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Abstract

The present study aimed to investigate whether endurance exercise-induced changes in blood plasma composition
may lead to adaptations in erythrocytes, skeletal muscle and liver. Forty sedentary rats were randomly distributed into
two groups: a group that was injected with pooled plasma from rats that swam until exhaustion and a group that
was injected with the pooled plasma from resting rats (intravenous administration at a dose of 2 mL/kg body weight
for 21 days). Total antioxidant capacity, malondialdehyde and protein carbonyls were higher in the plasma collected
from the exercised rats compared to the plasma from the resting rats. No significant difference was found in blood
and tissue redox biomarkers and in tissue metabolic markers between rats that received the “exercised” or the "non-

exercised” plasma (P>0.05). Our results demonstrate that plasma injections from exercised rats to sedentary rats do
not induce redox or metabolic adaptations in erythrocytes, skeletal muscle and liver.
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Introduction

Blood “composition” dramatically changes during and a
few hours after exercise. The blood levels of some mol-
ecules increase in response to acute exercise (e.g., inflam-
matory cytokines), while the levels of other molecules
decrease (e.g., myostatin). Diverse metabolically active
tissues throughout the human body, such as the liver,
skeletal muscle and adipose tissue, exert significant endo-
crine activity affecting distal organs, contributing thereby
to the altered chemical composition of blood [1, 2].
Myokines and adipokines (i.e., cytokines released from
skeletal muscle and adipose tissue, respectively) are two
representative examples of molecules that are released
into the bloodstream during and after exercise [1, 2].
Along with these tissues, there is compelling evidence
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supporting an active role of blood (predominantly via
its cells) as a source of bioactive molecules that mediate
the signals for biochemical and physiological adapta-
tions in other tissues and organs [3, 4]. Even the blood
plasma, which is widely considered an inert body fluid
that receives metabolic by-products of other tissues, has
been recently reported to act as the intermediary “modi-
fier” niche for tissue-originated circulating molecules [5].
Thus, the role of blood as a transporter, producer and
modifier of bioactive molecules seems to be of particular
importance when investigating exercise adaptations and
other physiological and biochemical phenotypes, as well.

This is best exemplified by the elegant experimental
approaches implemented by different research groups in
order to reveal the role of circulating molecules in diverse
biological phenomena (e.g., exercise adaptations, healthy
aging, longevity). These approaches include the incuba-
tion of cells in mediums containing either components
or the whole secretome of other cells [6, 7], cell or tissue
cultures incubated with serum from exercised [8—11] or
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calorie-restricted individuals [12-15], transplantation of
white fat from exercised to sedentary animals [16], para-
biosis set-ups between transgenic and wild-type exer-
cised animals [17], as well as between young and aged
animals [18-25], plasma injection from exercised to sed-
entary rats [26] and from young to aged animals [25] and,
finally, execution of isolated body part or limb exercise
protocols [27-32]. According to the available data, there
is some evidence suggesting that changes in circulating
molecules can stimulate the production of factors that
subsequently affect other tissues. However, with regard
to exercise, a great debate exists in the literature about
the role of post-exercise increases in several humoral fac-
tors on skeletal muscle adaptations (e.g., anabolism and
hypertrophy) [33].

All the aforementioned experimental designs provide
valuable information on the role of blood or its constitu-
ents, however, each design has some fundamental limi-
tations [e.g., in vitro to in vivo extrapolation (cell culture
studies), use of highly invasive techniques (parabiosis
studies) and parallel effect of the neural system (isolated
body part exercise studies)]. Plasma injection in rodents,
although not without limitations, seems to be a rather
non-invasive and effective model to study in vivo the
effect of circulating factors in tissue and organ adapta-
tions [26, 34]. Regarding exercise, and to the best of our
knowledge, only one study has used this experimental
approach and has reported that plasma injection from
exercised rats to sedentary rats induced systemic and tis-
sue inflammation [(i.e., interleukins, tumor necrosis fac-
tor alpha (TNF-a) and C-reactive protein (CRP)] [26].
This may also have important implications in the redox
homeostasis of the sedentary rats, since inflammatory
and redox processes are strongly interrelated. Notewor-
thy, it has been recently demonstrated in vivo that post-
exercise oxidative stress is a key factor in endurance
training adaptations [35], while the fundamental nature
of redox biology of exercise is increasingly recognized
[36—39]. Thus, the aim of the present study was to inves-
tigate the effect of “exercised” plasma injection in medi-
ating systemic and tissue redox and metabolic exercise
adaptations in sedentary rats, mimicking the impact of
whole-body endurance exercise.

Materials and methods

Animals

Adult male Wistar rats, weighing 380+£27 g (mean=+SD)
were used in the study. Rats were housed under a 12 h
light:12 h dark cycle, controlled temperature (21-23 °C)
and humidity (50-70%). Commercial rat chow and tap
water were provided ad libitum. All procedures were
in accordance with the European Union guidelines for
the care and use of laboratory animals, as well as the
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“Principles of laboratory animal care” (NIH publica-
tion No. 86-23, revised 1985). The project was reviewed
and approved by the institutional review board and the
appropriate state authority (#359888/3612).

Experimental design
The whole study design is shown in Fig. 1.

Phase 1

Blood samples were collected from: (i) exercised rats
immediately after a swimming bout to exhaustion and
(ii) from resting rats. Following centrifugation, blood
plasma was separated from blood cells. The plasma sam-
ples were pooled into two separate glass containers and
were homogenized (one container included the plasma
from all the exercised rats and one container included
the plasma from all the resting rats). Subsequently, the
pooled plasma mixtures were put into aliquots of 0.8 mL
and stored in plastic tubes at —80 °C for use in phase 2
and later analysis.

Phase 2

Forty (N=40) sedentary rats were randomly distributed
into two groups as follows: (i) a group that was injected
with the pooled plasma collected from the exercised rats
that swam until exhaustion in phase 1 (N=20) and (ii) a
group that was injected with the pooled plasma collected
from the resting rats of phase 1 (N=20). Injection of
either the exercised or resting plasma was administered
intravenously through the lateral tail vein at a dose of
2 mL per kg body weight, daily for 21 consecutive days.
The duration of the administration process was set based
on the intention to mimic the exercise-induced changes
in plasma for a long time period, while the dose was
selected so that each administration would not induce
great acute changes in blood volume of rats (approxi-
mately 3.5% volume was added).

In very few aging studies on cognitive function, the
injection dose intravenously into the mice tail vein was
100 uL, 4 times over 10 days [24], or 100 pL, 8 times over
24 days [25]. The present study is the first attempt in the
field of exercise physiology to incorporate plasma injec-
tions from exercised rats to sedentary counterparts. An
adequate number of acute “exercise bouts” should be
performed to induce chronic adaptation response. It was
assumed that a 3-week “exercised” plasma administration
period could simulate sufficiently the shortest, but ade-
quate, “training period” for exercise adaptations to occur
and detected.

The tail vein injections were performed in both lat-
eral tail veins starting from the tip of the tail and grad-
ually moving towards the base of the tail, using 1 mL
insulin syringes, rat restrainers and a tail vein injection
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platform. Twenty-four hours following the last injec-
tion, all animals were killed, samples of blood plasma and
erythrocyte lysate, vastus lateralis muscle and liver were
collected and stored at — 80 °C for later analysis.

Swimming familiarization and exercise protocol—phase 1
Rats were familiarized with swimming for 4 consecutive
days [26]. The daily swimming duration was 10 min with
various loads attached on the base of their tails, ranging
from 0% to approximately 4% of their body weight. In
particular, rats swam with no load on day 1 (first contact
with the water tanks), while the adjusted loads were 5 g,
10 g and 15 g for days 2, 3 and 4, respectively. Following
the 4-day familiarization protocol, the rats were allowed
to rest for 48 h prior the exhaustive swimming bout.

The swimming protocol for the exercised rats was
performed in plastic cylindrical tanks (diameter: 1.2 m,
height: 1.1 m, water depth: 0.7 m in order to prevent rats
from jumping out of the tank and from touching the bot-
tom of the tanks with their tails). Water temperature was
maintained between 33.5 and 34.5 °C. Rats swam indi-
vidually in the tank and the swimming effort was gradu-
ally increased by addition of loads attached to their tails.
In particular, after an initial weight of 5 g in all rats for
the first 15 min of exercise, the load was then gradually
increased by 5 g every 5 min until exhaustion. Animals

were considered to have reached exhaustion when they
exhibited loss of coordinated movements and inability
to return to the surface within 10 s for three consecu-
tive times [26]. On the other hand, the resting rats were
placed in the swimming tank containing only a minimal
amount of water to wet their limbs, for a time period
equal to the average swimming time to exhaustion of the
exercised rats.

Blood and tissue collection and preparation for analysis

Rats were deeply anesthetized as described previously
[26]. Then, the thoracic cavity was opened and whole
blood was collected via cardiac puncture of the right
ventricle using a 10-mL syringe (Terumo, Tokyo, Japan)
in vacutainer tubes containing no additives (for phase
1) or ethylenediaminetetraacetic acid (EDTA) (for phase
2) (BD Vacutainer Systems, Plymouth, UK.). Whole
blood samples were immediately centrifuged (1500g,
4 °C, 10 min) for separation of plasma from blood cells.
After plasma collection, the remaining supernatant
in the EDTA tubes (i.e., plasma residue, platelets and
white blood cells) was discarded. An equal volume to
the packed erythrocytes of distilled water was added to
the tubes, the samples were centrifuged (4000g, 15 min,
4 °C) and the supernatant hemolysate (i.e., red blood cell



Goutianos et al. J Physiol Sci (2020) 70:3

lysate) was collected. The erythrocyte hemolysate was
then stored at — 80 °C for later analysis.

Immediately after blood sampling, the vastus later-
alis muscle (VL) and the liver were rapidly removed,
snap frozen in liquid nitrogen and stored at — 80 °C for
later analysis. To grind the tissue samples for analysis, a
mortar and pestle under liquid nitrogen were used. Tis-
sue powder was then homogenized (1:2 w/v ratio) with
10 mmol/L phosphate-buffered saline (PBS) (138 mmol/L
NaCl, 2.7 mmol/L KCl, and 1 mmol/L EDTA, pH=7.4)
and a cocktail of protease inhibitors (1 pmol/L aprotinin,
100 pmol/L leupeptin and 1 mmol/L phenylmethylsul-
fonyl fluoride) to block proteolytic cleavage of proteins.
The homogenate was vigorously vortexed, briefly soni-
cated on ice and centrifuged (12,000 g, 4 °C, 30 min). The
supernatant was collected and stored at — 80 °C for sub-
sequent analysis.

Biochemical assays

The following measurements were performed: total anti-
oxidant capacity in plasma and vastus lateralis muscle;
malondialdehyde in plasma; protein carbonyls in plasma
and vastus lateralis muscle; catalase, superoxide dis-
mutase and glutathione reductase activity in erythrocytes
and vastus lateralis muscle; reduced glutathione content
in erythrocytes and vastus lateralis muscle; citrate syn-
thase activity in vastus lateralis muscle; glycogen content
in vastus lateralis muscle and in liver.

Citrate synthase activity was measured in vastus lat-
eralis muscle as previously described [40]. Glycogen
concentration was measured in vastus lateralis mus-
cle and liver via a modified protocol of Lo et al. [41]
and Hoshino et al. [42] and was subsequently calcu-
lated with the use of a standard curve created based
on known glycogen concentrations. Total antioxidant
capacity in blood plasma and vastus lateralis muscle
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was measured according to a protocol described pre-
viously [43]. Plasma malondialdehyde concentration
was measured based on Keles et al. [44] and Lapenna
et al. [45] and calculated with the use of the molar
extinction coefficient of malondialdehyde. Catalase,
superoxide dismutase and glutathione reductase activ-
ity as well as the content of protein carbonyls and glu-
tathione were measured as previously described by
Veskoukis et al. [46]. Results were normalized to total
protein for plasma, vastus lateralis muscle and liver
and normalized to hemoglobin for erythrocytes. Total
protein content was measured using the Bradford assay
via a standard curve of solutions with known bovine
serum albumin concentrations. Hemoglobin concen-
tration was measured spectrophotometrically using
the cyanmethemoglobin method with a commercial kit
(Hemoglobin liquicolor, Human, Wiesbaden, Germany)
according to manufacturer’s instructions. All biochemi-
cal variables were determined spectrophotometrically.

Statistical analysis

Independent samples Student’s t-tests (SPSS Inc., Chi-
cago, IL; version 21) were used to compare the depend-
ent variables measured in blood plasma, erythrocytes,
vastus lateralis and liver in the two experimental groups
of the phase 2 (i.e., the groups that were injected with
the pooled plasma collected either from the exer-
cised or the resting rats). The pooled plasma samples
(exercised and resting) of the phase 1 were treated as
two single samples. As a result, no standard deviation
could be computed and no inferential statistics were
performed (Fig. 2). The significance level was set at
P<0.05. Data are presented as mean & standard devia-
tion (SD).

PC (nmol/mg protein)
o
o

M Plasma collected from exercised rats

Fig. 2 Redox biomarkers in pooled plasma samples collected either from resting (open bars) or exercised (closed bars) rats. Percent values indicate
the relative change of exercised compared to resting values. The two pooled plasma samples were treated as two single treatments; thus, no
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Results

Phase 1

The exercising group of rats swam until exhaustion for
28.9+4.5 min. The average load during the swimming
protocol (attached on the base of each rat’s tail) was
equal to 2.62+0.55% body weight. Resting rats were
placed in empty swimming tanks containing only a
minimal amount of water to wet their limbs for 29 min,
in order to match the time period of the swimming pro-
tocol of the exercised rats.

The level of total antioxidant capacity (TAC),
malondialdehyde (MDA) and protein carbonyls (PC)
was numerically higher in the pooled plasma col-
lected from the exercised rats compared to the pooled
plasma collected from the resting rats by 19% (TAC,
12.4 vs. 14.8 nmol/mg protein), 27% (MDA 0.044 vs.
0.056 pumol/L) and 114% (PC 0.14 vs. 0.30 nmol/mg
protein), respectively (no inferential statistics per-
formed) (Fig. 2). The two pooled plasma samples were
subsequently used as the experimental treatments in
phase 2.
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Phase 2

Effects of blood plasma injection on redox biomarkers

In blood plasma, no significant differences were found in
total antioxidant capacity (26.0+5.3 vs. 25.54+5.1 nmol
DPPH/mg protein) and malondialdehyde (0.10£0.02
vs. 0.10+0.03 uM) between the group that received
the plasma from the resting rats and the group that
received the plasma from the exercised rats (P>0.05).
However, a significant difference was found between
these groups in plasma protein carbonyls (0.44£0.13 vs.
0.35+0.13 nmol/mg protein, respectively) (Fig. 3).

In erythrocyte lysate, no significant differences were
found in glutathione (2.63+£0.69 vs. 2.67 +0.88 umol/g
Hb), catalase activity (227451 vs. 22653 U/mg Hb)
and superoxide dismutase activity (8.60+2.61 and
10.242.71 U/mg Hb) between the group that received
the plasma from the resting rats and the group that
received the plasma from the exercised rats (P> 0.05)
(Fig. 4). Only a trend toward significance in superoxide
dismutase activity was observed (P =0.065).

In vastus lateralis muscle, no significant differences
were found in total antioxidant capacity (164+18
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vs. 155+18 pmol DPPH/mg protein), glutathione
(7.80+£1.12 vs. 7.51+£1.52 pmol/g protein), protein car-
bonyls (1.09£0.28 vs. 0.99+0.17 nmol/mg protein),
catalase activity (5.08£0.97 vs. 4.90£0.97 U/mg pro-
tein), superoxide dismutase activity (41.2+12.3 vs.
46+ 10 U/mg protein) and glutathione reductase activity
(7.42+1.63 U/g vs. 7.74+1.71 U/g protein) between the
group that received the plasma from the resting rats and
the group that received the plasma from the exercised
rats (P> 0.05) (Fig. 5).

Page 6 of 10

Effects of blood plasma injection on tissue metabolic
adaptation biomarkers

In vastus lateralis muscle, no significant differences
were found in citrate synthase activity (140.8+27.6 vs.
142.6£33.5 U/g protein) and glycogen concentration
(6.71£1.20 vs. 6.86 £ 1.19 mg glycogen/g tissue) between
the group that received the plasma from the resting rats
and the group that received the plasma from the exer-
cised rats (P>0.05) (Fig. 6). No significant difference was
also found in liver glycogen concentration (22.7£9.6
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vs. 25.2+£13.2 mg glycogen/g tissue) between the two
groups (P>0.05) (Fig. 6).

Discussion

Rodents are a good model to study the effects of exercise
on various physiological systems and conditions [47-55].
Acute exercise dramatically alters blood composition.
Blood is the recipient of secretomes originated in other
tissues with endocrine properties, such as skeletal mus-
cle and liver, while the blood itself also produces bioac-
tive molecules [3, 4]. Mounting evidence suggests that
the transient enrichment of blood biochemical “cocktail”
in response to exercise facilitates the signal transmission
to target cells and organs. Diverse methodological set-
ups have been implemented in order to reveal the role
of blood in exercise adaptations [8-11, 16, 17, 27-29].
In the present study, we have used plasma injections, an
in vivo approach that has never been applied previously
in an exercise setting and does not require largely inva-
sive manipulations. In particular, for 21 days we injected
to sedentary rats (phase 2), plasma previously collected
from other rats (phase 1) that either swam until exhaus-
tion or rested (control group) for a matching time period
(i.e., 29 min). Therefore, different rats of similar age and
weight were used in phase 1 and phase 2. In phase 1, the
individual plasma values of the examined variables were
not measured. Rather, the plasma from all animals (sep-
arately in resting or exercised groups) were pooled and
mixed in two containers. Then, the variables were meas-
ured in the pooled plasma of each group.

We aimed thereby to investigate whether the tran-
sient exercise-induced changes in circulating plasma
molecules, contribute chronically to classic endurance
training-induced metabolic adaptations in other tissues
(i.e., skeletal muscle and liver glycogen content and mus-
cle citrate synthase activity) [56, 57]. Although numerous
factors have been characterized as signals for adaptations
(i.e., hormones, cytokines), we particularly focused on
redox molecules (i.e., enzymatic and non-enzymatic anti-
oxidants and oxidative stress biomarkers), since redox
processes are nowadays considered an essential compo-
nent of exercise metabolism [36—39].

According to our findings, there was an increase in
plasma redox and oxidative stress biomarkers after
exhaustive swimming in phase 1 (TAC 19%, MDA 27%,
PC 114%). However, this typical increase in redox “con-
tent” of pooled “exercised” plasma was not a sufficient
stimulus to induce redox and/or metabolic adaptations in
the rats received this plasma in phase 2. We herein report
that the chronic plasma injection collected from exer-
cised rats did not affect redox status in erythrocytes and
vastus lateralis muscle of sedentary rats, since none of the
biomarkers has changed.
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Regarding plasma measurements, the treatment par-
tially affected oxidative stress biomarkers, as suggested
by the reduction in the plasma protein carbonyl concen-
tration. This finding seems, at a first sight, as unexpected,
since the administration of “exercised” plasma was antici-
pated to increase concentration of this abundant and
chemically stable oxidative stress biomarker. However,
it has been recently demonstrated that plasma protein
carbonyl content is determined by the dynamic balance
between the reactive species-induced production of pro-
tein carbonyl groups and their clearance by the 20S pro-
teasome system [58]. This is also in line with the general
idea that the oxidation products should be considered
neither as end-products nor as inactive molecules [59].
Regarding tissue exercise metabolic adaptations, the
injection of plasma collected from exercised rats did not
affect any metabolic biomarker in vastus lateralis muscle
(citrate synthase activity and glycogen content) or liver
(glycogen content).

The general idea of our study was that the repetitive
injections of plasma from exercised rats to sedentary rats
would replicate the “episodic” pattern of exercise train-
ing and would alter, at least in part, the circulating milieu,
mimicking thereby the effects of whole-body exercise. In
other words, we considered plasma injection as a more
physiological exercise “mimetic” approach compared to
diverse natural or synthetic drugs that have been devel-
oped and aim to replicate the metabolic and physiologi-
cal effects of exercise (the “exercise in a pill” theory; [60,
61]. The lack of an effect in our study could be attributed
to several reasons. It is possible that some of the exercise-
induced plasma factors that were injected to sedentary
rats could not transport across the cell membrane into
the tissue (e.g., through transporters activated during
exercise) and, as a result, no tissue effect was observed.
Even in the case of humoral factors that can perme-
ate the cell membrane (e.g., via diffusion), it is plausi-
ble to suggest that the presence of these molecules per
se is not sufficient to trigger the sequence of molecular
events needed for training adaptations. In fact, multiple
molecular (activation of transcription factors), biochemi-
cal (redox reactions), metabolic (changes in AMP/ATP
ratio), biomechanical (shear stress) and physiological
(intracellular hypoxia) changes, inherent to each indi-
vidual tissue, take place transiently during exercise [62,
63]. All these parameters seem to be essential for training
adaptations to occur and, thus, the isolated contribution
of blood plasma is not satisfactory to induce adaptations.
Finally, our results may also indicate that the endurance
training tissue adaptations are primarily driven by local
(e.g., intramuscular) processes and not by humoral fac-
tors. This issue has been a matter of debate lately in a
comparable context, that is, skeletal muscle anabolism
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and hypertrophy. In particular, controversy exists regard-
ing the contribution of circulating anabolic hormones
and growth factors in exercise-induced muscle hypertro-
phy, with the muscle-centric theory being currently con-
sidered as the prevailing theory [33].

Our findings are partially in contrast with other stud-
ies that underlined the central role of blood in exercise
adaptations and other biological processes as well (e.g.,
aging). There are several explanations for these differ-
ences. First, we injected blood plasma, thus, factors pre-
sent only in this particular body fluid were transferred.
Bioactive molecules present in or originated from blood
cells were inevitably excluded. In this context, the prom-
ising results from parabiosis set-ups, which facilitate the
transfer of whole blood from one organism to another
(e.g., between a young and an aged animal) by sharing a
common circulatory system, may stem from blood cell-
derived and not plasma factors [20, 21, 24, 25]. Especially
regarding endurance training, several humoral factors
(e.g., catecholamines, peptides and hormones) can adjust
the hematopoietic process, upregulating red blood cell
production and volume, which subsequently can improve
maximal oxygen uptake [64, 65]. Secondly, we used a
combined ex vivo/in vivo setting, which is by definition
highly dynamic, a fact that could explain the different
results compared to studies that incubated cells in medi-
ums containing the secretome of other cells or in serum
from different athletes [6—8, 10, 11]. In particular, the rats
that received the plasma (in phase 2) from the exercised
or resting rats (from phase 1), as any biological system,
may have “responded” initially to the exogenous stimulus
(i.e., plasma injection) and became subsequently “unre-
sponsive” to the specific treatment (plasma injection of
2 mL per kg body weight). Thirdly, the role of blood in
regulating exercise adaptations may share some, but not
all, mechanisms with other biological conditions, such
as aging [18, 19, 24, 25] or calorie restriction [12-15].
This could be a key reason why the positive outcomes
reported previously in these situations (i.e., aging and
calorie restriction) were not substantiated in our exercise
study.

Certainly, some limitations have to be acknowledged.
Perhaps, ideally, recipient sedentary animals should have
received the blood plasma from progressively trained
animals (from day 1 to day 21) to more closely mimic the
chronic exercise adaptation. However, such an experi-
ment would have required a series of parallel experiments
and a large number of animals. With regard to redox
biomarkers, there was not a complete panel of measure-
ments in all specimens (i.e., plasma, erythrocytes and
vastus lateralis muscle) due to sampling and analytical
issues. In particular, malondialdehyde was measured only
in plasma, glutathione reductase activity was measured
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only in vastus lateralis muscle, while protein carbonyls
were not measured in erythrocyte lysate. Glutathione
concentration and the activity of the antioxidant enzymes
(i.e., catalase and superoxide dismutase) were purpo-
sively measured only in erythrocytes and skeletal muscle,
but not in plasma, due to vague biological interpretation
(i.e., compartmentalization of redox processes; [66]). On
the other hand, a recent study underlined the usefulness
of redox enzyme measurements in plasma in an exercise
context providing a nuanced view on their applicability
[67]. In addition, our redox measurements consisted only
of oxidative stress biomarkers and antioxidant molecules.
Despite the fact that these measurements are necessary
to pinpoint likely redox components in a physiological
process [68], we did not include any mechanistic redox
biomarker, such as a redox-sensitive transcription fac-
tor that relates to exercise adaptations [e.g., nuclear fac-
tor erythroid 2-related factor 2 (Nrf2) or nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB)],
to acquire a mechanistic perspective, as well. It is increas-
ingly recognized that in order to more tightly integrate
redox signaling events into biological processes, such
as exercise adaptations, mechanistic measurements are
essential [69]. Another limitation is that we did not assess
any physiological (e.g., muscle function, contractile prop-
erties) or performance (time trial, fatigue test) endpoint
along with the redox and metabolic measurements. Such
endpoints would have enhanced the translational poten-
tial of our study. Finally, all outcome measures in phase 2
were performed under resting/basal conditions and it is
likely that the results would differ in response to a physi-
ological challenge (e.g., differences in citrate synthase and
antioxidant enzymes activity).

Conclusion

In the present study, we applied a plasma injection set-up
to examine the role of plasma circulating factors on sys-
temic and tissue redox and metabolic training-induced
adaptations. Most of the evidence presented herein
demonstrates that repetitive daily injections of plasma
from exercised rats to sedentary rats did not induce any
redox or metabolic adaptation in the erythrocytes, vas-
tus lateralis muscle and liver. These results indicate that
endurance training adaptations rely predominantly on
tissue- or blood cell-specific processes and highlight the
fact that exercise induces an orchestrated response that
necessitates both humoral factors and cell preparation.
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