for homosynaptic or 
heterosynaptic plasticity that need to be more investi-
gated and elucidated.
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