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Influence of exogenous and endogenous 
estrogen on thermoregulatory responses 
to mild heat and the interaction with light 
and dark phases
Shuri Marui1, Yuta Masuda1,2, Issei Kato1,2 and Kei Nagashima1* 

Abstract 

The present study aimed to determine the influence of estradiol (E2) and the interaction with circadian phases on 
thermoregulatory responses to mild heat in female rats. Heat loss and production during 3-h exposure to the envi-
ronment at an ambient temperature of 28–34 °C were assessed by measuring abdominal temperature (Tabd), tail 
skin temperature, and oxygen consumption in ovariectomized rats with and without E2 replacement (OVX + E2 and 
OVX, respectively) and in control rats in the proestrus (P) and diestrus (D) phases. In the light phase, Tabd remained 
unchanged in all groups. Tabd increased in the dark phase, but was lower in the OVX + E2 and P groups than in the 
OVX and D groups. Oxygen consumption decreased at 34 °C, but to a lesser extent in the OVX + E2 group than in the 
OVX group. These results suggest that E2 activates thermoregulation in mild heat in the dark phase.
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Background
Several studies have reported that estradiol (E2) activates 
thermoregulatory mechanisms during exposure to heat 
in female rats [1–5]. Baker et  al. [1] demonstrated that, 
in the extreme heat of 38  °C, the increase in body tem-
perature was greater in ovariectomized (OVX) rats than 
in OVX rats with E2 replacement (OVX + E2). They sug-
gested that reduced evaporative heat loss in OVX rats is 
involved in the mechanism. However, Dacks and Rance 
[2] reported that the increase in body temperature was 
greater in OVX rats than in OVX + E2 even at an ambi-
ent temperature (Ta) of 32.5  °C, a temperature at which 
evaporative heat loss is less involved in thermoregulation 
[6]. They also reported that dry heat loss from the tail 

was greater in OVX rats than in OVX + E2 rats. Hosono 
et  al. [3] reported that, at Ta of 32–36  °C, heat-escape 
behavior did not differ between OVX and OVX + E2 rats. 
These results suggest that E2 activates neither the heat 
loss response of the tail nor thermoregulatory behavior 
in mild heat. Thus, it remains unclear how E2 attenuates 
the increase in body temperature in mild heat. Previous 
studies have reported that acute and chronic heat expo-
sure suppress metabolism with attenuation of thyroid 
function [7, 8] and/or decreased spontaneous activity [9]. 
The results suggest that the attenuation of metabolism is 
part of the thermoregulatory response to heat, although 
it is unclear whether E2 is involved in the underlying 
mechanism.

Endothermic animals exhibit circadian changes in body 
temperature, metabolism, and spontaneous activity. In 
addition, some studies have demonstrated the involve-
ment of E2 in these changes. For example, body tempera-
ture is lower in OVX rats than in OVX + E2 rats in the 
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middle of the dark phase [10]. Further, Williams et al. [11] 
reported that E2 reduces the tail skin temperature in the 
dark phase, indicating the heat loss response of the tail. 
These results suggest that, when evaluating the influence 
of E2 on thermoregulatory responses to heat, we need to 
consider the concurrent influence of circadian changes. 
However, no studies have yet evaluated this influence. 
Therefore, the aim of this study was to identify the mech-
anism by which E2 activates thermoregulatory responses 
during exposure to mild heat in female rats, and to deter-
mine whether the influence of E2 differs between circa-
dian cycles. Therefore, we exposed OVX rats with and 
without E2 replacement to the environment at 28–34 °C 
and compared the body temperature and heat loss and 
metabolic responses between the light and dark phases. 
Moreover, to know if physiological change in plasma E2, 
normally observed within the estrus cycle, also affect the 
responses to the mild heat, the same heat exposure was 
conducted in the control female rats with the proestrus 
and diestrus phases, in which plasma E2 is higher and 
lower, respectively.

Methods
Animals
Adult virgin female Wistar rats (n = 48; body weight, 
249 ± 25 g [mean ± standard deviation]); age, 9–11 weeks; 
Takasugi Experimental Animals Supply, Saitama, Japan) 
were used in the present study. They were housed indi-
vidually in plastic cages (45  cm × 25  cm × 20  cm) at a 
Ta of 25  °C under a 12/12  h light/dark cycle (lights on 
at 07:00). Food and water were freely available. Animal 
experiments and care were conducted in accordance with 
the institutional guidelines, which follow the Fundamen-
tal Guidelines for Proper Conduct of Animal Experi-
ments and Related Activities in Academic Research 
Institutions under the jurisdiction of the Ministry of Edu-
cation, Culture, Sports, Science, and Technology (Notice 
No. 71, 2006; Tokyo, Japan). The Institutional Animal 
Care and Use Committee of Waseda University (Tokyo, 
Japan) approved all experimental procedures applied in 
the present study (Approval No. A071).

Surgery
Rats were divided to two groups that were used in two 
different experiments (i.e., Experiments 1 and 2; n = 28 
and 20, respectively). Under inhalation anesthesia with 
2% isoflurane (Abbott Japan, Tokyo, Japan) in air, a radio-
transmitter device with two wire-type thermistors was 
placed in the abdominal cavity of each rat to measure 
abdominal temperature (Tabd), tail temperature (Ttail), 
and spontaneous activity (3.5  cm3, 7.5  g; F40-TT trans-
mitter; Data Sciences International, New Brighton, MN, 
USA) as previously described [12]. Briefly, having been 

passed through the muscle layer and subcutaneous tis-
sue of the abdomen, the tip of one wire was placed under 
the skin of the lateral tail, 2 cm beyond the tail base. The 
other wire was fixed in the abdominal cavity. Spontane-
ous activity was estimated by the relative change in signal 
strength from the transmitter.

In Experiment 1, the rats were bilaterally ovariecto-
mized with a retroperitoneal approach. A silicone tube 
(inner diameter, 1.57  mm; outer diameter, 3.18  mm; 
length, 30 mm; Kaneka, Osaka, Japan) was placed in the 
subcutaneous tissue of the right side of the back, which 
was filled with E2 powder (50–60 mg; Sigma-Aldrich, St. 
Louis, MO, USA; OVX + E2, n = 14) or not filled with 
E2 powder (OVX, n = 14). E2 is permeable to silicone 
and the placement provided a constant level of plasma 
E2 for > 14 days in OVX rats [13, 14]. The rats recovered 
from the surgery after ≥ 14  days. Penicillin G (1000 U; 
Meiji Pharmaceutical, Tokyo, Japan) was subcutaneously 
injected to prevent postsurgical infection.

In Experiment 2, a sham operation of the bilateral ova-
riectomy was performed. During the recovery period, 
vaginal smears from the rats were obtained every morn-
ing for ≥ 10  days, and the estrus cycle was determined 
[15]. Rats exhibiting a regular estrus cycle of 4–5  days 
were used for further experiments.

Exposure to the environment at 28 °C, 31 °C, and 34 °C
Tabd, Ttail, and spontaneous activity were recorded every 
60 s with a data collection system (Dataquest ART; Data 
Sciences International). We verified that each rat showed 
clear circadian changes of these parameters. Then, each 
rat was moved to a Plexiglas box (35 cm × 20 cm × 20 cm) 
in a climatic chamber (Program Incubator IN604; Yamato 
Scientific, Tokyo, Japan), where oxygen consumption 
( V̇O2) was determined by indirect calorimetry. The box 
was attached to an airflow system with a flow rate of 
2.0  l  min−1. The difference in oxygen tension between 
room air and the air that passed through the chamber 
was determined every 60 s with an electrochemical oxy-
gen analyzer (model LC-700E; Toray, Tokyo, Japan). V̇O2 
was calculated as the product of the difference in oxygen 
tension and the airflow rate. The value was divided by 
0.75 power of the body weight (i.e., Brody–Kleiber for-
mula [16]) and corrected to the standard temperature 
and pressure dry condition. The chamber was maintained 
at 25.0 ± 0.2  °C and the Ta was continuously recorded. 
For 3 days, the rats were housed in this condition, and the 
data on the last day were used as the control. In Experi-
ment 1, at 9:30 or 21:30 on the 4th day (exposure day), 
the rats were exposed to the environment at 28 °C, 31 °C, 
and 34 °C for 1 h in sequence. The period in each phase 
was selected because Tabd, Ttail, and spontaneous activity 
are less influenced by the circadian fluctuations based on 
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our preliminary finding. In Experiment 2, the day of the 
exposure was selected in the proestrus phase (P group, 
n = 10) or the diestrus phase (D group, n = 10). In both 
experiments, food and water were removed 2  h before 
heat exposure. Body weight was measured before and 
after exposure.

Blood analysis
After completion of the final heat exposure period, the 
rats were euthanized with an intraperitoneal injection 
of overdose pentobarbital sodium (100  mg  kg−1 body 
weight: Kyoritsu Seiyaku, Tokyo, Japan). A 2  ml blood 
sample was obtained from the right ventricle and centri-
fuged at 4 °C, and the plasma was stored at − 80 °C until 
use. The estradiol level in the plasma was determined 
using an enzyme-linked immunosorbent assay kit (Estra-
diol EIA Kit; Cayman Chemical, Ann Arbor, MI, USA). 
The detection limit of estradiol was 20 pg ml−1. The coef-
ficient of variation of the measurement was < 13%.

Calculation and statistics
The sample size was determined using G*Power 3.1.9.2 
(Heinrich-Heine-University of Düsseldorf, Düsseldorf, 
Germany) [17]. To evaluate the parameters during heat 
exposure, we used an effect size of 0.4, an α error prob-
ability of 0.05, and a power (1 − β) of 0.8. We estimated 
that the required sample size was at least five rats in each 
group.

The values for Tabd, Ttail, spontaneous activity, and V̇O2 
during heat exposure were averaged every 30  min. V̇O2 
was corrected by body weight, which was averaged by the 
initial and final body weight. Thermal conductance from 
the body core to the environment (thermal conductance 
of the whole body) was calculated as V̇O2/(Tabd  −  Ta) 
[18, 19]. The heat loss index of the tail was estimated as 
(Ttail − Ta)/(Tabd − Ta) [20].

A two-way ANOVA or two-way ANOVA with repeated 
measurement (group × time) was performed to compare 

the values of the heat exposure day among the groups. 
When a significant difference was observed, post hoc 
Bonferroni tests were conducted. The null hypothesis 
was rejected at P < 0.05. IBM SPSS Statistics for Win-
dows (version 25.0.; IBM Corp., Armonk, NY, USA) was 
used for statistical analysis. All values are presented as 
means ± standard error.

Results
Body weight and plasma E2 level
Table  1 presents the initial and final body weight and 
plasma E2 level. In Experiment 1, there was a significant 
effect of time [P < 0.001, F(1, 24) = 19.22] in body weight. 
In addition, a significant interaction between time and 
group was observed [P < 0.001, F(3, 24) = 8.76]. The final 
body weight was greater than the initial body weight in 
both phases in the OVX group (P < 0.001). Because of dif-
ference in recovery period from the surgery and adjust-
ment of the estrus phase, the initial body weight on the 
exposure day varied in each group.

A significant effect of group [P < 0.001, F(3, 20) = 14.35] 
was observed in plasma E2. In Experiment 1, the plasma 
E2 level was lower in the OVX group than the OVX + E2 
group in both phases. In Experiment 2, the plasma E2 
level was lower in the D group than the P group in the 
two phases. There were no differences between the OVX 
and D groups and the OVX + E2 and P groups in each 
phase.

Tabd, Ttail, spontaneous activity, and V̇O2 on the control day
Figure  1 illustrates the circadian changes of Tabd and 
Ttail before the 4-day protocol (i.e., those in home 
cages) in Experiments 1 and 2, shown in 30-min 
bins. In Experiment 1, there were significant interac-
tion between time and group in Tabd [P < 0.001, F(47, 

564) = 2.8]. Tabd was lower in the OVX group than the 
OVX + E2 group at 9:00–9:30 and 0:00–1:30 (P < 0.05). 
There were significant interaction between time and 

Table 1  Body weight and plasma E2 level in Experiments 1 and 2 

Data are presented as means ± standard error

OVX, ovariectomized; E2, estradiol; D, control rats in the diestrus phase; P, control rats in the proestrus phase

* Significant difference between the OVX and OVX + E2 groups (P < 0.05)
†   Significant difference between the D and P groups (P < 0.05)
‡   Significant difference from the initial body weight (P < 0.05)

Group Initial body weight, g Final body weight, g Plasma E2 level, pg ml−1

Light phase Dark phase Light phase Dark phase Light phase Dark phase

Experiment 1 OVX 240 ± 20 254 ± 23 262 ± 17‡ 273 ± 21‡ 47 ± 6 53 ± 4

OVX + E2 228 ± 9 252 ± 32 244 ± 13 258 ± 21 142 ± 25* 159 ± 31*

Experiment 2 D 234 ± 40 224 ± 7 242 ± 26 240 ± 6 47 ± 6 43 ± 12

P 250 ± 24 256 ± 26 254 ± 10 261 ± 16 125 ± 29† 119 ± 6†
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group in Ttail [P < 0.001, F(47, 564) = 3.2]. Ttail was higher 
in the OVX group than the OVX + E2 group at 20:30–
23:30 and 5:00–6:00 (P < 0.05).

Table  2 summarizes the circadian changes of Tabd, 
Ttail, spontaneous activity, and V̇O2 on the control 
day by calculating (i) the averages of the whole period 
and the light and dark phases, and (ii) the circadian 
amplitude (i.e., the difference between the maximum 
and minimum values). In Experiment 1, there were 
significant effects of phase [P = 0.003, F(1, 12) = 13.63] 
and group [P = 0.032, F(1, 12) = 5.89] with a significant 
interaction between the two factors [P = 0.039, F(1, 

12) = 5.34] in Ttail. Ttail was higher in the OVX group 
than the OVX + E2 group in the dark phase (P = 0.011). 
The amplitude was smaller in the OVX group than 
the OVX + E2 group (P = 0.006). In Experiment 2, 
there were significant effects of phase [P < 0.001, F(1, 

8) = 62.51] and group [P = 0.008, F(1, 8) = 12.36] with 
a significant interaction between these two factors 
[P = 0.04, F(1, 8) = 6.03] in Ttail. In the dark phase, Ttail 
was higher in the D group than the P group (P = 0.002). 
The amplitude was lower in the D group than the P 
group (P = 0.029). Tabd, spontaneous activity, and V̇O2 
were higher in the dark phase than the light phase in all 
groups. In the OVX + E2 and P groups, Ttail was lower 
in the dark phase than the light phase.

Tabd at Ta of 28 °C, 31 °C, and 34 °C in Experiments 1 and 2
Figure 2 shows Tabd in Experiments 1 and 2. The differ-
ence in Tabd between the same period on the exposure 
and control days (Tabd, H-C) is summarized as the 1  h 
average of each ambient condition (Fig. 2aʹ–dʹ). In Exper-
iment 1, there were significant effects of time [P = 0.003, 
F(2, 44) = 6.77] and group [P = 0.012, F(3, 22) = 4.63] 
with a significant interaction between the two factors 
[P = 0.002, F(6, 44) = 4.23]. In the light phase, there were no 
differences in Tabd, H-C between the OVX and OVX + E2 
groups (Fig. 2aʹ). In the dark phase, Tabd, H-C was greater 
in the OVX group than the OVX + E2 group at 34  °C 
(1.2 ± 0.2 and 0.5 ± 0.2 °C, P = 0.001; Fig. 2c′). In the OVX 
group, Tabd, H-C was greater in the dark phase than the 
light phase at 34  °C (P < 0.001). In addition, in the dark 
phase, Tabd, H-C at 34 °C was greater than that at 28 °C in 
the OVX group (P = 0.001).

In Experiment 2, there were significant effects of 
time [P = 0.014, F(2, 32) = 4.88] and group [P = 0.001, F(3, 

16) = 10.3] with a significant interaction between these 
two factors [P < 0.001, F(6, 32) = 11.79]. In the light phase, 
there were no differences in Tabd, H-C between the D 
and P groups (Fig. 2bʹ). In the dark phase, Tabd, H-C was 
greater in the D group than the P group at 31 °C (0.9 ± 0.3 
and 0.3 ± 0.0  °C, respectively, P = 0.018; Fig.  2dʹ) and 
34 °C (1.4 ± 0.1 and 0.4 ± 0.2 °C, respectively, P < 0.001). In 
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Fig. 1  Circadian changes of abdominal temperature (Tabd) and tail temperature (Ttail) in the ovariectomized (OVX) and OVX + estradiol (E2) groups 
(open and closed circles, respectively), and in the D and P groups (open and closed squares, respectively). The data were obtained while rats were 
housed in the home cages. Data are presented as means ± standard error (a and c, n = 7 in each group; b and d, n = 5 in each group). *Significant 
difference between the OVX and OVX + E2 groups (P < 0.05). D, control rats in the diestrus phase; P, control rats in the proestrus phase
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the D group, Tabd, H-C was greater in the dark phase than 
the light phase at 31 °C and 34 °C (P = 0.02 and P < 0.001, 
respectively). In addition, in the dark phase, the Tabd, H-C 
at 31 °C and 34 °C were greater than that at 28 °C in the D 
group (P = 0.001 and P < 0.001, respectively).

Ttail at Ta of 28 °C, 31 °C, and 34 °C in Experiments 1 and 2
Figure 3 illustrates Ttail in Experiments 1 and 2. The dif-
ference in Ttail between the same period on the exposure 
and control day (Ttail, H-C) is summarized in the same 
manner as Tabd (Fig. 3aʹ–dʹ). In Experiment 1, there was 
a significant effect of time [P < 0.001, F(2, 48) = 15.04]. In 
both phases, the Ttail, H-C at 31 °C and 34 °C was greater 
than that at 28  °C in the OVX and OVX + E2 groups 
(P < 0.001, Fig.  3aʹ and c′). In Experiment 2, there was a 
significant effect of time [P < 0.001, F(2, 32) = 96.93]. In the 
two phases, the Ttail, H-C at 34  °C was higher than that 
at 28 °C in the D and P groups (P < 0.001, Fig. 3bʹ and d′).

V̇O2 at Ta of 28 °C, 31 °C, and 34 °C in Experiments 1 and 2
Figure 4 indicates V̇O2 in Experiments 1 and 2. The dif-
ference in V̇O2 between the same period on the expo-
sure and control days ( V̇O2, H-C) is summarized in 
the same manner as Tabd (Fig.  4aʹ–dʹ). In Experiment 
1, there were significant effects of time [P < 0.001, F(2, 

48) = 21.40] and group [P = 0.038, F(3, 24) = 3.28] with 
a significant interaction between these two factors 
[P = 0.006, F(6, 48) = 3.49]. In the light phase, the V̇O2, 
H-C at 31 °C and 34 °C was smaller than that at 28 °C in 
the OVX and OVX + E2 groups (P < 0.05, Fig. 4aʹ). In the 
dark phase, the V̇O2, H-C was smaller in the OVX + E2 
group than the OVX group at 34  °C (−  3.1 ± 2.3 and 
−  7.6 ± 2.5  ml  min−1  kg body weight−0.75, P = 0.023, 
Fig.  4c′). In the OVX + E2 group, the V̇O2, H-C was 
smaller in the dark phase than the light phase at 34 °C 
(P = 0.014). In addition, in the dark phase, the V̇O2, H-C 
at 31 °C and 34 °C was smaller than that at 28 °C in the 
OVX + E2 group (P = 0.022 and P < 0.001, respectively).

In Experiment 2, there were significant effects of 
time [P < 0.001, F(2, 32) = 10.02] and group [P < 0.001, 
F(3, 16) = 17.08]. In addition, a significant interaction 
between these two factors was observed [P = 0.034, F(6, 

32) = 2.63]. In the light phase, there were no differences 
in the V̇O2, H-C between the D and P groups (Fig. 4bʹ). 
In the dark phase, the V̇O2, H-C was smaller in the 
P group than the D group at 34  °C (−  6.7 ± 0.8 and 
−  10.7 ± 2.5  ml  min−1  kg body weight−0.75, P = 0.019, 
Fig.  4d′). In the D group, the V̇O2, H-C was smaller 
in the dark phase than the light phase at a Ta of 31  °C 
and 34 °C (P = 0.017 and P = 0.003, respectively). In the 
P group, the V̇O2, H-C was smaller in the dark phase 
than the light phase at 34 °C (P < 0.001). In addition, in 
the dark phase, the V̇O2, H-C was smaller at 31 °C and 
34  °C than a Ta of 28  °C in the P group (P = 0.028 and 
P < 0.001, respectively).

Spontaneous activity during the exposure at 28–34 °C 
in Experiments 1 and 2
Spontaneous activity did not change from that on the 
control day. There were no differences among the four 
groups in each phase.

Heat loss index of the tail
The heat loss index of the tail at each Ta in Experiments 
1 and 2 is summarized in Fig.  5a–d. In Experiment 1, 
there were significant effects of time [P < 0.001, F(3, 

72) = 37.56] and group [P < 0.001, F(3, 24) = 19.50]. In both 
phases, the heat loss index at 28–34 °C was higher than 
that at 25  °C in both groups (P < 0.05). There were no 
significant differences between the two groups. In the 

Table 2  Average measurements of  the  whole day 
and the light and dark phases and the circadian amplitude 
on the control day

Data are presented as means ± standard error

OVX, ovariectomized; E2, estradiol; D, control rats in the diestrus phase; P, 
control rats in the proestrus phase; Ta, ambient temperature; Tabd, abdominal 
temperature; Ttail, tail skin temperature; bw, body weight; au, arbitrary unit

* Significant difference from the value in the OVX group, P < 0.05
†  Significant difference from the value in the D group, P < 0.05
§   Significant difference between the light and dark phases, P < 0.05

Group Average 
of the whole 
day

Average 
of the light 
phase

Average 
of the dark 
phase

Amplitude

Tabd, °C

 OVX 37.5 ± 0.1 37.3 ± 0.1 37.8 ± 0.1§ 0.6 ± 0.1

 OVX + E2 37.6 ± 0.1 37.3 ± 0.1 37.9 ± 0.1§ 0.6 ± 0.1

 D 37.8 ± 0.1 37.4 ± 0.1 37.9 ± 0.1§ 0.5 ± 0.1

 P 37.6 ± 0.1 37.3 ± 0.1 37.9 ± 0.1§ 0.6 ± 0.1

Ttail, °C

 OVX 34.0 ± 0.6 34.4 ± 0.4 33.5 ± 0.7 0.9 ± 0.3

 OVX + E2 32.3 ± 0.7 33.8 ± 0.5 29.7 ± 0.8*§ 3.4 ± 0.7*

 D 34.6 ± 0.3 35.3 ± 0.2 34.0 ± 0.4 1.3 ± 0.2

 P 33.7 ± 0.3 34.8 ± 0.3 32.7 ± 0.3†§ 2.1 ± 0.1†

Spontaneous activity, au

 OVX 2.0 ± 0.2 1.1 ± 0.2 2.9 ± 0.4§ 1.8 ± 0.4

 OVX + E2 2.4 ± 0.4 1.4 ± 0.3 3.3 ± 0.5§ 1.8 ± 0.3

 D 1.5 ± 0.4 1.0 ± 0.4 2.7 ± 0.3§ 1.8 ± 0.2

 P 2.2 ± 0.2 1.2 ± 0.2 2.9 ± 0.4§ 1.8 ± 0.3

V̇O2, ml min−1 kg bw−0.75

 OVX 15.1 ± 0.3 13.6 ± 0.6 16.5 ± 0.9§ 3.3 ± 1.3

 OVX + E2 14.5 ± 0.6 12.1 ± 0.9 16.8 ± 0.4§ 4.7 ± 0.7

 D 13.3 ± 0.4 12.4 ± 0.7 14.1 ± 0.7§ 1.9 ± 0.9

 P 14.7 ± 0.3 14.0 ± 0.4 15.4 ± 0.7§ 1.6 ± 0.9
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b d

c’
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Fig. 2  Abdominal temperature (Tabd) during heat exposure in the ovariectomized (OVX) and OVX + estradiol (E2) groups (open and closed circles, 
respectively) in the light (a) and dark (c) phases, and in the D and P groups (open and closed squares, respectively) in the light (b) and dark (d) 
phases. The control data are indicated by solid and dashed lines without symbols (OVX and OVX + E2 groups in a and c, respectively, and D and 
P groups in b and d, respectively). Differences in Tabd at the same time of day between the heat exposure and control days are presented as H-C 
(a′–d′ in the light and dark phases in Experiments 1 and 2, respectively). Data are presented as means ± standard error (a and c, n = 7 in each group; 
b and d, n = 5 in each group). *Significant difference between the OVX and OVX + E2 groups (P < 0.05). †Significant difference between the D 
and P groups (P < 0.05). §Significant difference between the light and dark phases (P < 0.05). #Significant difference from the value at an ambient 
temperature (Ta) of 28 °C (P < 0.05). D, control rats in the diestrus phase; P, control rats in the proestrus phase
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OVX + E2 group, the heat loss index at 28–34  °C was 
higher in the dark phase than the light phase (P < 0.001).

In Experiment 2, there were significant effects of 
time [P < 0.001, F(3, 48) = 24.51] and group [P < 0.001, F(3, 

16) = 20.90]. In the two phases, the heat loss index at 
28–34 °C was higher than that at 25 °C (P < 0.01) in both 
groups. No significant differences were found between 
the two groups. In both the D and P groups, the heat loss 

a c

b d

a’

b’

c’

d’

Fig. 3  Tail skin temperature (Ttail) during heat exposure in the ovariectomized (OVX) and OVX + estradiol (E2) groups (open and closed circles, 
respectively) in the light (a) and dark (c) phases, and in the D and P groups (open and closed squares, respectively) in the light (b) and dark (d) 
phases. The control data are indicated by solid and dashed lines without symbols (OVX and OVX + E2 groups in a and c, respectively, and D and P 
groups in b and d, respectively). Differences in Ttail at the same time of day between the heat exposure and control days are presented as H-C (a′–d′ 
in the light and dark phases in Experiments 1 and 2, respectively). Data are presented as means ± standard error (a and c, n = 7 in each group; b and 
d, n = 5 in each group). #Significant difference from the value at an ambient temperature (Ta) of 28 °C (P < 0.05). D, control rats in the diestrus phase; 
P, control rats in the proestrus phase



Page 8 of 13Marui et al. J Physiol Sci           (2020) 70:56 

a’
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a c
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Fig. 4  Oxygen consumption ( ̇VO2) during heat exposure in the ovariectomized (OVX) and OVX + estradiol (E2) groups (open and closed circles, 
respectively) in the light (a) and dark (c) phases, and in the D and P groups (open and closed squares, respectively) in the light (b) and dark (d) 
phases. The control data are indicated by solid and dashed lines without symbols (OVX and OVX + E2 groups in a and c, respectively, and D and 
P groups in b and d, respectively). Differences in V̇O2 at the same time of day between the heat exposure and control days are presented as H-C 
(a′–d′ in the light and dark phases in Experiments 1 and 2, respectively). Data are presented as means ± standard error (a and c, n = 7 in each group; 
b and d, n = 5 in each group). *Significant difference between the OVX and OVX + E2 groups (P < 0.05). †Significant difference between the D 
and P groups (P < 0.05). §Significant difference between the light and dark phases (P < 0.05). #Significant difference from the value at an ambient 
temperature (Ta) of 28 °C (P < 0.05). D, control rats in the diestrus phase; P, control rats in the proestrus phase
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index was higher in the dark phase than the light phase 
(P < 0.001).

Thermal conductance of the whole body
The thermal conductance of the whole body in Experi-
ments 1 and 2 is illustrated in Fig.  6a–d. In Experi-
ment 1, there were significant effects of time [P < 0.001, 
F(3, 72) = 45.94] and group [P = 0.008, F(3, 24) = 5.00]. In 
the light and dark phases, the thermal conductance at 
28–34  °C was higher than that at 25  °C in both groups 
(P < 0.001, Fig.  6a, c). No significant differences were 
observed between the two groups in each phase.

In Experiment 2, there was a significant effect of time 
[P < 0.001, F(3, 48) = 30.42]. In both phases, the thermal 
conductance at 28–34  °C was higher than that at 25  °C 
(P < 0.01, Fig. 6b, d) in both groups. There were no signifi-
cant differences between the two groups in each phase.

Discussion
In the present study, we found that a higher level of 
plasma E2, which was observed in the OVX + E2 and P 
groups, which may activate thermoregulatory responses 
during exposure to 34 °C heat and prevent increases in 
Tabd. However, such influence of E2 was observed only 
in the dark phase. In addition, attenuated metabolism 
in response to heat may be involved in the mechanism 
underlying the influence of E2.

Body weight
It has been reported that ovariectomy augments 
increase in body weight, which is suppressed by E2 
replacement [21–25]. In the present study, there were 
no differences in the final body weight in both phases 

a c

b d

Fig. 5  The heat loss index of the tail during heat exposure in the ovariectomized (OVX) and OVX + estradiol (E2) groups in the light (a) and dark 
(c) phases, and in the D and P groups in the light (b) and dark (d) phases. The heat loss index is presented as the 1 h average for each ambient 
temperature (Ta). Data are presented as means ± standard error (n = 5 in each group). §Significant difference between the light and dark phases 
(P < 0.05). ¶Significant difference from the value at a Ta of 25 °C (P < 0.05). D, control rats in the diestrus phase; P, control rats in the proestrus phase
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between the OVX and OVX + E2 groups (Table  1). 
One possible reason is the variation of the initial body 
weight due to difference in the recovery period from the 
surgery (Table 1). Another reason may be that the dura-
tion of the E2 treatment may not have been long enough 
to influence body weight. It has been reported that the 
influence becomes apparent more than 4–5 weeks after 
the initiation of the E2 treatment [21, 22].

Tabd, Ttail, spontaneous activity, and V̇O2 on the control day
In both Experiments 1 and 2, rats with higher level of 
plasma E2 (i.e., the OVX + E2 and P groups) exhibited a 
lower Ttail than the other groups only in the dark phase. 
However, this difference was not observed in Tabd, 

spontaneous activity, or V̇O2 (Table  2). Tabd became 
higher in the middle of the dark phase in the OVX + E2 
rats, which may have reflected lower Ttail (i.e., attenu-
ated heat loss). Although no statistical difference in the 
amplitude of V̇O2, E2 may also increase V̇O2 in the dark 
phase, resulting in grater Tabd. As previously reported 
[11], E2 increased Tabd in OVX rats in the dark phase 
and Ttail inversely decreased (Fig. 1a, c). The result sug-
gests difference in thermoregulatory control between 
the OVX and OVX + E2 groups even in the control 
condition. However, we did not find such difference 
between the P and D groups. This may be due to higher 
progesterone level in the P and D groups as previously 
reported [26]. Stachenfeld et  al. [27] reported that the 

a c

b d

Fig. 6  The thermal conductance of the whole body during heat exposure in the ovariectomized (OVX) and OVX + estradiol (E2) groups in the light 
(a) and dark (c) phases, and in the D and P groups in the light (b) and dark (d) phases. The thermal conductance is presented as the 1 h average for 
each ambient temperature (Ta). Data are presented as means ± standard error (n = 5 in each group). ¶Significant difference from the value at a Ta of 
25 °C (P < 0.05). D, control rats in the diestrus phase; P, control rats in the proestrus phase
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effect of E2 on thermoregulation is reversed by the 
presence of progesterone.

Previous studies have also reported an involvement of 
E2 in Ttail, reflecting tail blood flow [11, 20, 28, 29]. How-
ever, the difference between the light and dark phases 
has not been well examined. In the present study, the 
OVX + E2 and P groups exhibited a higher level of plasma 
E2 than the other groups without any difference between 
the light and dark phases (Table 1). Only one study has 
reported a phase difference in the P phase, finding that 
the E2 level was lower in the early dark phase than the 
light phase [30]. Thus, at a Ta of 25 °C, the influence of E2 
on Ttail may be modulated by the circadian phases.

Nagashima et  al. [31] reported that the skin tempera-
ture of each part of the tail, as assessed by infrared ther-
mography, reflects the heat loss response. This suggests 
that the Ttail data were reliable in evaluating heat loss in 
the present study. More importantly, the procedure does 
not disturb tail movement [11], which largely affects heat 
loss from the tail [32].

Responses to the exposure at Ta of 28 °C, 31 °C, and 34 °C 
in the light phase
When rats are exposed to heat, heat loss processes are 
activated, such as vasodilation of the tail [33], saliva-
spreading, grooming [6, 34, 35], posture change [36], and 
metabolism reduction [7, 8]. In this study, the heat loss 
index of the tail similarly increased from that at a Ta of 
25 °C in each group in Experiments 1 and 2 (Fig. 5a, b). In 
addition, the thermal conductance of the whole body also 
similarly increased from that at a Ta of 25 °C in all groups 
(Fig. 6a, b). It was reported that, in rats, evaporative heat 
loss mechanism was activated when Ta surpasses of 34 °C 
[6]. Therefore, saliva-spreading and grooming may not 
be involved in the increase in the thermal conductance 
for the whole body. Moreover, E2 had no influence on the 
responses.

In Experiment 1, a similar reduction of V̇O2 from the 
control level was observed at a Ta of 31 °C and 34 °C in 
the OVX and OVX + E2 groups (Fig. 4a). It was reported 
that, in rats, the spontaneous activity decreased in 42 °C 
heat [9]. However, spontaneous activity did not change 
in the present study, suggesting that activity was not 
involved in the mechanism.
V̇O2 did not change in the P and D groups in Experi-

ment 2. The difference from the result in Experiment 
1 might be due to the higher progesterone level in the 
P and D groups. Uchida et  al. [26] reported lower lev-
els of plasma progesterone in OVX and OVX + E2 rats 
and a higher level in control rats in both the P and D 
phases. The difference would be because progesterone is 
secreted from the ovary. Nolan and Proietto [37] dem-
onstrated that progesterone increased glucose uptake in 

the brown fat, which is associated with metabolic heat 
production. Thus, the higher progesterone level in the 
control rats may have maintained a greater V̇O2 in the 
heat in a part.

Responses to the exposure at Ta of 28 °C, 31 °C, and 34 °C 
in the dark phase
Tabd in the OVX and D groups was higher at 31  °C and 
34 °C than at 28 °C; however, no changes were observed 
in the OVX + E2 and P groups (Fig. 2c, d). These results 
suggest the involvement of E2 in thermoregulation in 
response to heat. It was reported that E2 induces shift in 
thermoneutral zone to lower ambient temperature [2]. 
Thus, even the same Ta may have given greater thermal 
load to the OVX and D groups, increasing Tabd.

Tabd and Ttail at 20:30–0:30 (Fig. 1) was different from 
those on the control day in Experiments 1 and 2 (Figs. 2 
and 3). One possible reason is that the data were assessed 
in the home cages, but the data on the control day were 
obtained in the Plexiglas box in the climatic chamber.

In Experiment 1, heat loss responses, as assessed by the 
heat loss index of the tail and thermal conductance of the 
whole body, similarly increased in both groups (Figs. 5c 
and 6c). Therefore, heat loss responses do not explain for 
the increase of Tabd in the OVX and D groups.
V̇O2 decreased from the control day only in the 

OVX + E2 group (Fig. 4c′). Because spontaneous activity 
was similar between the two groups, we concluded that 
activity was not involved in the mechanism. Several stud-
ies have reported that estrogen reduces energy intake 
[23, 38, 39]. Therefore, food deprivation during the heat 
exposure period may have caused the reduction in V̇O2 
via E2 in a part. However, this influence of E2 on energy 
intake may be small in the dark phase based on the find-
ings of previous studies [24, 25]. Thus, we assume that 
the reduction in V̇O2 was caused by the direct influence 
of the heat as part of the thermoregulatory responses. In 
addition, E2 may be involved in the mechanism. We did 
not assess ventilation in the present study, which may 
affect V̇O2 and/or evaporative heat loss. Marques et  al. 
[40, 41] reported that OVX rats showed lower ventilation 
only when either hypoxic or hypercapnia was applied. In 
addition, both E2 and P was not involved in the mecha-
nism. Thus, we assume that E2 does not affect ventila-
tion in heat. The mechanism underlying the difference in 
the reduction in V̇O2 between the light and dark phases 
remains unclear, despite the similar levels of plasma E2 
between phases. One possible reason is that V̇O2 was suf-
ficiently low in the light phase, which could not be a fac-
tor increasing Tabd in the heat.

We also found a similar increase in the heat loss index 
of the tail and the thermal conductance of the whole body 
in in the P and D groups in Experiment 2 (Figs. 5d and 
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6d). It was reported that progesterone has no influence 
on the tail skin temperature under ambient conditions 
[11]. Therefore, these results indicate that E2 and pro-
gesterone have no influence on the heat loss responses. 
In addition, we observed a difference in the reduction 
in V̇O2 between the D and P groups in the dark phase 
(Fig. 4d′).

There are differences in the thermoregulatory 
responses between the OVX + E2 and P groups, sug-
gesting the influence of progesterone. Tabd increased at 
Ta of 31  °C in the P group. At Ta of 31  °C, Ttail did not 
increase in both the P and D groups but increased in the 
OVX + E2 group. It was reported that progesterone per 
se increases body temperature; however, E2 reduces the 
effect [27]. Thus, even at Ta of 31 °C, the D group may not 
be able to control body temperature.

Previous study in rats reported a reduction of plasma 
thyroid stimulating hormones 7 days after 34 °C exposure 
[7]. Thus, thyroid function may be involved in the mecha-
nism for the reduction of metabolism. However, we did 
not assess the thyroid function as well as the influence of 
E2. Thus, the mechanism remains unclear and needs to 
be clarified in future study.

Conclusions
The present study suggests that, in both ovariectomized 
and control rats, a higher level of plasma E2 activates 
thermoregulatory responses to mild heat at 34  °C only 
in the dark phase. In addition, the decrease in metabo-
lism in response to heat may be involved in the mecha-
nism. The present study is the first to demonstrate the 
influence of E2 on metabolism as part of the thermoreg-
ulatory response to heat and the interaction with the cir-
cadian phase. However, the modulation of the metabolic 
response to heat by E2 remains unclear. This mechanism 
should be clarified in future studies. Moreover, our find-
ings suggest that postmenopausal women experience 
reduced thermoregulation even in mild heat and are at 
higher risk of heat-related health problems.
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