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Protective effects of acute exercise 
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atrophy in aged muscle: a narrative literature 
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Abstract 

Aging is associated with a progressive loss of skeletal muscle mass and strength, resulting in frailty and lower qual-
ity of life in older individuals. At present, a standard of clinical or pharmacological care to prevent the adverse effects 
of aging does not exist. Determining the mechanism(s) responsible for muscular atrophy in disused aged muscle is 
a required key step for the development of effective countermeasures. Studies suggest an age-related differential 
response of genes and signalings to muscle disuse in both rodents and humans, implying the possibility that effective 
countermeasures to prevent disuse muscle atrophy may be age-specific. Notably, exercise preconditioning can atten-
uate disuse-induced muscular atrophy in rodent and human skeletal muscles; however, information on age-specific 
mechanisms of this exercise-induced protection remains limited. This mini-review aimed to summarize the protective 
effects of acute exercise preconditioning on muscular atrophy in aged muscle and provide potential mechanisms for 
its preventive effect on skeletal muscle wasting.

Keywords:  Growth arrest and DNA damage-inducible 45α, Histone deacetylase 4, Exercise intervention, Aged 
skeletal muscle, Sarcopenia

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

Background
Aging is associated with frailty, impaired health span, 
and lower quality of life [1]. Aging impacts muscle adap-
tations, such as muscle hypertrophy, increased antioxi-
dant capacity, muscle regeneration, and muscle atrophy. 
Interestingly, several studies have demonstrated that 
there are age-specific gene and signaling responses to 
skeletal muscle disuse in both rodents and humans 
[2–6]. For instance, Leeuwenburgh et  al. demonstrated 
that old rats (32  months old) have a greater apoptotic 
response to hindlimb unloading in rat soleus muscle than 
in young rats (6  months old), suggesting that apoptotic 

regulation during disuse is distinct in young and aged 
muscles [2]. In human skeletal muscle, one paper com-
paring age-related differential mechanisms in disuse 
muscle atrophy (21–27  years vs. 60–72  years) found an 
age-specific upregulation of Bax and p53 in aged mus-
cle after 2  days of immobility with significant increases 
in TdT-mediated dUTP nick end labeling and DNA 
fragmentation in old muscle [6]. Moreover, recent evi-
dence has revealed that growth arrest and DNA damage-
inducible 45α (Gadd45α) are required for skeletal muscle 
atrophy induced by different muscle stressors, such as 
fasting, denervation, and immobilization [7]. Gadd45α 
is a soluble, primarily myonuclear protein that causes 
muscle fiber atrophy by altering skeletal muscle gene 
expression, stimulating protein breakdown, reducing 
protein synthesis, decreasing mitochondria, and inhib-
iting anabolic signaling [7]. It is notable that Gadd45α 
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mRNA expression is significantly increased in the tibi-
alis anterior muscle in 29-month-old rats after 14 days of 
hindlimb unloading, but not in 9-month-old rats [8]. This 
suggests that Gadd45α plays a key role in disuse-induced 
muscle atrophy, especially in aged skeletal muscle. To 
preserve the functionality of aged muscle, it is important 
to develop therapeutic countermeasures prior to muscle 
disuse and identify target molecules that protect against 
disuse-induced skeletal muscle atrophy.

Although various countermeasures have been devel-
oped as potential therapeutic treatments to protect 
against disuse skeletal muscle atrophy, endurance exer-
cise preconditioning is one of the most practical coun-
termeasures currently available. Even a single bout of 
preconditioning exercise can attenuate disuse muscle 
atrophy induced by hindlimb unloading in rats [9]. This 
evidence suggests that a single bout of preconditioning 
exercise may be a simple and effective countermeasure 
against disuse muscle atrophy in aged skeletal muscle. 
While most older people’s circumstances or physical 
conditions do not permit exercise prior to the atrophic 
situation, investigating the mechanism(s) responsible 
for preconditioning exercise-induced protection against 
disuse muscle atrophy provides unique information to 
identify biological targets for intervention. By identify-
ing these biological targets, we can develop future thera-
peutic approaches to prevent muscle wasting. However, 
at present, there is limited supporting evidence for exer-
cise preconditioning-induced protection against disuse-
induced muscle atrophy in aged muscle.

Differential signaling responses to disuse in aged 
muscle
Aging affects gene and signaling responses to skeletal 
muscle disuse in rodents and humans, and investigators 
have demonstrated that some apoptotic responses to dis-
use are age-specific [2–6]. Interestingly, recent evidence 
indicated that growth arrest and DNA damage-inducible 
45α (Gadd45α) is required for skeletal muscle atrophy 
induced by different muscle stressors, such as fasting, 
denervation, and immobilization [7]. Gadd45α is a solu-
ble, primarily myonuclear protein that alters skeletal mus-
cle gene expression and stimulates protein breakdown, 
reduces protein synthesis, decreases mitochondria, acti-
vates apoptosis, and consequently causes muscle fiber 
atrophy [7]. Furthermore, histone deacetylase (HDAC) 
4, a class II histone deacetylase, is an important regula-
tor of Gadd45α in denervation-induced muscle atro-
phy [10]. Interestingly, the previous study indicated that 
Gadd45α mRNA expression was significantly increased 
in the tibialis anterior muscle in old rats (29 months old) 
after 14  days of hindlimb unloading, but not in young 
adult rats (9  months old) [8]. Moreover, Baehr et  al. 

demonstrated that Gadd45α mRNA expression increased 
significantly after 3 and 7 days of hindlimb unloading in 
the gastrocnemius muscle and that old rats (29  months 
old) showed greater Gadd45α mRNA expression for the 
entire unloading period compared with young adult rats 
(9 months old) [5]. Activation of these pathways induced 
the age-related delay in recovery from atrophy [8]. These 
facts suggest that HDAC4/Gadd45α axis plays an impor-
tant role in hindlimb unloading-induced muscle atrophy 
in aged skeletal muscle; thus, HDAC4/Gadd45α axis may 
be a key pathway for developing potential therapeutic 
countermeasures in aged muscles before muscle disuse 
and in identifying target molecules to protect against dis-
use skeletal muscle atrophy.

Protective effect of exercise on disuse muscle 
atrophy in aged muscle
Until now, a variety of countermeasures have been inves-
tigated as potential treatments to protect against disuse 
skeletal muscle atrophy in humans. Physical strategies, 
such as resistance exercises and maximal voluntary con-
tractions, which can be performed both isometrically 
and dynamically, are feasible during most immobiliza-
tion situations and represent powerful tools for prevent-
ing muscle atrophy [11]. Moreover, regular exercise can 
attenuate the major hallmarks of aging, such as genomic 
instability, loss of proteostasis, mitochondrial dysfunc-
tion, cellular senescence, and age-related muscle wast-
ing [12, 13]. Based on previous human studies, exercise, 
particularly resistance exercise, is a practical counter-
measure to age-related muscle atrophy; however, the 
underlying mechanisms by which exercise precondi-
tioning may prevent adverse effects on aging muscles 
remain unknown. Notably, even a single bout of precon-
ditioning exercise can attenuate disuse muscle atrophy 
induced by hindlimb unloading in the rat. For instance, 
Fujino et  al. [9] demonstrated that a bout of exercise 
preconditioning (20° slope, 20  m/min, 25  min) without 
pre-familiarization before 2  weeks of hindlimb unload-
ing attenuated slow-type soleus muscle atrophy by 
preventing mRNA expressions of the proteolytic path-
way (cathepsin l, calpain, caspase-3, and E3 ubiquitin 
ligases) in 9- to 10-week-old male Wistar rats. This sug-
gests that a single bout of preconditioning exercise may 
effectively suppress the upregulation of protein degrada-
tion during disuse in aged skeletal muscle. Additionally, 
we recently demonstrated that a bout of exercise could 
suppress Gadd45α upregulation in the gastrocnemius 
muscle of old rats [14]. As Gadd45α appears to have an 
age-specific change in response to hindlimb unloading, 
it is a potential target for exercise-induced protection 
against disuse muscle atrophy. Moreover, recent work has 
demonstrated that HDAC4 is an important regulator of 
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Gadd45α in denervation-induced muscle atrophy, and 
the knockout of HDAC4 can attenuate denervation-
induced muscle atrophy [10]. Therefore, exercise precon-
ditioning-induced prevention of Gadd45α via HDAC4 
should be effective for aged muscle atrophy. Similarly, 
we found that acute exercise preconditioning (0° slope, 
20 m/min, 15 min) without pre-familiarization can pre-
vent HDAC4 protein and mRNA upregulation in old rats 
(24-month-old male Wistar rats) with the prevention of 
downstream Gadd45α [14]. This study’s exercise protocol 
was relatively low-intensity and short-duration compared 
with the previous study performed by Fujino et al.; there-
fore, no protective effect was observed in 3-month-old 
(young) rats.

Although the precise mechanisms of acute exercise pre-
conditioning-induced protection against muscle atrophy 
are still unknown, there are some candidate mechanisms 
that indicate exercise can prevent HDAC4/Gadd45α 
pathway upregulation in aged muscle (Fig.  1). First, a 
previous study reported that Gadd45α reduces multiple 
barriers to muscle atrophy, including peroxisome prolif-
erator-activated receptor-gamma coactivator-1 (PGC-1α) 
[7]. PGC-1α plays a crucial role in the exercise-induced 
regulation of muscle atrophy, mitochondrial biogenesis, 
energy metabolism, and muscle fiber type in old mice 
skeletal muscle [15]; thus, preserving PGC-1α expres-
sion via Gadd45α downregulation seems to be one of 
the key factors of exercise-induced protection against 

Fig. 1  Potential underlying mechanisms of the protective effects of acute exercise preconditioning on disuse-induced muscular atrophy in 
aged muscle. HDAC4/Gadd45α axis plays an important role in disuse-induced muscle atrophy in aged skeletal muscle via preserving peroxisome 
proliferator-activated receptor-gamma coactivator-1 (PGC-1α) expression and maintaining Akt phosphorylation during disuse. Other potential 
mechanisms of exercise-induced protection against the HDAC4/Gadd45α axis include the upregulation of microRNA (miR)-206 and the 
phosphorylation of AMP-activated protein kinase α (AMPKα) and calcium/calmodulin-dependent kinase II (CaMKII). Arrows represent the exercise 
effects based on the results from the previous study [14]
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muscle atrophy. Second, the exercise preconditioning-
induced protection against HDAC4/Gadd45α pathway 
can maintain Akt phosphorylation during disuse [14]. 
Akt phosphorylation regulates FoxO3a phosphoryla-
tion [16, 17], leading to the exclusion of phosphorylated 
FoxO3a proteins from the nucleus and the inhibition of 
transcriptional function to induce the downregulation 
of E3 ligases. Thus, at least in part, it plays an important 
role in the protective effect on disuse muscle atrophy in 
old rats [14]. Additionally, microRNA (miR)-206, a mem-
ber of muscle-enriched miRNAs, is known to facilitate 
muscle differentiation by regulating the expression of 
myogenic regulatory factors [18]. Previous studies have 
reported that miR-206 regulates HDAC4 expression in 
the muscle under atrophic conditions [18, 19]. Over-
expression of miR-206 decreased endogenous HDAC4 
levels in the tibialis anterior muscles of mice [20], and 
miR-206 can attenuate denervation-induced rat skeletal 
muscle atrophy through the HDAC4-related signaling 
[21]. In human skeletal muscle, 2  h of acute resistance 
exercise increased miR-206 [22], and 90  min of ergom-
eter exercise increased miR-206, but load carriage tread-
mill running did not increase miR-206 [23], suggesting 
that the effect of acute exercise on miR-206 expression 
in humans might depend on the exercise conditions. 
Other potential mechanisms of exercise-induced protec-
tion against the HDAC4/Gadd45α axis are the phospho-
rylation of AMP-activated protein kinase α (AMPKα) 
and calcium/calmodulin-dependent kinase II (CaMKII) 
[24]. In disuse conditions, such as limb immobilization, 
AMPKα and CaMKII are both de-activated and affect 
HDAC4 phosphorylation during muscle atrophy [25, 26], 
resulting in upregulation of Gadd45α and E3 ligases. In 
contrast, exercise preconditioning reverses these effects 
and prevents HDAC4/Gadd45α pathway upregulation in 
aged muscle. Nonetheless, the information on exercise-
induced protection against disuse muscle atrophy is still 
limited; therefore, future studies are required to clarify 
the mechanisms through which exercise prevents muscle 
atrophy in aged skeletal muscle.

Conclusions
The evidence suggests that acute exercise precondition-
ing is an effective countermeasure against a reduction in 
muscle mass in aged skeletal muscle, and the mechanisms 
of exercise-induced protection against skeletal muscle 
loss may be age-specific. Moreover, this protective effect 
in the aged muscle may be partially mediated by the 
HDAC4/Gadd45α axis and subsequent protein degrada-
tion systems. Currently, supporting evidence in this area 
is limited, especially regarding the age-specific effects 
of chronic exercise on disuse-induced muscle atrophy. 
Therefore, future studies should clarify mechanisms of 

exercise-induced protection on muscular atrophy in aged 
muscle and lead to developing therapeutic approaches to 
prevent muscle wasting.
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