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Effects of the hydroalcoholic extract 
of Rosa damascena on hippocampal long‑term 
potentiation in rats fed high‑fat diet
Seyed Asaad Karimi1,2†, Somayeh Komaki1†, Masoumeh Taheri1, Ghazaleh Omidi1, 
Masoumeh Kourosh‑Arami3,4, Iraj Salehi1 and Alireza Komaki1,2,5*   

Abstract 

High-fat diets (HFDs) and obesity can cause serious health problems, such as neurodegenerative diseases and cogni‑
tive impairments. Consumption of HFD is associated with reduction in hippocampal synaptic plasticity. Rosa dama-
scena (R. damascena) is traditionally used as a dietary supplement for many disorders. This study was carried out to 
determine the beneficial effect of hydroalcoholic extract of R. damascena on in vivo hippocampal synaptic plasticity 
(long-term potentiation, LTP) in the perforant pathway (PP)—dentate gyrus (DG) pathway in rats fed with an HFD. 
Male Wistar rats were randomly assigned to four groups: Control, R. damascena extract (1 g/kg bw daily for 30 days), 
HFD (for 90 days) and HFD + extract. The population spike (PS) amplitude and slope of excitatory post-synaptic poten‑
tials (EPSP) were measured in DG area in response to stimulation applied to the PP. Serum oxidative stress biomarkers 
[total thiol group (TTG) and superoxide dismutase (SOD)] were measured. The results showed the HFD impaired LTP 
induction in the PP-DG synapses. This conclusion is supported by decreased EPSP slope and PS amplitude of LTP. R. 
damascena supplementation in HFD animals enhanced EPSP slope and PS amplitude of LTP in the granular cell of 
DG. Consumption of HFD decreased TTG and SOD. R. damascena extract consumption in the HFD animals enhanced 
TTG and SOD. These data indicate that R. damascena dietary supplementation can ameliorate HFD-induced alteration 
of synaptic plasticity, probably through its significant antioxidant effects and activate signalling pathways, which are 
critical in controlling synaptic plasticity.
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Introduction
Synapses in the central nervous system (CNS) endure 
alterations in synaptic strength, a process called synaptic 
plasticity [1]. Synaptic plasticity is one of the basic mech-
anisms in neural circuits for most models of learning and 
memory [2]. These changes are collectively referred to 
as Hebbian plasticity, which occur locally in individual 

synapses and include long-term potentiation (LTP) or 
long-term depression (LTD) [3, 4].

Numerous studies have reported that high-fat diet 
(HFD) consumption can alter the morphology and 
structure of synapses, the amounts of released neu-
rotransmitters and synaptic plasticity in different 
areas of the brain, and especially in the hippocampus 
[5–8]. The hippocampus is one of the brain regions 
critical to learning and memory [9]. Furthermore, pre-
clinical human and rodent studies have demonstrated 
reduction in cognitive function and whole-body effi-
ciency following short-term and long-term usage of 
an HFD [8, 10–12]. Other works have identified HFD 
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consumption, as a risk factor for Alzheimer disease 
(AD) development [13].

Although the pathogenesis of synaptic plasticity 
and cognitive impairment following consumption of 
an HFD has not been fully clarified, factors, such as 
metabolic disorder [14], brain inflammation [15], brain 
insulin resistance [16], and oxidative stress [17], are 
believed to play probable roles.

Given the increasing universal burden of HFD con-
sumption and obesity, an emerging issue of demen-
tia related to HFD consumption, understanding the 
impacts of HFD consumption on learning and memory 
related mechanism(s), identification and recognizing 
of potential underlying mechanisms, and finding effec-
tive beneficial approaches are vital. However, until 
now, no effective treatments are available for the man-
agement of HFD-induced hippocampal-dependent 
memory and synaptic plasticity deficits. High level of 
inflammation and oxidative stress induced by a HFD 
is one of the main reasons for the reduction in synap-
tic plasticity [18, 19] and impaired cognitive function 
[20, 21]. Oxidative stress produces excessive reactive 
oxygen species (ROS), primarily due to imbalances in 
oxidative to reducing species [22, 23].

It has been shown that Rosa damascena (R. dama-
scena) or Damask Rose can reduce oxidative toxicity, 
and has a key role in ROS disarm [24]. In our previous 
work, we demonstrate that treatment with the hydroal-
coholic extract of R. damascena can prevent cognitive 
impairment caused by the consumption of an HFD, as 
measured by the passive avoidance learning test [25]. 
Since LTP is one of the basic mechanisms for learning 
and memory, in this study, we examined the effects of 
R. damascena on LTP.

R. damascena known as “Gole Mohammadi” in 
Iran is one of the most important species of Rosaceae 
family flowers [26]. R. damascena is one of the most 
famous ornamental plants in herbal medicine and is 
used as a traditional remedy in Iran [26] because of its 
sedative [27], anti-inflammatory [28, 29], antibacterial 
[30], analgesic [31], antioxidant [30, 32], anticancer 
and pain relief [33, 34] effects. Extracts of this plant 
are also used in beauty products and perfumes in mul-
tiple countries [30, 35].

Considering the beneficial effects of R. damascena, 
here, we assessed the effect of hydroalcoholic extract 
of R. damascena on serum oxidative stress biomarkers 
and in vivo hippocampal synaptic plasticity (long-term 
potentiation, LTP) in the perforant pathway (PP)—
dentate gyrus (DG) pathway in adult rats fed with an 
HFD.

Methods
Ethics statement
All experimental procedures using rats were conducted 
in accordance with the animal care and use guide-
lines approved by the institutional ethics committee 
at Hamadan University of Medical Sciences and were 
performed in accordance with the National Institutes 
of Health Guide for Care and Use of Laboratory Ani-
mals [36]. All efforts were made to minimize suffering. 
The operations that could cause pain and distress were 
performed in another room in the absence of other 
animals.

Animals and experimental design
Adult male Wistar rats weighing 200–250  g obtained 
from Pasteur Institute of Tehran, Iran. The animals 
were housed in an air-conditioned room at 22 ± 2  °C 
with a 12-h light/dark cycle. The animals were kept in 
cages with 2–3 rats in each cage. The animals had free 
access to water and standard or high-fat rat chow. Ani-
mals were randomly assigned to four groups of 6–8 ani-
mals each: (1) control (received standard diet), (2) HFD 
(received high-fat diet only), (3) HFD + Ext (received 
HFD plus 1 g/kg bw hydroalcoholic extract of R. dam-
ascena, (4) Standard diet + 1  g/kg bw hydroalcoholic 
extract of R. damascena (Ext group). The extract (1 g/kg 
bw daily) was administered by oral gavage for 1 month 
[25, 37, 38]. Animals were maintained on standard 
diet or HFD regimes as per the protocol for 11 weeks. 
After 90 days, LTP was induced in area DG with high-
frequency stimulation (HFS). Experimental design and 
timeline are shown in Fig. 1.

High‑fat diet
Animals in the HFD and HFD + extract groups were fed 
an HFD composed of a standard diet (67.7%) with 8.3% 
ghee, 4.05% hydrogenated oil, 0.85% soybean oil, 0.8% 
sodium cholate, 1.0% cholesterol and 17.3% sugar [12, 
25, 39, 40]. For concocting HFD, standard diet chows 
were powdered and this powder was mixed with a cer-
tain percentage of materials in the mixture and then 
came in the form of pellets. For feeding experiments, 
male rats were placed in cages and were fed with either 
standard diet (Behparvar, Iran) or HFD. Animals had 
free access to the HFD for 3 months [25]. The composi-
tion of standard diets includes 21% protein, 3.69% fat, 
32.5% carbohydrates, and 5.5% raw fiber.

Preparation of extract
For the preparation of the hydroalcoholic R. dama-
scena extract, R. damascena petals were purchased 
from a flower market (Hamadan, Iran) and identified 
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and authenticated at the Botanic Institute of the Hama-
dan University of Medical Sciences. These petals were 
dried in a room free of sunlight and then ground into 
a powder. This powder was then dissolved in 98% etha-
nol and extracted using distilled water and ethanol (1:1 
v/v) as a solvent. This extract was filtered and concen-
trated under reduced pressure on a rotary evaporator. 
It was finally freeze-dried at – 80  °C. The extract was 
dissolved in water and prepared fresh daily in our lab 
and 1  g/kg bw was administered daily by oral gavage 
for 1  month. Doses were chosen according to previ-
ously published data [25, 31, 41–43]. The total phenolic 
and flavonoid content of R. damascena were measured 
by Folin–Ciocalteu reaction and colorimetric assay, 
respectively [25].

The median lethal dose (LD50) of this plant extract 
has been reported previously [44–47]. Oral LD50 of R. 
damascena and rose absolute was > 5  g/kg in rats and 
dermal LD50 of R. damascena was > 2.5  g/kg in rab-
bits [44, 47]. Consistent with results of another study, 
LD50 was determined 6  g/kg [45]. Additionally, it has 
been shown that an LD50 dose of 2 g/kg and higher than 

2  g/kg is categorized as unclassified and therefore the 
extract is found to be safe [46].

The potential toxic results of R. damascena infusion 
in dogs at doses 90–1440  mg/kg/day (0.5–8 times of 
human uses) for 10 successive days discovered a mini-
mal nephrotoxic or hepatotoxic effect. Therefore, it 
might also have hepatotoxic consequences at extraordi-
nary high doses [48]. In another experiment, the ethanol 
extract of R. damascena failed to show any mortality and 
toxic manifestations up to the dose of 3200 mg/kg [46].

IC50 values of ethanol and watery extract of R. dama-
scena have been discovered to be 18.46 and 22.1 lg/ml 
[49]. In another study, IC50 value of the extract in free 
radical scavenging was 2.24 lg/ml and in fat peroxidation 
assays was 520 lg/ml and fat peroxidation assays, respec-
tively [50].

Surgical procedure, electrophysiological recording and LTP 
induction
Hydroalcoholic extract of Rosa damascena was adminis-
tered intragastrically by gavage once a day for 1 months. 
Then, the rats were anesthetized with urethane, and 

90 days

Administration of HFD and/or a normal diet

30 days

Extract Treatment
1 day

Dentate Gyrus (DG)
LTP induction

HFS Stimulation Protocol
(10 bursts of 20 stimuli, 0.2 ms stimulus

duration, 10 s interburst interval)

Pre-Stimulation Post-Stimulation

Fig. 1  Experimental design and timeline. Animals were maintained on HFD or standard diet regimes as per the protocol for 90 days before 
subjecting them for electrophysiological recording. The extract (1 g/kg bw daily) was administered by oral gavage for 30 days. After that, once a 
stable baseline was observed for at least 40 min, LTP was induced by applying HFS consisting of 10 bursts of 20 stimuli, 0.2 ms stimulus duration, 
10 s interburst interval in the DG of rats. HFS; high-frequency stimulation
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placed into a stereotaxic apparatus for surgery, electrode 
implantation and field potential recording. The method-
ologies used in this section were similar to prior studies 
that published by our laboratory [5, 51–54]. Briefly, under 
urethane anesthesia induced by intraperitoneal injection 
(1.5  g/kg), rats’ head was fixed in a stereotaxic appara-
tus for surgery and recording. A heating pad was used to 
maintain the temperature of the animals at 36.5 ± 0.5 °C. 
Small holes were drilled in the skull. Afterwards, two 
bipolar electrodes, made of stainless steel with Teflon 
cover (125  µm diameter, Advent Co., UK) were posi-
tioned in the right cerebral hemisphere. The stimu-
lating electrode was placed in the perforant pathway 
(PP) [:AP: − 8.1  mm from bregma; ML: + 4.3  mm from 
midline; DV: 3.2  mm from the skull surface], while the 
recording electrode was positioned in the dentate gyrus 
(DG) granular cell layer [AP: − 3.8  mm from bregma; 
ML: + 2.3  mm from midline; DV: 2.7–3.2  mm from the 
skull surface] according to the Paxinos and Watson atlas 
of the rat brain [5, 55]. The electrodes were lowered very 
slowly (0.2 mm/min) from cortex to the hippocampus, to 
minimize trauma to the brain tissue.

Input–output current profiles were obtained by stimu-
lating the PP to determine the stimulus intensity to be 
used in each animal (40% maximal population spike). 
Single 0.1 ms biphasic square wave pulses were delivered 
through constant current isolation units (A365 WPI) at a 
frequency of 0.1 Hz.

The field potential recordings were obtained in the 
granular cells of the DG following stimulation of the PP. 
Test stimuli were delivered to the PP every 10  s. Elec-
trodes were positioned to elicit the maximum amplitude 
of population spike (PS) and field excitatory post-synap-
tic potentials (fEPSP). After ensuring a steady-state base-
line response, which was taken about 40  min, LTP was 
induced using a high-frequency stimulation (HFS) pro-
tocol of 400 Hz (10 bursts of 20 stimuli, 0.2 ms stimulus 
duration, 10 s interburst interval) at a stimulus intensity 
that evoked a PS amplitude and field EPSP slope of ~ 
80% of the maximum response. Both fEPSP and PS were 
recorded 5, 30, and 60  min after the HFS to determine 
any changes in the synaptic response of DG neurons. For 
each time point, 10 consecutive evoked responses were 
averaged at 10 s stimulus interval [56–58].

For stimulations, the parameters of the stimuli were 
defined in homemade software and were sent via a data 
acquisition board linked to a constant current isolator 
unit (A365 WPI, USA) prior delivery to the PP through 
the stimulus electrodes. The induced field potential 
response from the DG, was passed through a preampli-
fier, then was amplified (1000 ×) (Differential amplifier 
DAM 80 WPI, USA), and filtered (band pass 1  Hz to 
3 kHz). This response was digitized at a sampling rate of 

10 kHz, and was observable on a computer (and an oscil-
loscope). It was saved in a file to facilitate later offline 
analysis.

Measurement of evoked potentials
The evoked field potential in the DG has two compo-
nents: PS and fEPSP. During electrophysiological record-
ings, changes in PS amplitude and fEPSP slope were 
measured [5].

PS amplitude and EPSP slope were calculated accord-
ing to Eqs. (1) and (2), respectively (see Fig. 2).

where (see Fig. 2). ΔV = the potential difference between 
points c and d. ΔT: Time difference between points a and 
b. ΔV1 = the potential difference between points e and f. 
ΔV2 = the potential difference between points f and g.

Blood sampling and biochemical analyses
At the end of the study, animals were anesthetized with 
urethane (ethyl carbamate, 1.8  g/kg; i.p.). Blood sam-
ples were taken from the portal vein and centrifuged at 
3000 rpm for 10 min at 4 °C. Plasma measurements were 
performed for the assay of serum oxidative stress bio-
markers [total thiol groups (TTG), and superoxide dis-
mutase (SOD)].

Statistical analysis
Data were presented as mean ± SEM and processed 
by commercially available software GraphPad Prism® 
8.0.2. The data normality test was performed using 

(1)EPSP =
�V

�T
,

(2)PS =
�V1 +�V2

2
,

ΔT

ΔV
ΔV1

ΔV2

a b

c

d

e

f

g

Fig. 2  Measurement of evoked potentials. PS amplitude and EPSP 
slope were calculated according to Eqs. (1) and (2), respectively (refer 
to the text). ΔV = The potential difference, ΔT: Time difference
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Shapiro–Wilk test. Oxidative stress data were analyzed 
by one-way ANOVA and Tukey’s post hoc test. LTP data 
were analyzed by two-way repeated measures ANOVA 
followed by Bonferroni test. LTP data were normalized 
to the mean value of fEPSP slopes and PS amplitude 
recorded prior to the induction of LTP (Eq.  3) [53, 59, 
60], and reported as mean ± SEM. P values < 0.05 were 
considered significant.

Results
Effects of R. damascena extract on the biomarkers 
of oxidative stress in rats fed with high‑fat diet
Thiol concentration increases in oxidative stress condi-
tions [61]. The total thiol status in the body, especially 
thiol groups present in proteins are considered as major 
plasma antioxidants in  vivo, and most of them are pre-
sent over albumin [62], and they are the major reducing 
groups present in our body fluids [63]. There was a signif-
icant difference in the case TTG among the experimen-
tal groups of rats (F (3, 33) = 7.565, P = 0.0006, One-way 
ANOVA, Fig. 3a). As illustrated in Fig. 4a, Consumption 
of HFD decreased TTG in compare with control group 
(P = 0.0391, Fig. 3a). R. damascena extract consumption 
in the HFD group enhanced TTG (P = 0.043). Super-
oxide dismutases (SODs) constitute a very important 
antioxidant defense against oxidative stress in the body 
[64]. The impact of HFD and R. damascena extract on 
SOD concentration in serum was evaluated. There was 
a significant difference in the case of SOD among the 
experimental groups of rats (F (3, 32) = 18.37, P < 0.0001, 
One-way ANOVA, Fig. 3b). As illustrated in Fig. 3b, HFD 
decreased SOD in serum compared with the control 
group (P = 0.0045, Fig.  3b). Treatment of HFD animals 

(3)

LTP =
the EPSP or PS value after HFS induction× 100%

the average EPSP or P Satbaseline
.

with R. damascena extract increased SOD concentration 
(P = 0.0170).

Effects of R. damascena extract on the field excitatory 
post‑synaptic potential (fEPSP) slopes of granular cells 
in the DG of rats fed with high‑fat diet
Field potential recordings were obtained in the granu-
lar cells in the DG following stimulation of the PP. Rep-
resentative example of evoked field potential in the DG 
recorded prior to and 60 min after high-frequency stim-
ulation is shown in Fig.  4. The effects of R. damascena 
extract on the EPSP slopes and PS amplitudes of rats 
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Fig. 3  Effect of high-fat diet (HFD) and R. damascena extract 
administration on serum levels of total thiol groups (TTG) (a) and 
superoxide dismutase (SOD) (b). Data presented as means ± S.E.M. 
*p < 0.05, and **p < 0.01
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Fig. 4  Representative sample traces of evoked field potential in the 
DG recorded prior to and 60 min after high-frequency stimulation in 
all groups
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Fig. 5  Time-dependent changes in hippocampal responses to 
perforant path stimulation following an HFS. LTP of the EPSP slope in 
area DG granular cell synapses of the hippocampus are significantly 
different between groups. Left panel shows fEPSP slope change (%) 
vs. time following HFS in different experimental groups. Bar graphs 
show the average fEPSP slope change (%) during 60 min post-HFS. 
Data are expressed as means ± SEM % of baseline. *P < 0.05
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fed with high-fat diet are shown in Figs. 5 and 6, respec-
tively. We found that HFS did not induce LTP in rats fed 
with high-fat diet [F (3, 24) = 0.3207, P = 0.8103, one-way 
ANOVA]. The percent change in slope of fEPSP imme-
diately and 60 min after HFS was significantly smaller in 
rats fed with high-fat diet than in control rats. We used 
a two-way analysis of variance to reveal the variability 
between the groups. Our results showed a significant 
effect of time points [F (3, 57) = 26.94, P < 0.0001] and 
treatment [F (3, 19) = 3.390, P = 0.0393] in slope of EPSP 
of the granular cell of DG (Fig.  5). Our post hoc analy-
sis indicated significant differences between the control 
group and the HFD animals. Slope of EPSP decreased in 
the HFD group respect to control group (P < 0.05, Fig. 5). 
R. damascena extract consumption in the HFD group 
enhanced EPSP slope of the granular cell of DG (P < 0.05, 
Fig.  5). The percent change in slope of fEPSP immedi-
ately and 60  min after HFS was significantly greater in 
HFD + Ext group than in HFD group.

Effects of R. damascena extract on the PS amplitude 
of granular cells in the DG of rats fed with high‑fat diet
Our results showed a significant effect of time points 
[F (3, 57) = 29.84, P < 0.0001] and treatment [F (3, 
19) = 8.497, P = 0.0218] in PS amplitude of the granular 
cell of DG (Fig.  6). Our post hoc analysis indicated sig-
nificant differences between the control group and the 
HFD animals (P < 0.05, Fig. 6). PS amplitude decreased in 
the HFD group with respect to control group. R. dama-
scena extract consumption in the HFD group enhanced 
PS amplitude of the granular cell of DG (P < 0.05, Fig. 6).

Discussion
This study assessed the influence of the administration of 
R. damascena on in vivo hippocampal LTP in the PP-DG 
pathway in adult rats fed with an HFD. In the present 
study, we showed that the HFD impaired LTP induction 
in the PP-DG synapses. This conclusion is supported by 
decreased EPSP slope and PS amplitude of LTP. There-
fore, we confirmed the observations of previous studies, 
in which HFD leads to synaptic plasticity impairment. 
Here, for the first time, we successfully identified that 
R. damascena supplementation prevents the destructive 
changes induced by HFD in hippocampal synaptic plas-
ticity. Moreover, consumption of HFD decreased TTG 
and SOD in compare with control animals. R. damascena 
extract consumption in the HFD group enhanced TTG 
and SOD.

Herbal remedies with lipid lowering and antioxidant as 
well as anti-inflammatory activities can play a beneficial 
role for the management of the HFD-induced alteration 
of synaptic plasticity and brain glucose metabolism [60, 
65]. HFD brains elicited decreased LTP relative to the 
control group. This HFD-induced alteration of synap-
tic plasticity could be a result of (a) the inability of the 
now insulin-resistant hippocampal neurons to generate 
enough neurotransmitter glutamate [66]; (b) impaired 
insulin signaling (Insulin receptor substrate (IRS) and 
Ras/Raf/ERK signaling nodes) [66, 67]; (c) decreased 
translocation of glucose transporters (GLUT3/GLUT4), 
creating a deficiency in energy substrates required for 
neurotransmitter production. [66, 67]; (d) reduced activa-
tion of the extracellular signal-regulated kinase/ cAMP-
response element-binding protein (ERK/CREB) pathway 
[67]; (e) decreased the brain-derived neurotrophic fac-
tor (BDNF) expression and downstream mRNA levels 
for CREB and synapsin I [68]; (f ) reduction of dendritic 
arborization and decreased dendritic spine number, and 
increase in reactive astrocytes [6].

LTP elevates the post-synaptic density of AMPA recep-
tors. Insulin modulates glutamatergic neurotransmis-
sion by inducing GluR2 subunit phosphorylation in the 
AMPA receptor in the hippocampus, leading to endocy-
tosis and thus decreases the post-synaptic excitatory abil-
ity [69].

In our study, the positive effects of R. damascena 
extract on hippocampal LTP in the PP- DG pathway in 
the HFD + extract group were likely due to its antioxi-
dant properties. R. damascena extract consumption in 
the HFD animals decreased oxidative stress. Also, in our 
work, total phenolic and flavonoid contents of R. dama-
scena were 3110.10 ± 10.20 and 1240 ± 14.5 mg per 100 g 
of extract, respectively. Flavonoids have antioxidant 
effects associated with various diseases, such as cancer, 
AD, etc. [70, 71]. Their high antioxidant capacity could 
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be a result of following mechanisms [70]: (a) direct scav-
enging of ROS; (b) activation of antioxidant enzymes; (c) 
metal chelating activity; (d) reduction of α-tocopheryl 
radicals; (e) inhibition of oxidases; (f ) mitigation of oxi-
dative stress caused by nitric oxide; (g) increase in uric 
acid levels; (h) increase in antioxidant properties of low 
molecular antioxidants. It is reported that citronellol, 
geraniol, linalool, kaempferol and quercetin are the main 
components of R. damascena [26, 50]. These compounds 
have antioxidant properties [72]. It has also been shown 
that R. damascena provides protection against DNA oxi-
dative damage through its significant antioxidant effects 
[73].

Emerging evidence suggests that flavonoids are able to 
activate signalling pathways, which are critical in control-
ling synaptic plasticity [74]. Their ability to activate the 
ERK1/2 and the protein kinase B (PKB/Akt) signalling 
pathways, leading to the activation of the CREB. These 
molecular events, which converge on CREB activation 
and neurotrophin synthesis, are able to induce synaptic 
plasticity [74]. In addition to ERK and CREB activation, 
flavonoids results in an activation of mechanistic target 
of rapamycin (mTOR) and an increased expression of 
hippocampal activity-regulated cytoskeleton-associated 
protein (Arc) [75]. Arc is known to be important in LTP 
and has been proposed to be under regulatory control of 
both BDNF [76] and the ERK signaling [77]. Also, flavo-
noids lead to improvements in synaptic plasticity through 
induction of synapse growth and connectivity, increases 
in synaptic activity, increases in dendritic spine density 
and the functional integration of old and new neurons 
[74]. Flavonoids are also capable of influencing neuro-
genesis through the activation of PI3 kinase-Akt-eNOS 
[78]. On the other hand, HFD has a detrimental effects 
on neurogenesis and neural plasticity in the hippocam-
pus [67, 79], which appears to be masked by flavonoids or 
compounds containing flavonoids [78].

Conclusion
In conclusion, the present study clearly demonstrates 
that treatment with the R. damascena can prevent syn-
aptic plasticity impairment caused by the consumption of 
an HFD. These effects are likely due to the strong antioxi-
dant properties of the extract and its ability to scavenge 
free radicals. Further experiments are required for deter-
mining the detail mechanism(s) of R. damascena action.

Acknowledgements
The authors would like to express their gratitude to the staff of the Neuro‑
physiology Research Center for helping us to carry out this project.

Authors’ contributions
All authors have assumed responsibility for data integrity and accuracy of the 
data analysis. Study concept and design: SAK, AK. Data acquisition: SK, MT. 
Data analysis and interpretation: GO, AK, SK, MK-A. Drafting of the manuscript: 

AK, SAK, MK-A. Critical revision of the manuscript for important intellectual 
content: AK and IS. Statistical analysis: SK, GO, IS. Study supervision: AK. All 
authors read and approved the final manuscript.

Funding
This research was supported by a grant (Grant Number: 940222778) of the 
Neurophysiology Research Center, Hamadan University of Medical Sciences, 
Hamadan, Iran.

Availability of data and materials
All data and material are available.

Declarations

Ethics approval and consent to participate
All animal experimental procedures were performed in accordance with the 
guidelines for proper conduct of animal experiments issued by the Ethics 
Committee of the Hamadan University of Medical Sciences, and performed 
according to the ‘Guide for the Care and Use of Laboratory Animals’, prepared 
by the National Academy of Sciences and published by the National Institutes 
of Health (NIH publication 86-23 revised 1985).

Consent for publication
All the authors have approved the manuscript and agree with submission to 
your esteemed journal.

Competing interests
The authors confirm that there is no conflict of interest associated with this 
publication.

Author details
1 Neurophysiology Research Center, Hamadan University of Medical Sci‑
ences, Hamadan, Iran. 2 Department of Neuroscience, School of Science 
and Advanced Technologies in Medicine, Hamadan University of Medical 
Sciences, Hamadan, Iran. 3 Department of Neuroscience, School of Advanced 
Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. 
4 Neuroscience Research Center, Iran University of Medical Sciences, Tehran, 
Iran. 5 Department of Physiology, School of Medicine, Hamadan University 
of Medical Sciences, Shahid Fahmideh Street, 65178/518 Hamadan, Iran. 

Received: 17 September 2020   Accepted: 29 March 2021

References
	1.	 Bailey CH, Kandel ER, Harris KM (2015) Structural components of synap‑

tic plasticity and memory consolidation. Cold Spring Harb Perspect 
Biol 7:a021758–a021758

	2.	 Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat 
Neurosci 3:1178–1183

	3.	 Huganir R, Nicoll R (2013) AMPARs and synaptic plasticity: the last 25 
years. Neuron 80:704–717

	4.	 Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excita‑
tory synapses. Cell 135:422–435

	5.	 Karimi SA, Salehi I, Komaki A, Sarihi A, Zarei M, Shahidi S (2013) Effect of 
high-fat diet and antioxidants on hippocampal long-term potentiation 
in rats: an in vivo study. Brain Res 1539:1–6

	6.	 Calvo-Ochoa E, Hernández-Ortega K, Ferrera P, Morimoto S, Arias C 
(2014) Short-term high-fat-and-fructose feeding produces insulin sign‑
aling alterations accompanied by neurite and synaptic reduction and 
astroglial activation in the rat hippocampus. J Cereb Blood Flow Metab 
34:1001–1008

	7.	 Krishna S, Keralapurath M, Lin Z, Wagner J, de La Serre C, Harn D, Filipov 
N (2015) Neurochemical and electrophysiological deficits in the ventral 
hippocampus and selective behavioral alterations caused by high-fat 
diet in female C57BL/6 mice. Neuroscience 297:170–181



Page 8 of 9Karimi et al. J Physiol Sci           (2021) 71:14 

	8.	 Khazen T, Hatoum OA, Ferreira G, Maroun M (2019) Acute exposure to 
a high-fat diet in juvenile male rats disrupts hippocampal-dependent 
memory and plasticity through glucocorticoids. Sci Rep 9:1–10

	9.	 Jarrard LE (1993) On the role of the hippocampus in learning and 
memory in the rat. Behav Neural Biol 60:9–26

	10.	 Edwards LM, Murray AJ, Holloway CJ, Carter EE, Kemp GJ, Codreanu I, 
Brooker H, Tyler DJ, Robbins PA, Clarke K (2011) Short-term consumption 
of a high-fat diet impairs whole-body efficiency and cognitive function in 
sedentary men. FASEB J 25:1088–1096

	11.	 Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM (1997) 
Dietary fat intake and the risk of incident dementia in the Rotterdam 
study. Ann Neurol 42:776–782

	12.	 Habibitabar E, Moridi H, Shateri H, Karimi SA, Salehi I, Komaki A, Sarihi A 
(2020) Chronic NaHS treatment improves spatial and passive avoidance 
learning and memory and anxiety-like behavior and decreases oxidative 
stress in rats fed with a high-fat diet. Brain Res Bull 164:380–391

	13.	 Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, 
Schneider J, Wilson RS (2003) Dietary fats and the risk of incident Alzhei‑
mer disease. Arch Neurol 60:194–200

	14.	 Zemdegs J, Quesseveur G, Jarriault D, Pénicaud L, Fioramonti X, Guiard BP 
(2016) High-fat diet-induced metabolic disorders impairs 5-HT function 
and anxiety-like behavior in mice. Br J Pharmacol 173:2095–2110

	15.	 Pistell PJ, Morrison CD, Gupta S, Knight AG, Keller JN, Ingram DK, Bruce-
Keller AJ (2010) Cognitive impairment following high fat diet consump‑
tion is associated with brain inflammation. J Neuroimmunol 219:25–32

	16.	 Kothari V, Luo Y, Tornabene T, O’Neill AM, Greene MW, Geetha T, Babu JR 
(2017) High fat diet induces brain insulin resistance and cognitive impair‑
ment in mice. Biochim Biophys Acta BBA Mol Basis Dis 1863:499–508

	17.	 Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim 
SO, White CL, Purpera MN, Uranga RM, Bruce-Keller AJ (2010) High fat 
diet increases hippocampal oxidative stress and cognitive impairment 
in aged mice: implications for decreased Nrf2 signaling. J Neurochem 
114:1581–1589

	18.	 Tan BL, Norhaizan ME (2019) Effect of high-fat diets on oxidative stress, 
cellular inflammatory response and cognitive function. Nutrients 11:2579

	19.	 Asadbegi M, Komaki A, Salehi I, Yaghmaei P, Ebrahim-Habibi A, Shahidi S, 
Sarihi A, Asl SS, Golipoor Z (2018) Effects of thymol on amyloid-β-induced 
impairments in hippocampal synaptic plasticity in rats fed a high-fat diet. 
Brain Res Bull 137:338–350

	20.	 Ganji A, Salehi I, Nazari M, Taheri M, Komaki A (2017) Effects of Hypericum 
scabrum extract on learning and memory and oxidant/antioxidant status 
in rats fed a long-term high-fat diet. Metab Brain Dis 32:1255–1265

	21.	 Asadbegi M, Yaghmaei P, Salehi I, Komaki A, Ebrahim-Habibi A (2017) 
Investigation of thymol effect on learning and memory impairment 
induced by intrahippocampal injection of amyloid beta peptide in high 
fat diet-fed rats. Metab Brain Dis 32:827–839

	22.	 Galli F, Piroddi M, Annetti C, Aisa C, Floridi E, Floridi A (2005) Oxidative 
stress and reactive oxygen species. Cardiovascular disorders in hemodi‑
alysis. Karger Publishers, Basel, pp 240–260

	23.	 Zarrinkalam E, Ranjbar K, Salehi I, Kheiripour N, Komaki A (2018) Resist‑
ance training and hawthorn extract ameliorate cognitive deficits in 
streptozotocin-induced diabetic rats. Biomed Pharmacother 97:503–510

	24.	 Nikolova G, Karamalakova Y, Kovacheva N, Stanev S, Zheleva A, Gadjeva 
V (2016) Protective effect of two essential oils isolated from Rosa dama-
scena Mill. and Lavandula angustifolia Mill, and two classic antioxidants 
against l-dopa oxidative toxicity induced in healthy mice. Regul Toxicol 
Pharmacol 81:1–7

	25.	 Rezvani-Kamran A, Salehi I, Shahidi S, Zarei M, Moradkhani S, Komaki 
A (2017) Effects of the hydroalcoholic extract of Rosa damascena on 
learning and memory in male rats consuming a high-fat diet. Pharm Biol 
55:2065–2073

	26.	 Loghmani-Khouzani H (2007) Essential oil composition of Rosa dama-
scena Mill cultivated in central Iran. Sci Iranica 14

	27.	 Rakhshandah H, Hosseini M (2006) Potentiation of pentobarbital hypno‑
sis by Rosa damascena in mice.

	28.	 Latifi G, Ghannadi A, Minaiyan M (2015) Anti-inflammatory effect of 
volatile oil and hydroalcoholic extract of Rosa damascena Mill. on acetic 
acid-induced colitis in rats. Res Pharmaceut Sci 10:514

	29.	 Fatemi F, Golbodagh A, Hojihosseini R, Dadkhah A, Akbarzadeh K, Dini S, 
Malayeri MRM (2020) Anti-inflammatory effects of deuterium-depleted 

water plus Rosa damascena Mill. essential oil via cyclooxygenase-2 path‑
way in rats. Turk J Pharmaceut Sci 17:99

	30.	 Özkan G, Sagdiç O, Baydar N, Baydar H (2004) Note: antioxidant and anti‑
bacterial activities of Rosa damascena flower extracts. Food Sci Technol 
Int 10:277–281

	31.	 Hajhashemi V, Ghannadi A, Hajiloo M (2010) Analgesic and anti-inflam‑
matory effects of Rosa damascena hydroalcoholic extract and its essential 
oil in animal models. Iran J Pharmaceut Res IJPR 9:163

	32.	 Achuthan C, Babu B, Padikkala J (2003) Antioxidant and hepatoprotective 
effects of Rosa damascena. Pharm Biol 41:357–361

	33.	 Nayebi N, Khalili N, Kamalinejad M, Emtiazy M (2017) A systematic review 
of the efficacy and safety of Rosa damascena Mill. with an overview on its 
phytopharmacological properties. Complement Ther Med 34:129–140

	34.	 Rakhshandeh H, Vahdati-Mashhadian N, Dolati K, Hosseini M (2008) 
Antinociceptive effect of Rosa damascena in Mice. J Biol Sci 8:176–180

	35.	 Verma SR, Padalia CR, Chauhan A (2011) Chemical investigation of the 
volatile components of shade-dried petals of damask rose (Rosa dama-
scena Mill.). Archiv Biol Sci 63:1111–1115

	36.	 Care IoLARCo, Animals UoL, Resources NIoHDoR (1985) Guide for the care 
and use of laboratory animals. National Acad

	37.	 Joukar S, Askarzadeh M, Shahouzehi B, Najafipour H, Fathpour H (2013) 
Assessment of safety and therapeutic efficacy of Rosa damascena L. and 
Quercus infectoria on cardiovascular performance of normal and hyper‑
lipidemic rabbits: physiologically based approach. J Toxicol 2013

	38.	 Nazıroğlu M, Kozlu S, Yorgancıgil E, Uğuz AC, Karakuş K (2013) Rose oil 
(from Rosa × damascena Mill.) vapor attenuates depression-induced 
oxidative toxicity in rat brain. J Nat Med 67:152–158

	39.	 Matos SL, Paula Hd, Pedrosa ML, Santos RCd, Oliveira ELd, Chianca Júnior 
DA, Silva ME (2005) Dietary models for inducing hypercholesterolemia in 
rats. Braz Arch Biol Technol 48:203–209

	40.	 Moridi H, Sarihi A, Habibitabar E, Shateri H, Salehi I, Komaki A, Karimi J, 
Karimi SA (2020) Effects of post-training administration of LY341495, as an 
mGluR2/3 antagonist on spatial memory deficit in rats fed with high-fat 
diet. IBRO Reports 9:241–246

	41.	 Kheirabadi M, Moghimi A, Rakhshande H, Rassouli MB (2008) Evaluation 
of the anticonvulsant activities of Rosa damascena on the PTZ induced 
seizures in wistar rats. J Biol Sci 8:426–430

	42.	 Ramezani R, Moghimi A, Rakhshandeh H, Ejtehadi H, Kheirabadi M (2008) 
The effect of Rosa damascena essential oil on the amygdala electrical 
kindling seizures in rat. Pak J Biol Sci 11:746

	43.	 Sharma M, Shakya A, Sharma N, Shrivastava S, Shukla S (2012) Therapeutic 
efficacy of Rosa damascena Mill. on acetaminophen-induced oxidative 
stress in albino rats. J Environ Pathol Toxicol Oncol 31

	44.	 Lis-Balchin M (2006) Aromatherapy science: a guide for healthcare profes‑
sionals. Pharmaceutical Press

	45.	 Esfandiary E, Karimipour M, Mardani M, Ghanadian M, Alaei HA, 
Mohammadnejad D, Esmaeili A (2015) Neuroprotective effects of Rosa 
damascena extract on learning and memory in a rat model of amyloid-β-
induced Alzheimer’s disease. Adv Biomed Res 4

	46.	 Raghavendra H, Lakshmikanth G, Ravinaik N, Samatha Y (2015) Evaluation 
of protective effects of Rosa damascena Mill against alloxan induced 
diabetic neuropathy in rats. J Global Trends Pharmaceut Sci

	47.	 Mahboubi M (2016) Rosa damascena as holy ancient herb with novel 
applications. J Tradit Complement Med 6:10–16

	48.	 Akbari M, Kazerani HR, Kamrani A, Mohri M (2013) A preliminary study 
on some potential toxic effects of Rosa damascena Mill. Iran J Vet Res 
14:232–236

	49.	 Himesh S, Nanda S, Singhai A, Jitender M (2012) Radical scavenging 
activities and natural indicator activity of aqueous and ethanolic extract 
of Rosa damascena. Int J Pharm Pharm Sci 4:581–586

	50.	 Yasa N, Masoumi F, Rouhani RS, Haji AA (2009) Chemical composition and 
antioxidant activity of the extract and essential oil of Rosa damascena 
from Iran, population of Guilan

	51.	 Komaki H, Saadat F, Shahidi S, Sarihi A, Hasanein P, Komaki A (2017) The 
interactive role of CB1 receptors and l-type calcium channels in hip‑
pocampal long-term potentiation in rats. Brain Res Bull 131:168–175

	52.	 Salehi I, Karamian R, Komaki A, Tahmasebi L, Taheri M, Nazari M, Shahidi 
S, Sarihi A (2015) Effects of vitamin E on lead-induced impairments in 
hippocampal synaptic plasticity. Brain Res 1629:270–281

	53.	 Omidi G, Karimi SA, Shahidi S, Faraji N, Komaki A (2020) Coenzyme Q10 
supplementation reverses diabetes-related impairments in long-term 



Page 9 of 9Karimi et al. J Physiol Sci           (2021) 71:14 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

potentiation induction in hippocampal dentate gyrus granular cells: an 
in vivo study. Brain Res 1726:146475

	54.	 Wang S-Q, Li D, Yuan Y (2019) Long-term moderate intensity exercise 
alleviates myocardial fibrosis in type 2 diabetic rats via inhibitions of 
oxidative stress and TGF-β1/Smad pathway. J Physiol Sci 69:861–873

	55.	 Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. 
Elsevier Academic Press, USA

	56.	 Taube JS, Schwartzkroin PA (1988) Mechanisms of long-term potentia‑
tion: a current-source density analysis. J Neurosci Off J Soc Neurosci 
8:1645–1655

	57.	 Karimi SA, Komaki A, Salehi I, Sarihi A, Shahidi S (2015) Role of group II 
metabotropic glutamate receptors (mGluR2/3) blockade on long-term 
potentiation in the dentate gyrus region of hippocampus in rats fed with 
high-fat diet. Neurochem Res 40:811–817

	58.	 Salehi I, Komaki A, Karimi SA, Sarihi A, Zarei M (2018) Effect of garlic 
powder on hippocampal long-term potentiation in rats fed high fat diet: 
an in vivo study. Metab Brain Dis 33:725–731

	59.	 Scott-McKean JJ, Roque AL, Surewicz K, Johnson MW, Surewicz WK, Costa 
A (2018) Pharmacological modulation of three modalities of ca1 hip‑
pocampal long-term potentiation in the ts65dn mouse model of down 
syndrome. Neural Plast 2018:1–14

	60.	 Omidi G, Rezvani-Kamran A, Ganji A, Komaki S, Etaee F, Asadbegi M, 
Komaki A (2020) Effects of Hypericum scabrum extract on dentate gyrus 
synaptic plasticity in high fat diet-fed rats. J Physiol Sci 70:1–8

	61.	 Jones DP, Liang Y (2009) Measuring the poise of thiol/disulfide couples 
in vivo. Free Radical Biol Med 47:1329–1338

	62.	 Prakash M, Upadhya S, Prabhu R (2004) Protein thiol oxidation and lipid 
peroxidation in patients with uraemia. Scand J Clin Lab Invest 64:599–604

	63.	 Mungli P, Shetty MS, Tilak P, Anwar N (2009) Total thiols: biomedical 
importance and their alteration in various disorders. Online J Health 
Allied Sci 8

	64.	 Younus H (2018) Therapeutic potentials of superoxide dismutase. Int J 
Health Sci 12:88

	65.	 Semwal P, Kapoor T, Anthwal P, Sati B, Thapliyal A (2014) Herbal extract as 
potential modulator and drug for synaptic plasticity and neurodegenera‑
tive disorders. Int J Pharm Sci Rev Res 25:69–79

	66.	 Liu Z, Patil I, Sancheti H, Yin F, Cadenas E (2017) Effects of lipoic acid on 
high-fat diet-induced alteration of synaptic plasticity and brain glucose 
metabolism: a PET/CT and 13 C-NMR study. Sci Rep 7:1–13

	67.	 Liu Z, Patil IY, Jiang T, Sancheti H, Walsh JP, Stiles BL, Yin F, Cadenas E 
(2015) High-fat diet induces hepatic insulin resistance and impairment of 
synaptic plasticity. PLoS ONE 10:e0128274

	68.	 Molteni R, Wu A, Vaynman S, Ying Z, Barnard R, Gomez-Pinilla F (2004) 
Exercise reverses the harmful effects of consumption of a high-fat diet 
on synaptic and behavioral plasticity associated to the action of brain-
derived neurotrophic factor. Neuroscience 123:429–440

	69.	 Ahmadian G, Ju W, Liu L, Wyszynski M, Lee SH, Dunah AW, Taghibiglou 
C, Wang Y, Lu J, Wong TP (2004) Tyrosine phosphorylation of GluR2 is 
required for insulin-stimulated AMPA receptor endocytosis and LTD. 
EMBO J 23:1040–1050

	70.	 Procházková D, Boušová I, Wilhelmová N (2011) Antioxidant and prooxi‑
dant properties of flavonoids. Fitoterapia 82:513–523

	71.	 de Andrade Teles RB, Diniz TC, Costa Pinto TC, de Oliveira Júnior RG, Gama 
e Silva M, de Lavor ÉM, Fernandes AWC, de Oliveira AP, de Almeida Ribeiro 
FPR, da Silva AAM (2018) Flavonoids as therapeutic agents in Alzheimer’s 
and Parkinson’s diseases: a systematic review of preclinical evidences. 
Oxidative Med Cell Longevity 2018:1–21

	72.	 Brewer M (2011) Natural antioxidants: sources, compounds, mechanisms 
of action, and potential applications. Comprehensive Rev Food Sci Food 
Saf 10:221–247

	73.	 Kalim MD, Bhattacharyya D, Banerjee A, Chattopadhyay S (2010) Oxida‑
tive DNA damage preventive activity and antioxidant potential of plants 
used in Unani system of medicine. BMC Complement Altern Med 10:77

	74.	 Spencer JP (2009) The impact of flavonoids on memory: physiological 
and molecular considerations. Chem Soc Rev 38:1152–1161

	75.	 Williams CM, El Mohsen MA, Vauzour D, Rendeiro C, Butler LT, Ellis JA, 
Whiteman M, Spencer JP (2008) Blueberry-induced changes in spatial 
working memory correlate with changes in hippocampal CREB phospho‑
rylation and brain-derived neurotrophic factor (BDNF) levels. Free Radical 
Biol Med 45:295–305

	76.	 Yin Y, Edelman GM, Vanderklish PW (2002) The brain-derived neuro‑
trophic factor enhances synthesis of Arc in synaptoneurosomes. Proc Natl 
Acad Sci 99:2368–2373

	77.	 Waltereit R, Dammermann B, Wulff P, Scafidi J, Staubli U, Kauselmann G, 
Bundman M, Kuhl D (2001) Arg3. 1/Arc mRNA induction by Ca2+ and 
cAMP requires protein kinase A and mitogen-activated protein kinase/
extracellular regulated kinase activation. J Neurosci 21:5484–5493

	78.	 Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP 
(2008) The neuroprotective potential of flavonoids: a multiplicity of 
effects. Genes Nutr 3:115

	79.	 Nam SM, Kim JW, Kwon HJ, Yoo DY, Jung HY, Kim DW, Hwang IK, Seong 
JK, Yoon YS (2017) Differential effects of low-and high-dose zinc supple‑
mentation on synaptic plasticity and neurogenesis in the hippocampus 
of control and high-fat diet-fed mice. Neurochem Res 42:3149–3159

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Effects of the hydroalcoholic extract of Rosa damascena on hippocampal long-term potentiation in rats fed high-fat diet
	Abstract 
	Introduction
	Methods
	Ethics statement
	Animals and experimental design
	High-fat diet
	Preparation of extract
	Surgical procedure, electrophysiological recording and LTP induction
	Measurement of evoked potentials
	Blood sampling and biochemical analyses
	Statistical analysis

	Results
	Effects of R. damascena extract on the biomarkers of oxidative stress in rats fed with high-fat diet
	Effects of R. damascena extract on the field excitatory post-synaptic potential (fEPSP) slopes of granular cells in the DG of rats fed with high-fat diet
	Effects of R. damascena extract on the PS amplitude of granular cells in the DG of rats fed with high-fat diet

	Discussion
	Conclusion
	Acknowledgements
	References




