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Novel TRPV6 mutations in the spectrum 
of transient neonatal hyperparathyroidism
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Masaru Shirai6, Tokuo Mukai6,9, Claire T. Saito2, Gen Nishimura10 and Makoto Tominaga2,3

Abstract 

Maternal–fetal calcium (Ca2+) transport in the placenta plays a critical role in maintaining fetal bone mineralization. 
Mutations in the gene encoding the transient receptor potential cation channel, subfamily V, member 6 (TRPV6) have 
been identified as causative mutations of transient neonatal hyperparathyroidism due to insufficient maternal–fetal 
Ca2+ transport in the placenta. In this study, we found two novel mutations in subjects that have transient neonatal 
hyperparathyroidism. TRPV6 carrying the mutation p.Arg390His that localizes to the outer edge of the first trans-
membrane domain (S1) showed impaired trafficking to the plasma membrane, whereas TRPV6 having the muta-
tion p.Gly291Ser in the sixth ankyrin repeat (AR) domain had channel properties that were comparable those of WT 
channels, although the increases in steady-state intracellular Ca2+ concentration could have led to Ca2+ overload and 
subsequent death of cells expressing this mutant channel. These results indicate that the AR6 domain contributes 
to TRPV6-mediated maintenance of intracellular Ca2+ concentrations, and that this region could play a novel role in 
regulating the activity of TRPV6 Ca2+-selective channels.

Keywords:  Transient receptor potential channel (TRP channel), Maternal–fetal calcium transport, Transient neonatal 
hyperparathyroidism (TNHP), Patch-clamp recording, Membrane trafficking
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Background
Calcium (Ca2+) is essential for many physiological func-
tions. Blood Ca2+ levels are finely maintained by the 
parathyroid hormone (PTH)–vitamin D axis that modu-
lates bone resorption and intestinal Ca2+ absorption. In 
fetuses and neonates, additional Ca2+ transport occurs to 
maintain bone mineralization [1–3]. In many mammalian 
species, including humans, fetal blood Ca2+ levels are 
higher than those in mature individuals, suggesting that 
the transport is mediated by uphill or energy-consuming 
transport through epithelial, transcellular, rather than 
paracellular routes [4, 5]. Ca2+ via the transcellular path-
way is achieved via three stages: (1) Ca2+ uptake through 
a channel driven by an electrochemical Ca2+ gradient; (2) 

binding to calbindin that does not increase free calcium 
concentrations, and (3) basolateral extrusion of Ca2+ by 
plasma membrane Ca2+-ATPase or Na+/Ca2+-exchang-
ers [6, 7]. However, the proteins involved in regulating 
this pathway and the associated regulatory mechanisms 
for maternal–fetal calcium transport remain unclear.

Transient neonatal hyperparathyroidism is a neo-
natal bone disorder caused by insufficient fetal bone 
mineralization due to impaired maternal–fetal Ca2+ 
transport across the placenta. Recently, mutations in the 
gene encoding transient receptor potential cation chan-
nel, subfamily V, member 6 (TRPV6) were identified as 
causative mutations of transient neonatal hyperpar-
athyroidism (TNHP) [8]. There are several hotspots for 
TRPV6 mutations: the outer edges of the transmembrane 
domain S2 and S3 that affect trafficking to the plasma 
membrane; the fourth ankyrin repeat (AR) domain that 
affects protein stability; and the intracellular S2–S3 loop 
that affects intracellular Ca2+-dependent inactivation. 
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The different mutations suggest that there are several 
mechanisms for TNHP disease onset. Moreover, a com-
bination of mutations could also be important for disease 
pathogenesis since many patients carry compound het-
erozygous mutations. Here we report novel mutations in 
the S1 transmembrane domain and the sixth AR domain. 
The functional significance of these mutations revealed 
an unexpected role for the AR domain in TRPV6 activity.

Methods
Subjects
Subject 1 This male patient was born to a 39-year-old 
G2P1 mother of Japanese descent; the father was 44 years 
old and also of Japanese descent. The couple was non-
consanguineous. They had an older daughter who had 
shorter limbs at 8  months of gestation, but is currently 
normal. The father had a funnel chest and shorter limbs 
and there was a family history of similar physical fea-
tures. Genetic information for the parents and other fam-
ily members was not available.

Fetal ultrasound at 29 weeks of gestation showed poly-
hydramnios and thoracic narrowing with rib deformities. 
Although the mother was treated with uterine contrac-
tion inhibitors to prevent premature delivery, uterine 
contractions began at 36  weeks of gestation and the 
child was born by a scheduled cesarean section the day 
after contractions began. The birth weight was 2.351 kg 
and the length was 41  cm. The occipitofrontal circum-
ference (OFC) was 34.8 cm. Apgar scores were 4, 5, 8 at 
1, 5, 10  min, respectively. Artificial invasive ventilation 
was initiated on day 0. On day 8, the child was taken off 
the ventilator, but retractive breathing and hyperpnea 
occurred with normal SpO2 level. Therefore, neutrally 
adjusted ventilatory assist was applied on the same day as 
ventilator removal.

Radiographs showed a narrow thorax, femoral short-
ening and lower bone mineral density with ossification 
failure, which was suggestive of hyperparathyroidism. 
Cord blood levels of intact PTH (iPTH) were extremely 
high (high sensitive PTH was > 3200 pg/ml and iPTH was 
1371 pg/ml), which, together with lower than normal lev-
els of Ca2+ and vitamin D and maternal hypovitaminosis 
D, led to a diagnosis of hyperparathyroidism secondary 
to maternal vitamin D deficiency. I-cell disease was not 
likely since lysosomal enzyme activity was normal. The 
subjected was treated with vitamin D, Ca, and P, which 
improved iPTH, alkaline phosphatase (ALP), Ca, P, and 
vitamin D levels. Thorax and bone mineral density was 
also improved by this treatment. After removing the ven-
tilator, the noninvasive positive pressure ventilator was 
used until the child reached 13 months of age.

Subject 2 This male subject was born to a 29-year-
old G0P0 mother of Japanese descent. The father was 

30 years old and also of Japanese descent. The couple was 
healthy and non-consanguineous. They had a younger 
daughter who had the same genotype as the subject, but 
she did not have any complications or skeletal abnormali-
ties (Fig.  1b). Fetal ultrasound detected no fetal abnor-
malities. The subject was delivered vaginally at 38 weeks 
of gestation. The birth weight was 2.805 kg (43 cm height, 
35  cm OFC). Apgar scores were 7, 7 at 1 and 5  min, 
respectively. The child cried at birth but experienced res-
piratory distress 2 h after birth. The SpO2 was < 90% and 
the subject required nasal continuous positive airway 
pressure and oxygen for 6 and 8 days, respectively.

Radiographs taken on day 0 showed a bell-shaped tho-
rax, femoral bending and proximal metaphyseal dysplasia 
that was possibly accompanied by metaphyseal fracture. 
Blood tests indicated hypocalcemia, extremely high 
PTH (high sensitive PTH was > 10,000 at day 0, iPTH 
was 90.8  pg/ml at day 16), and slightly depressed levels 
of 25(OH)-vitamin D. The subject was treated with cal-
cium gluconate on day 0 and by day 1 the hypocalcemia 
had improved. Intact PTH levels were normalized on day 
72. Bone symptoms had nearly resolved when the sub-
ject was 2 months old. Blood ALP levels were increased 
on day 0, peaked on day 72, and normalized at around 
17  months. Femoral bending normalized at around 
21 months.

Sanger sequencing
All exonic regions of TRPV6 (RefSeq ID: NM_018646.5, 
NT_007933.16) were amplified by PCR using QuickTaq 
HS (Toyobo, Japan) according to the manufacturer’s 
instructions. The PCR conditions were: 94 °C, 2 min fol-
lowed by 35 cycles of 94 °C, 30 s; 62 °C, 30 s; 68 °C, 30 s 
(for exons 1–3 and 7–15) or 94 °C followed by 2 min and 
35 cycles of 94 °C, 30 s; 55 °C, 30 s; 68 °C, 30 s (for exons 
4–6). Primer sequences are listed in Additional file  1: 
Table S1.

TA cloning for subject 1
PCR products were ligated into the TOPO vector using a 
TOPO TA cloning kit (Invitrogen, USA). After transfor-
mation of the vectors into E. coli, the resulting colonies 
that formed on a selection plate were subjected to colony 
PCR to screen for the presence of the insert using M13 
forward and reverse primers. Colonies having the desired 
sequence were cultivated in LB medium supplemented 
with antibiotics. Plasmid isolation was performed using a 
QIAprep Spin miniprep kit (Qiagen, USA) and sequences 
were verified by Sanger sequencing.

Mutagenesis
Site-directed mutagenesis was performed as described 
previously [8]. PCR was performed in a solution 
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containing PrimeSTAR Max (TaKaRa, Japan), forward 
(5′-GGA​GTG​GAG​AGT​AAC​ACT​GTG​ATG​TTT​CAG​
) and reverse (5′-ATC​ACA​GTG​TTA​CTC​TCC​ACT​
CCA​GCC​AGC​) primers, and TRPV6/pcDNA3.1 (+) or 
TRPV6-2myc-N/pcDNA3.1(+) plasmid. The PCR condi-
tions were: 30 cycles of 98 °C, 10 s; 55 °C, 15 s; 72 °C, 40 s.

Cell culture and transfection
HEK293T cells were maintained and transfected 
with a plasmid carrying human TRPV6 as previ-
ously described [8, 9]. Briefly, cells were maintained 

in DMEM containing heat-inactivated FBS (10%), 
penicillin/streptomycin (100 units/ml), and Glu-
taMAX (Thermo Fisher, USA) with incubation in 5% 
CO2 at 37  °C. For transfection, Lipofectamine reagent 
(#18324010, Life Technologies Inc., USA) was used 
according to the manufacturer’s instructions. HEK293 
cells were transfected with TRPV6 plasmid together 
with pGL1 and pCMV-DsRed-Express plasmid (0.1 µg) 
for patch-clamp and intracellular Ca2+ measurements, 
respectively. Transfected cells were identified by EGFP 
(patch-clamp) or DsRed (intracellular Ca2+ measure-
ment) fluorescence.

c.871G>A:p.Gly291Ser

c.854_857del:p.Lys285ArgfsTer9

Fragment 1

Fragment 2

Father

c.1169G>A:p.Arg390His c.1352G>A:p.Gly451Glu

Mother

Subject

Sister

4-bp deletion

a

b

Fig. 1  Genetic analysis of TRPV6 in THNP subjects. TA cloning followed by Sanger sequencing was performed for a subject 1 and b subject 2 with 
transient neonatal hyperparathyroidism (THNP). Novel compound heterozygous mutations were found in both subjects
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Electrophysiology
Whole-cell patch-clamp experiments were carried out 
20–24  h after cell transfection as described previously 
with some modifications [8]. The time course used was 
based on difficulties associated with securing a giga-ohm 
seal under longer time courses. The standard bath solu-
tion contained 143 mM NaCl, 5 mM KCl, 2 mM CaCl2, 
2  mM MgCl2, 10  mM glucose, 5  mM HEPES (pH 7.4). 
The divalent cation-free (DVF) bath solution contained 
148 mM NaCl, 5 mM KCl, 10 mM glucose, 5 mM HEPES 
(pH 7.4). The NMDG bath solution contained 148  mM 
NMDG, 5 mM KCl, 10 mM glucose, 5 mM HEPES (pH 
7.4 by HCl). The high calcium bath solution (30 Ca) con-
tained 113  mM NMDG, 30  mM CaCl2, 2  mM MgCl2, 
10 mM glucose, and 5 mM HEPES (pH 7.4 by HCl). The 
average osmolality of these solutions was 295 ± 4 mOsm. 
The pipette solution contained 140  mM CsCl, 2  mM 
MgCl2, 5 mM EGTA, and 10 mM HEPES (pH 7.3). Data 
were acquired using an Axopatch 200B amplifier (Axon 
Instruments, USA), digitized by Digidata 1440A (Axon 
Instruments, USA) at a 10  kHz sampling rate, and ana-
lyzed using pCLAMP10 software (Axon Instruments, 
USA). The membrane potential was clamped at − 60 mV. 
Voltage ramp pulses from − 100 to +100  mV (400  ms) 
were applied every 5 s. All recordings were performed at 
room temperature.

Plasma membrane protein biotinylation and western 
blotting
Biotinylation and western blotting were performed 
27–28  h after initiating transfection as previously 
described [8]. Transfected cells were washed with PBS 
and incubated with 0.5  mg/ml EZ-link-NHS-LC-biotin 
(Abcam, USA) for 10  min at 37  °C in a CO2 incubator. 
The EZ-link-NHS-LC-biotin solution was again added 
and incubated for 10 min at 37 °C. The biotinylation reac-
tion was stopped by adding quenching buffer (100  mM 
glycine in PBS, pH 7.3) before the cells were transferred 
from the dish by pipetting. Cells were collected by cen-
trifugation (12,000 rpm for 5 min at 4  °C) and stored at 
− 20  °C until use. Isolation of biotinylated proteins and 
western blotting was performed as described previously 
[8].

Fura‑2 Ca2+‑imaging
Measurement of intracellular Ca2+ concentrations was 
conducted 20–24  h after starting the transfection as 
reported previously [8]. Cells were incubated with Fura-
2-AM (5  µM, Life Technologies Inc., USA) at 37  °C for 
1  h. The intracellular Ca2+ concentration was analyzed 
first in the standard bath solution and then in the DVF 
bath solution before superfusion of the 30 Ca bath 

solution. Ratiometric imaging was performed at 340 and 
380  nm, and emission at 510  nm was recorded with a 
CCD camera (CoolSnap ES, Roper Scientific/Photomet-
rics, USA) every 4  s. The F340/380 ratio was calculated 
using IP Lab software (Scanalytics Inc., USA) and data 
were analyzed using ImageJ (NIH).

Results
Here, we report on two Japanese subjects with tran-
sient neonatal hyperparathyroidism (TNHP) with 
bone abnormalities. Both had pre- and post-natal his-
tory of skeletal abnormalities as well as elevated para-
thyroid hormone (PTH) and alkaline phosphatase 
levels (Table  1); these abnormalities gradually improved 
over time as previously reported [8]. Sanger sequenc-
ing of the TRPV6 gene identified the compound het-
erozygous mutations [NM_018646.5:c.854-857del:p.
Lys285ArgfsTer9];[c.871G>A:p.Gly291Ser] in subject 1 
(Fig.  1a) and [c.1169G > A:p.Arg390His];[c.1352G>A:p.
Gly451Glu] in subject 2 (Fig.  1b). A novel mutation, 
pGly291Ser, was found in the sixth ankyrin repeat (AR) 
domain, whereas p.Arg390His localized to the outer 
edge of the first transmembrane (S1) domain [10]. These 
mutations were found far from previously reported 
mutation hotspots (Fig.  2). Meanwhile, the mutation 
p.Lys285ArgfsTer9 caused a frameshift that gener-
ates a truncation protein that lacks the transmembrane 
domains. As no genetic analysis was available for the par-
ents, we performed TA cloning and confirmed that these 
were in fact compound heterozygous mutations (Fig. 1a).

To analyze the functional significance of the 
p.Gly291Ser and p.Arg390His mutations, we transfected 
HEK293T cells with expression vectors carrying mutated 
TRPV6 and performed whole-cell patch-clamp record-
ings 20–24 h after transfection. HEK293T cells express-
ing the p.Gly291Ser mutant exhibited currents evoked 
in response to both divalent cation-free (DVF) and high 
Ca2 bath solution that were similar to that seen for WT 
(Fig. 3a, c). The amplitudes of the Ca2+-evoked currents 
were larger than those previously reported [8], most 
likely because of differences in the NMDG solution used. 
Here, we used Ca2+- and Mg2+-free NMDG solution in 
order to observe Ca2+ currents more clearly. Neither the 
current–voltage relationship nor reversal potential dif-
fered between WT and Gly291Ser (Fig. 3b), indicating a 
similar ion selectivity. We also found no significant differ-
ence in intracellular Ca2+-dependent inactivation, at least 
in our patch-clamp recordings within the time range of 
20–30 s (Fig. 3d) [11]. These results suggested that appar-
ent channel properties were preserved for the Gly291Ser 
mutation. In contrast, in cells expressing p.Arg390His no 
currents were evoked by DVF- or high Ca2+ bath solu-
tions (Fig. 3c, Additional file 2: Fig. S1).
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Thus, we hypothesized that trafficking of p.Arg390His 
proteins was impaired. Indeed, similar to the TRPV6 
S2 transmembrane domain mutant p.Gly428Arg 
that was previously shown to have deficient traffick-
ing, p.Arg390His did not localize to the plasma mem-
brane, but was present in total cell lysates (Fig.  4a). 
Meanwhile, for the TRPV6 AR6 mutant p.Gly291Ser, 
we could not detect the presence of this protein even 
with longer transfection time, which is similar to that 
previously reported for p.Gly451Glu. With a shorter 
transfection time, we could detect it in the plasma 
membrane (Additional file  3: Fig. S2). We thus hypoth-
esized that the p.Gly291Ser mutation affects intracellular 
Ca2+-dependent inactivation over a longer time range 
as was observed previously [8]. To examine the effects 
of Ca2+ overload and cell death, we performed conven-
tional western blotting of cell lysates from p.Gly291Ser-
transfected cells with or without treatment with the TRP 
channel blocker ruthenium red (RuR). The pGly291Ser 
proteins were detectable in RuR-treated cells, suggest-
ing that impaired [Ca2+]i-dependent inactivation over a 
longer time range leads to Ca2+ overload and cell death 
(Fig.  4b). In cells without RuR treatment the band for 
p.Gly291Ser was faint, possibly because this mutant could 
elicit Ca2+ overload leading to detachment of cells from 
the culture dish. In the presence of RuR, p.Gly291Ser 
TRPV6-derived Ca2+ influx is blocked and as such no 
Ca2+ overload would be elicited. Upon measurement 
of intracellular Ca2+ levels with Fura-2, we observed a 
significantly higher Ca2+ concentration in cells express-
ing p.Gly291Ser under a steady-state condition (p < 0.05, 
n = 39–49, Mann–Whitney test, Fig.  5a, b). Moreover, 
the intracellular Ca2+ in these cells did not change sig-
nificantly following superfusion of divalent cation-free 

solution (DVF) or 30 Ca bath solution, likely because the 
Ca2+ concentration was nearly saturated. These results 
supported our hypothesis that the Gly291Ser mutation 
causes impaired [Ca2+]i-dependent inactivation across a 
longer time range that may be too long to allow detection 
in patch-clamp recordings.

Discussion
Transient receptor potential vanilloid 6 (TRPV6) is a 
member of the TRP channel family that has very high 
Ca2+-selectivity [12]. TRPV6 is reported to play a role 
in Ca2+ absorption in the intestine [13, 14] and the 
epididymis [15], as well as in maternal–fetal Ca2+ trans-
port across the placenta [16], suggesting a role for this 
channel in transcellular Ca2+ transport in particular 
organs and tissues [12, 17]. Despite its physiological sig-
nificance, the molecular mechanisms that regulate this 
channel remain largely undefined. For example, how 
TRPV6 maintains intracellular Ca2+ concentrations that 
in turn maintain continuous transcellular Ca2+ transport 
is unclear.

Previously, we found that mutations in TRPV6 cause 
transient neonatal hyperparathyroidism (TNHP) with 
bone abnormalities [8]. These mutations localize to hot-
spots on the extracellular side of S2 and S3 transmem-
brane domains, as well as to the intracellular ankyrin 
repeat domain 4 (AR4). Functional analysis indicated 
that: (1) TRPV6 with mutations in the transmembrane 
domains exhibit impaired trafficking to the plasma 
membrane; (2) mutations in AR4 are associated with 
partial loss-of-function, likely due to protein instability; 
and (3) the pGly451Glu mutation leads to intracellular 
Ca2+ overload due to impaired [Ca2+]i-dependent inac-
tivation [8]. Another study identified the C-terminal 

p.Arg390His

p.Gly291Ser
p.Gly451Glu

AR1
AR2

AR3
AR4
AR5
AR6

S1 S2 S3 S4 S5 S6

p.Cys212Tyr
p.Ile223Thr

Partial LOFAR4

p.Arg425Gln
p.Gly428Arg

LOF (trafficking) S2

p.Arg483Trp

p.Gly451Glu

LOF (trafficking) S3

GOF ([Ca2+]i sensing) S2-S3 loop

p.Gly291Ser AR6

p.Arg390His S1

?

?

p.Gly660Arg ?C-terminal hook

a b

Fig. 2  Distribution of TRPV6 mutations. Arrows indicate the reported mutations in THNP. Mutation hot spots are in the fourth ankyrin repeat 
domain (AR4) (filled square) and second transmembrane domain (S2) (open square). The novel mutations, pGly291Ser and p.Arg390His, localize to 
the AR6 and S1 domain, respectively. The p.Gly451Glu mutation is found on the S2–S3 loop, which is reported to play a role in [Ca2+]i-dependent 
inactivation [11]
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TRPV6 mutation p.Gly660Arg, although the functional 
significance of this mutation is unclear [18].

In this study, we identified novel TRPV6 mutations 
in two patients with TNHP: p.Gly291Ser (subject 1), 
and p.Arg390His (subject 2). The results of the present 
study suggested that pGly291Ser might cause intra-
cellular Ca2+ overload. In terms of [Ca2+]i-dependent 
inactivation, in our patch-clamp recordings we 
found no significant difference between the mutant 
and WT upon repetitive application of calcium over 
20–30  s. This outcome is a general indicator for the 
[Ca2+]i-dependent fast/intermediate inactivation. 
Meanwhile, the intracellular Ca2+ concentration was 
significantly higher in the mutant-expressing cells than 

in cells expressing WT. Although the reason for this 
difference is unclear, Ca2+-selective channels can be 
inhibited via multiple pathways, including those having 
fast and slow inactivation kinetics [11]. Based on our 
results, we propose that p.Gly291Ser has slower inac-
tivation than can be observed in the repetitive applica-
tion time range.

In subject 1, another allele carried a frameshift muta-
tion (Lys285ArgfsTer9), suggesting that pGly291Ser 
expression could be upregulated by a decrease in mater-
nal–fetal Ca2+ transport caused by a frameshift muta-
tion into another allele, thus leading to further Ca2+ 
overload and cell death as suggested in the previous 
report [8]. Subject 2 had the mutation p.Arg390His and 
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demonstrated impaired maternal–fetal Ca2+ transport, 
and also had upregulation of another TRPV6 allele, 
p.Gly451Glu, that leads to a Ca2+ overload [8]. These two 
examples strongly suggest that, in many cases of THNP, 
a combination of mutations can dysregulate intracellu-
lar Ca2+ homeostasis. Maintenance of intracellular Ca2+ 
concentration is highly important to maintain transcel-
lular Ca2+ transport. Further studies will be essential to 
reveal the detailed mechanism by which the AR6 domain 
in particular regulates TRPV6 activity. Knock-in mice 
carrying these disease mutations would be valuable to 

analyze the regulation of transcellular Ca2+ transport 
in vivo.

Although Arg390 lies on the outer edge of the trans-
membrane domain, it is nonetheless far from previously 
described mutation hot spots. This location might be 
related to the normocalcemic phenotype exhibited by 
subject 2 relative to that seen for subjects 4 and 5 in the 
previous report that both carried p.Gly451Glu and that 
were both hypocalcemic at birth. Indeed, a sister of sub-
ject 2 having the same genotype was not diagnosed with 
TNHP. Trpv6 KO mice exhibit a reduced intestinal and 
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placental calcium transport, strongly suggesting that 
Trpv6 is critical for total body Ca2+ homeostasis [13, 14, 
16]. However, in these same Trpv6 knockout mice, results 
of several reports indicated that Trpv6 is not crucial for 
1,25(OH)2-vitamin D3-dependent intestinal Ca2+ absorp-
tion [19]. We propose that these different phenotypes 
could be due to different Ca2+ environments such as dif-
ferences in the Ca2+ content of drinking water or mater-
nal vitamin D levels. In the case of calcium intake, in a 
2017 study Japanese subjects were reported to have an 
average daily Ca2+ intake of 517 mg. Women aged 20–29 
and those aged 30–39 consumed an average of 420 mg/
day and 421  mg/day, respectively. These amounts were 
smaller than those for Western countries where the con-
sumption of dairy products is generally higher [20]. Based 
on these findings, for subject 2 who carried p.Arg390His 
and had THNP, whereas a sister having the same geno-
type did not, we hypothesize that the Ca2+ status of the 
mother might have differed between pregnancies. If this 
is indeed the case, there could be other potential muta-
tions/polymorphisms that have milder effects than 
p.Arg390His, and would lead to TNHP depending on the 
Ca2+ status of the mother. In other words, there may be a 
spectrum of transient neonatal hyperparathyroidism that 
is affected by both genotype and environment. Rare vari-
ants as well as common SNPs in the TRPV6 gene should 
be further analyzed in different human populations to 
determine the relationship between TRPV6 variants and 
disease severity, and reveal the molecular mechanism by 
which TRPV6 activity is regulated as well as the signifi-
cance of molecular evolution of the TRPV6 gene [21–23].

Conclusion
Mutations in the gene encoding the TRP channel TRPV6 
cause transient neonatal hyperparathyroidism (TNHP). 
In this study, we report novel mutations in the TRPV6 S1 
and AR6 domains that occurred outside of domains rec-
ognized as being mutation hotspots (e.g., S2, S3, AR4 and 
the S2–S3 loop). Unexpectedly, we found that the muta-
tion in AR6 was associated with increased intracellular 
Ca2+ concentrations. This result suggests that the AR6 
domain of TRPV6 is involved in the maintenance of the 
[Ca2+]i homeostasis that is crucial for sustained, unidi-
rectional Ca2+ transport.
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