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Abstract
Menopause is a risk factor for impaired glucose metabolism. Alternative treatment of estrogen for postmenopausal women is 
required. The present study was designed to investigate the effects of 5-week endurance running exercise (Ex) by treadmill 
on hyperglycemia and signal pathway components mediating glucose transport in ovariectomized (OVX) placebo-treated 
rats, compared with 4-week 17β-estradiol (E2) replacement or pair-feeding (PF) to the E2 group. Ex improved the hyper-
glycemia and insulin resistance index in OVX rats as much as E2 or PF did. However, Ex had no effect on body weight gain 
in the OVX rats. Moreover, Ex enhanced the levels of GLUT4 and phospho-TBC1D1 proteins in the gastrocnemius of the 
OVX rats, but E2 or PF did not. Instead, the E2 increased the Akt2/AS160 expression and activation in the OVX rats. This 
study suggests that endurance Ex training restored hyperglycemia through the TBC1D1/GLUT4 pathway in muscle by an 
alternative mechanism to E2 replacement.

Keywords Estradiol replacement · Hyperglycemia · Insulin resistance · TBC1D1/GLUT4 pathway · Running exercise 
training · Ovariectomized rat

Introduction

Postmenopausal women are at higher risk for metabolic 
disorders, such as metabolic syndrome and type 2 diabe-
tes than premenopausal women [1, 2]. Because estrogens 
play an important role in the control of energy homeosta-
sis in females, estrogen deficiency in menopausal status is 
associated with visceral fat accumulation [3, 4], impaired 
glucose tolerance, and insulin resistance. Similarly, ova-
riectomized (OVX) rats, an animal model widely used for 
studying the pathology of human menopause, develop body 
weight, visceral fat accumulation, and impairment of whole-
body glucose homeostasis [5, 6]. Recently, we found that 
17β-estradiol (E2) replacement restored the impairment of 
insulin sensitivity by increasing the activation of the insulin 
signaling pathway in the gastrocnemius muscle of OVX rats 

[7]. These findings suggest that E2 replacement restores glu-
cose metabolism as its direct action in OVX rats. In addition, 
the inhibitory effect of estrogen against abdominal obesity 
may be partly associated with restoring the insulin sensitiv-
ity, since visceral fat accumulation contributes to glucose 
intolerance [2, 8].

Estrogen replacement in postmenopausal women is usu-
ally performed in combination with progesterone, a treat-
ment known as hormone replacement therapy (HRT). The 
metabolic impact of HRT varies depending on the dose 
of the estrogen component, the type of progesterone, and 
the route of administration [10–12]. Previous studies have 
reported that HRT exerts a beneficial effect on the glucose 
metabolism [9]; however, it deteriorates insulin sensitivity, 
attributed to progesterone or high doses of estrogen [10–12]. 
Additionally, the general efficacy and safety of HRT is con-
troversial due to the risks associated, including stroke and 
coronary heart disease, as well as an elevated risk of breast 
cancer, which were increased in the HRT trials performed by 
the Women’s Health Initiative [13]. Therefore, it is essential 
to develop alternative treatments that restore the positive 
glucose metabolic effects of estrogen.
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Several human studies show that aerobic exercise (Ex) is 
insulin-sensitizing and that training is an effective substitute 
or adjunct for HRT [14, 15]. As evidenced in rodent studies, 
Ex training initiated at the onset of OVX maintained normal 
skeletal muscle glucose uptake, prevented visceral adipose 
accretion, and improved whole-body glucose tolerance in 
OVX rats [16, 17]. However, to our knowledge, mechanisms 
underlying the abilities of Ex training to improve glucose 
metabolism under reduced estrogen function are not fully 
understood.

Skeletal muscle is the major tissue responsible for uptake 
of glucose from the blood, accounting for 70–85% of whole-
body glucose disposal [18]. Insulin and Ex/muscle con-
traction are two widely studied physiological stimuli that 
increase glucose uptake via the activation of intracellular 
signaling cascades [19–21]. The signaling mechanism by 
which insulin stimulates muscle glucose uptake is relatively 
well known, and involves phosphorylation of protein kinase 
B (Akt) and the Rab-GTPase activating protein (Rabs), an 
Akt substrate of 160 kDa (AS160) [22, 23]. In contrast, 
the signaling mechanism by which Ex acts is not fully 
understood, although studies have shown that activation of 
AMP-activated protein kinase (AMPK), an energy sensing 
kinase, is positively correlated with increases in muscle glu-
cose uptake [24]. Furthermore, the downstream regulators 
of AMPK are still debated, while AS160 or TBC1 (Tre-
2, BUB2, CDC16) domain family member 1 (TBC1D1), 
another Rabs of AS160 (also known as TBC1D4), is 
reported as a glucose uptake regulator in Ex/muscle con-
traction [19, 21, 25].

It is important to define the differences in molecular 
mechanism underlying beneficial effects of Ex training on 
glucose uptake in muscle of OVX rats compared with E2 
replacement, whereby Ex is a critical alternative to estro-
gen replacement [14, 16]. Recently, several researchers have 
reported the effects of Ex training on glucose transporter 4 
(GLUT4), Akt protein, or mRNA level in OVX rats [17, 
26, 27], but those findings were inconsistent. In this study, 
we focused on the effects of Ex training on signal pathway 
components that mediate glucose uptake in skeletal mus-
cle and adipose tissues of OVX rats, because our previous 
study showed that beneficial effects of E2 replacement on 
insulin sensitivity were mediated by enhancing activation 
of the Akt2/AS160 pathway in the gastrocnemius muscle, 
but not in liver [7].

In addition, whether estrogen reduction in the menopausal 
phase directly impairs the glucose uptake mechanism [28, 
29] remains unclear, or whether estrogen deficiency-induced 
hyperphagia induces visceral fat accumulation, which pro-
motes insulin resistance resulting in the impairment of glu-
cose uptake as an indirect result of estrogen deficiency [30]. 
A previous study reported that pair-feeding (PF) with sham-
operated female rats failed to improve insulin action at the 

whole-body or skeletal muscle level in OVX rats, suggesting 
ovarian hormone deprivation to be involved in the progres-
sion of insulin resistance as a direct cause [31]. Therefore, 
as per the second aim of this study, we also examined the 
effects of PF on plasma glucose levels and the signaling 
pathway components that mediate glucose transport in OVX 
rats fed with the same diet as the E2-replaced OVX rats. This 
experiment may give an answer to above-mentioned ques-
tion whether estrogen directly restores glucose metabolism, 
or whether estrogen-induced anorexia and following lean-
ness prevents deterioration of it. The present study may give 
first data simultaneously showing the effects of Ex training, 
E2 replacement, and PF on insulin-dependent or independ-
ent signaling pathways in muscle or adipose tissue of OVX 
rats.

This study was designed to test an initial hypothesis, that 
is whether Ex training in the form of endurance running 
improves hyperglycemia and the insulin resistance index in 
the basic condition without muscle contraction through the 
AMPK-TBC1D1/GLUT4 pathway, which is different from 
the pathway activated by E2 replacement in skeletal muscle 
of OVX rats. Furthermore, the second hypothesis is that is 
whether E2 directly restores glucose metabolism, or whether 
E2-induced anorexia and following leanness prevents dete-
rioration of it in OVX rats.

Materials and methods

Animals

The Nara Women’s University Committee on Animal 
Experiments approved the experimental protocol. In total, 
24 female Wistar rats were used in this study. The rats were 
housed in standard rat cages (length: 40 cm, width: 25 cm, 
and depth: 25 cm) under controlled temperature and light 
conditions (26 ± 1 °C, a 12:12-h light–dark cycle, with lights 
on at 6:00 a.m.). Tap water and rodent chow (Oriental Yeast, 
Tokyo, Japan) were provided ad libitum.

Preparation for experiments

Ovariectomy and E2 (or placebo) replacement

Nine-week-old female rats were ovariectomized, followed by 
E2 or placebo (Pla) replacement as previously described [7, 
32, 33]. In brief, after a 4-week-recovery period from OVX, 
the rats aged 13 weeks were assigned randomly to either the 
Pla (n = 18)- or the E2 (n = 6)-treated group, and were subcu-
taneously implanted with either E2 (1.5 mg/60-day release) 
or Pla pellets (Innovative Research of America, Sarasota, 
FL, USA). The Pla group rats were divided into control (Pla; 
n = 6), PF (Pla/PF; n = 6), and Ex (Pla/Ex; n = 6) groups.
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Experimental protocols

PF study

Two days after Pla replacement, the Pla/PF group was pair-
fed to the E2 group, i.e., given the average food intake of the 
E2 group in the previous day from 13 to 17 weeks of age. 
Food intake and body weight were monitored daily.

Endurance running Ex training

Before the Ex training protocol, the Pla/Ex group rats were 
familiarized with Ex by running at 10 m/min for 30 min/
day on a custom-built, five-lane motorized rodent treadmill 
(KN-73, Natume, Tokyo, Japan) in the hours before dark 
for 2 weeks from 10 to 12 weeks of age, during which the 
rats had the intensity of Ex gradually increased. From 12 to 
17 weeks of age, the rats ran 17 m/min of treadmill running 
for 60 min/day, 5 day/week for 5 weeks. The intensity of the 
running Ex may be moderate, as previous researchers have 
estimated that running at 28 m/min as high intensity or 8 m/
min as low intensity elicited ~ 75% or ~ 45% of maximal  O2 
uptake in female rats [34, 35].

Sampling for estimation of plasma glucose, insulin, 
and signaling pathway

All the rats fasted for 16 h before blood and tissue sam-
pling, with free access to water. On the day of sampling, 
after the rats were deeply anesthetized by a pentobarbital 
sodium (45 mg/kg body weight) [36], blood samples were 
collected from cardiac puncture in the four groups. After 
euthanasia, the gastrocnemius muscles and mesenteric adi-
pose tissues were excised and immediately frozen in liquid 
nitrogen, then stored at − 50 °C until further processing of 
Western blotting. Parts of these tissues were stored in RNA 
stabilization solution, until RT-qPCR analysis for AS160 
and GLUT4 mRNAs was performed. The wet weights of 
the intra-abdominal (mesenteric, kidney-genital, and retro-
peritoneal) and subcutaneous (inguinal) adipose tissues were 
measured. The total visceral fat weight was calculated by the 
sum of the intra-abdominal fat weights.

Analytical methods for plasma glucose, insulin, and E2

The plasma glucose concentration was measured by a glu-
cose oxidase method using a glucose assay kit (Wako Pure 
Chemical Industries, Osaka, Japan). Plasma insulin concen-
tration was determined by the use of a rat insulin ELISA kit 
(FUJIFILM Wako Shibayagi, Gunma, Japan). Using these 
variables, insulin resistance was assessed by a homeostasis 
model assessment of the insulin resistance index (HOMA-
IR), calculated using the following formula [37–39]:

The E2 concentrations were measured commercially by 
an electro-chemiluminescence immunoassay (SRL Co, Nara, 
Japan).

Immunoblotting

Isolated muscle and mesenteric adipose tissue were imme-
diately homogenized in homogenization buffer [320 mM 
sucrose; 10 mM Tris·HCl, pH 7.4; 1 mM EGTA; 10 mM 
β-mercaptoethanol; 50 mM NaF; 10 mM  Na3VO4; 9 tab-
lets of cOmplete EDTA-free protease inhibitor cocktail 
containing 0.2 mM PMSF, 20 μM leupeptin, and 0.15 μM 
pepstatin (Roche, Mannheim, Germany); 1% TritonX-100], 
as described previously [7]. The homogenates were centri-
fuged at 15,000g for 30 min at 4 °C. SDS samples containing 
equal amounts of protein were separated by SDS-PAGE on 
10% polyacrylamide gels, and immunoblotted using a PVDF 
membrane (GE Healthcare, Buckinghamshire, UK) with 
the following antibodies: antibodies for Akt and phospho 
(p)-Akt  Ser473, p-Akt  Thr308, Akt2, p-Akt2  Ser474, AMPKα, 
p-AMPKα  Thr172, and p-AS160  Thr642 were from Cell 
Signaling Technology (Danvers, MA, USA). The AS160 
and p-TBC1D1  Ser237 antibody were from MILLIPORE 
(Temecula, CA, USA), and GLUT4, TBC1D1, and Tubu-
lin antibody from Abcam (Cambridge, MA, USA). Goat 
anti-rabbit horseradish peroxidase-conjugated secondary 
antibody was obtained from Promega (Madison, WI, USA). 
The enhanced chemiluminescence (ECL, GE Healthcare 
Life Sciences, Buckinghamshire, UK) system was used for 
protein detection. Imaging and densitometry were performed 
using the imaging system Ez-Capture (ATTO, Tokyo, Japan) 
and image processing program CS Analyzer (ATTO, Tokyo, 
Japan).

RNA isolation and RT‑qPCR

Total RNA was extracted using the TRI Reagent Solution 
(Ambion, Austin, TX, USA) according to the manufac-
turer’s protocol. The amount of total RNA extracted was 
determined, and its purity (absorption ratio of optical den-
sity 260 nm and 280 nm > 1.9) was verified spectrophoto-
metrically using a Nanodrop 2000 (Thermo Fisher Scientific, 
Waltham, MA, USA). The cDNA was synthesized using the 
High-Capacity RNA-to-cDNA kit (Applied Biosystems, 
Waltham, MA, USA). RT-qPCR was performed using a 
StepOne Software v2.1 system (Applied Biosystems). The 
commercially available TaqMan Gene Expression Assay 
(Applied Biosystems) for AS160 (Rn01468356_m1), 
GLUT4 (Rn00562597_m1), and β-2M (Rn00560856_m1) 

HOMA−IR = fasting glucose concentration(mmol∕l)

× fasting insulin concentration(�IU∕ml)∕22.5



1032 The Journal of Physiological Sciences (2019) 69:1029–1040

1 3

were used in this study. For the analysis, gene expression 
levels of AS160 were normalized using β-2M as a house-
keeping gene, and expressed with respect to the average 

value for the Pla group. All reactions were performed in 
duplicate. The thermal cycling conditions were as follows: 
95 °C for 20 s, followed by 40 cycles at 95 °C for 1 s and 
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Fig. 1  Characterization of rats studied. Data are expressed as 
means ± SE. Line graphs represent course of change in mean food 
intake per day (a) and body weight (b) in the placebo (Pla, n = 6)-, 
the 17β-estradiol (E2, n = 6)-treated, the placebo/pair-feeding (Pla/
PF, n = 6), and the placebo/exercise (Pla/Ex, n = 6) groups. Two-
way repeated-measures ANOVA revealed significant differences in 
food intake and body weight between the four groups. **P < 0.01, 
***P < 0.001: E2 vs. Pla. +P < 0.05, ++P < 0.01, +++P < 0.001: 
Pla/PF vs. Pla. φP < 0.05: Pla/Ex vs. Pla. †P < 0.05: Pla/PF vs. 
E2. ###P < 0.001: Pla/Ex vs. E2. §P < 0.05: Pla/Ex vs. Pla/PF. 
There was an interaction of time and group effects in food intake 
(PTime×Group < 0.05: E2 vs. Pla or Pla/Ex, Pla/Ex vs. Pla) and body 
weight (PTime×Group < 0.05: E2 vs. Pla/PF or Pla/Ex, PTime×Group < 0.01, 

E2 vs. Pla, Pla/PF vs. Pla or Pla/Ex). Bar graphs represent wet 
weights of visceral (the sum of weights of the mesenteric, kidney-
genital, and retroperitoneal adipose tissues) (c), inguinal (d) adipose 
tissues per body weights, and plasma E2 concentration (e) in the Pla 
(n = 6)-, the E2 (n = 6)-treated, the Pla/PF (n = 6), and the Pla/Ex 
(n = 6) groups at 17 weeks of age. One-way ANOVA followed by a 
post hoc Tukey’s HSD test revealed differences in wet weights of the 
visceral adipose tissues per body weights between the Pla and E2 or 
Pla/PF groups (***P < 0.001), and inguinal adipose tissues between 
the Pla and every other group (***P < 0.001). There is a difference 
in plasma E2 concentration between the E2 and every other group 
(***P < 0.001). OVX, ovariectomy. BW body weight
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60 °C for 20 s. No amplification of fragments occurred in the 
control samples without reverse transcriptase. The mRNA 
quantity was calculated using the ΔΔCt (comparative Ct) 
method under the assumption that primer efficiencies were 
relatively similar.

Statistical analysis

All values were expressed as means ± SE. Two-way 
repeated-measures ANOVA for each pair-wise compari-
son among four groups was used to analyze the effects of 
E2, PF, and Ex on body weight and food intake. One-way 
ANOVA was used for the comparison of the adipose tissue 
weight, plasma E2 and glucose concentrations, insulin con-
centrations, HOMA-IR, and signaling protein and mRNA 
levels among the four groups, and was followed by a post 
hoc Tukey’s HSD test. We considered a value of P < 0.05 to 
be statistically significant.

Results

Characterization of rats studied

As shown in Fig. 1a, food intake in the E2 group was mark-
edly decreased at 14 and 15 weeks of age, 1–2 weeks after 
E2 pellet implantation, compared with that at 13 weeks 
(P < 0.001) or the Pla group (P < 0.001 and P < 0.01, respec-
tively). After that, the intake in the E2 groups came to be 
similar to the Pla group at 16 weeks of age. In contrast, food 
intake in the Pla/Ex group was increased at 15 weeks of 
age compared with 14 weeks (P < 0.05), and returned to the 
same level as the Pla group.

The body weight in the E2 group was significantly lighter 
than that in the Pla group at 15–17 weeks of age (Fig. 1b). 
In contrast, the Pla/PF group showed heavier body weight 
than the E2 group, resulting in a significant difference in 
the time course of body weight between the E2 and Pla/PF 
groups (interaction: P < 0.05), though they were still lighter 
than those in the Pla group. In addition, body weights in the 

Fig. 2  Plasma concentrations 
of glucose (mmol/l) (a), insulin 
(μIU/ml) (b), and homeostasis 
model assessment of insu-
lin resistance (HOMA-IR) 
index (c) in the placebo (Pla, 
n = 6)-, the 17β-estradiol (E2, 
n = 6)-treated, the placebo/pair-
feeding (Pla/PF, n = 6), and the 
placebo/exercise (Pla/Ex, n = 6) 
groups. Data are expressed as 
means ± SE and were analyzed 
by one-way ANOVA. This was 
followed by a post hoc Tukey’s 
HSD test. *P < 0.05, **P < 0.01, 
and ***P < 0.001, differences 
between the Pla and every other 
group
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Pla/Ex group were similar to the Pla group, but heavier than 
both the E2 and Pla/PF groups (Fig. 1b).

The wet weights of total visceral (the sum of mesen-
teric, kidney-genital, and retroperitoneal) adipose tissues 
per body weights were significantly lighter in the E2 and 
Pla/PF groups than in the Pla group (Fig. 1c). The weights 
of inguinal subcutaneous adipose tissues per body weights 
were significantly lighter in the E2, Pla/PF, and Pla/Ex 
groups than the Pla group (Fig. 1d). Plasma E2 concentra-
tions were significantly higher in the E2 group than in the 
other Pla groups (Fig. 1e).

Effects of E2, PF, and Ex on plasma glucose, insulin, 
and HOMA‑IR

Fasting plasma glucose concentration was significantly 
lower in the E2, Pla/PF, and Pla/Ex groups than in the Pla 
group (Fig. 2a). In contrast, there was no significant dif-
ference in fasting plasma insulin among the Pla, E2, Pla/
PF, and Pla/Ex groups (Fig. 2b). HOMA-IR indices were 
significantly lower in the E2, Pla/PF, and Pla/Ex groups than 
in the Pla group (Fig. 2c).

Effects of E2, PF, and Ex on insulin signaling 
and AMPK pathway in basic condition

To reveal the molecular mechanism accounting for the 
effects of E2, PF, and Ex on plasma glucose and insulin, 
we investigated signaling pathway components mediating 
glucose transport, the Akt/AS160, and AMPK/TBC1D1 
pathways, as well as GLUT4, in the gastrocnemius muscle 
(Fig. 3) and mesenteric adipose tissue (Fig. 4).

The quantity of Akt protein in the muscle was similar 
between the four groups (Fig. 3a). The relative levels of 
p-Akt  Ser473 and p-Akt  Thr308 were significantly higher in 
the E2 group than those in the Pla and Pla/Ex groups, but 
were not different between the Pla and the Pla/Ex groups. In 
addition, p-Akt  Thr308 was higher in the Pla/PF group than 
the Pla and Pla/Ex groups. Figure 3b shows that Akt2 and 
p-Akt2  Ser474 protein levels in the muscle were increased in 
E2 group compared to the Pla group (P < 0.01 and P < 0.001, 
respectively). In contrast, PF increased only p-Akt2  Ser474 

(P < 0.001), but Ex had no effects on Akt2 and p-Akt2  Ser474. 
Furthermore, Fig. 3c shows that AS160 and p-AS160  Thr642 
protein levels were increased in the E2 group compared with 
the Pla, Pla/PF, and Pla/Ex groups, and compared with the 
Pla group, respectively. Moreover, p-AMPKα  Thr172 in the 
muscle was increased in the E2 group compared to the Pla 
group, with no change in the protein level (Fig. 3d). Inter-
estingly, p-TBC1D1  Ser237 in the Pla-Ex group was higher 
than in the Pla, E2, and Pla/PF groups, with no differences 
in TBC1D1 protein levels among the four groups (Fig. 3e). 
In addition, GLUT4 protein level was significantly higher in 
the Pla/Ex group than in any other group (Fig. 3f).

In the mesenteric adipose tissue, the amounts of Akt 
and Akt2 proteins, as well as their phosphorylated protein 
levels, were similar among the four groups (Fig. 4a, b). 
AS160 and p-AS160  Thr642 protein levels were increased 
in the E2 group compared with the Pla and Pla/Ex groups 
(Fig. 4c). The p-AMPKα  Thr172 levels were higher in the 
E2, Pla/PF, and Pla/Ex groups than in the Pla group, with 
no differences in AMPKα protein levels among the four 
groups (Fig. 4d). In contrast, TBC1D1 and p-TBC1D1 
were not different among the four groups (Fig. 4e). GLUT4 
was not detected in the mesenteric adipose tissue of any 
group.

AS160 and GLUT4 mRNA levels in the gastrocnemius 
muscle and mesenteric adipose tissue

The levels of AS160 and GLUT4 mRNAs in the gastrocne-
mius muscle or mesenteric adipose tissue of the four groups 
were determined by RT-qPCR. As shown in Fig. 5a, the 
relative level of AS160 mRNA in the muscle was higher in 
the E2 group than those in the Pla (P < 0.01), Pla/PF, and 
Pla/Ex groups. In contrast, the relative GLUT4 mRNA in the 
muscle and AS160 mRNA levels in the mesenteric adipose 
tissues were similar among the four groups (Fig. 5b, c).

Discussion

The present study demonstrated that endurance running 
Ex training improved hyperglycemia by the activation of 
the TBC1D1/GLUT4 pathway in the muscle of OVX rats. 
The mechanism varied from that of E2 replacement, which 
restored hyperglycemia via the activated Akt2/AS160 path-
way in the muscle, or from that of PF of the E2 replaced rats.

Endurance Ex training did not affect body weight gain in 
the OVX rats despite a decrease in inguinal fat accumula-
tion. It is likely that Ex training might increase lean body 
mass instead of subcutaneous adipose tissues. In contrast, 
the E2 replacement suppressed body weight compared with 
the OVX rats by reducing both visceral and inguinal fat 
accumulations. In addition, PF partially compensated the 

Fig. 3  Representative blots and relative values of protein kinase B 
(Akt) and phospho (p)-Akt  Ser473, and p-Akt  Thr308 (a), Akt2, and 
p-Akt2  Ser474 (b), Akt substrate of 160  kDa (AS160) and p-AS160 
 Thr642 (c), AMPKα and p-AMPKα  Thr172 (d), TBC1D1 and 
p-TBC1D1  Ser237 (e), and GLUT4 (f) in the gastrocnemius of rats 
in the placebo (Pla, n = 6)-, the 17β-estradiol (E2, n = 6)-treated, the 
placebo/pair-feeding (Pla/PF, n = 6), and the placebo/exercise (Pla/Ex, 
n = 6) groups. Data are expressed as means ± SE and were analyzed 
by one-way ANOVA. This was followed by a post hoc Tukey’s HSD 
test. *P < 0.05, **P < 0.01, and ***P < 0.001, differences between the 
two groups
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Fig. 4  Representative blots and relative values of protein kinase B 
(Akt) and phospho (p)-Akt  Ser473, and p-Akt  Thr308 (a), Akt2 and 
p-Akt2  Ser474 (b), Akt substrate of 160  kDa (AS160) and p-AS160 
 Thr642 (c), AMPKα and p-AMPKα  Thr172 (d), and TBC1D1 and 
p-TBC1D1  Ser237 (e) in the mesenteric adipose tissues of rats in the 
placebo (Pla, n = 6)-, the 17β-estradiol (E2, n = 6)-treated, the pla-

cebo/pair-feeding (Pla/PF, n = 6), and the placebo/exercise (Pla/Ex, 
n = 6) groups. Data are expressed as means ± SE and were analyzed 
by one-way ANOVA. This was followed by a post hoc Tukey’s HSD 
test. *P < 0.05, **P < 0.01, and ***P < 0.001, differences between the 
two groups



1037The Journal of Physiological Sciences (2019) 69:1029–1040 

1 3

suppressive effect of E2 replacement on body weight gain 
in the OVX rats. In our previous study using a radiotelem-
etry system [32, 33], we confirmed that the 24-h locomotor 
activities of freely moving rats did not differ between Pla 
and E2 groups (24-h average: 2.40 ± 0.39 counts/min vs. 
2.31 ± 0.14 counts/min in Pla and E2 groups, respectively). 
Further study is required to confirm the locomotor activity 
of rats in the PF or Ex group. Therefore, E2 replacement 
may suppress body weight gain not only by reducing energy 
intake, but also by enhancing the energy metabolism in OVX 
rats. These findings are at least partially consistent with 
several previous studies that demonstrated a direct effect of 
estrogen on the energy metabolism [40–42], and with some 
other studies, showing that the anorexigenic effect of estro-
gen was a major contributor to the suppression of adiposity 
and body weight [43, 44].

The present study shows that 4-week E2 replacement or 
5-week Ex training in OVX rats reduced the basal level of 
plasma glucose without affecting plasma insulin levels. This 
result was inconsistent with previously reported findings that 
resting basal levels of both insulin and glucose were not dif-
ferent among OVX, E2-treated, and endurance Ex-trained 
OVX rats [17, 27]. In contrast, our previous study using 
male rats showed that the resting levels of blood glucose in 
Ex-trained rats were lower than those in untrained rats [45]. 
These discrepancies may depend on experimental condi-
tions: notably, intensity and duration of Ex training, condi-
tions for blood sampling, dose of estrogen replacement, or 
period after OVX. In our study design, an intensity of the 
Ex training on a treadmill (17 m/min) might be moderate, 
because previous investigations have chosen low-intensity 
(8 m/min) or high-intensity (28 m/min) treadmill running to 
train female Sprague-Dawley rats [35] based on the finding 
that a running speed at 8 m/min and 28 m/min in female rats 
elicited ~ 45% and ~ 75% of maximal  O2 uptake, respectively 
[34]. Additionally, in this study, blood was collected under 
16-h fasting conditions from cardiac puncture 4 weeks after 
E2 replacement and 5 weeks after Ex training started in the 
OVX rats. Therefore, the duration of each intervention and 
the moderate intensity of Ex training may be appropriate to 
cause differences in basal plasma glucose levels.

In our study design, a 3-week-recovery duration was 
required after OVX and before the Ex training to achieve 
stable low levels of plasma E2. This was needed to evaluate 
the effects of Ex training in the OVX rats characterized by 
low plasma E2 levels, similar to postmenopausal women. 
Therefore, the present results suggest that Ex training can 
restore the developed hyperglycemia in the OVX rats. These 
findings showed the effectiveness of Ex training as an alter-
native treatment for postmenopausal women. In contrast, 
rats in the E2 group were administered E2 replacement for 
4 weeks after a 4-week-recovery period from OVX to ensure 
that the plasma levels were stabilized at moderately high 

levels of E2 (136.9 ± 25.4 pg/ml), as seen in a postmeno-
pausal model replaced by E2, which were within the physi-
ological range for intact female rats in proestrus reported in 
previous studies [46, 47].

To assess the anorexigenic effect of E2 replacement on glu-
cose homeostasis, we included a Pla/PF group of rats in our 
experiments. Food restriction by PF in the Pla/PF group ame-
liorated hyperglycemia in the OVX rats, but failed to mimic 
the effects of E2 replacement on signal pathway components 
mediating glucose transport. E2 increased Akt2 and AS160 
protein levels, their phosphorylation, and AS160 mRNA level, 
but PF increased only phospho-Akt2. These findings show 
that the effects of E2 replacement on the transcriptional upreg-
ulation of AS160 were not mediated by PF-induced metabolic 
changes in OVX rats, suggesting direct E2 action, most likely 
via the estrogen receptor. On the other hand, a previous study 
reported that even in obese male Zucker rats, food restriction 
throughout the first year of life did not alter the development 
of hyperplastic obesity and insulin resistance [48].

Our study did not determine how OVX induces glucose 
intolerance, as our experiment did not include a group of 
sham-operated rats. However, the fact that E2 replace-
ment restored the Akt2/AS160 pathway suggests that OVX 
impairs the signal pathway that mediates glucose trans-
port. Unlike E2 replacement, Ex had no activating effect 
on the Akt/AS160 pathway in the OVX rats. Alternatively, 
the present study revealed that Ex training enhanced the 
TBC1D1/GLUT4 pathway in the muscle of the OVX rats, 
and improved hyperglycemia similar to E2 replacement.

Recent studies have reported the effects of Ex training on 
the signal pathway components, especially GLUT4 in OVX 
rats [17, 26, 27]. These findings were inconsistent, because 
it was reported that chronic Ex increased the GLUT4 pro-
tein levels of skeletal muscles from OVX rats [17], that Ex 
reduced the mRNA expression of GLUT4 in gastrocnemius 
[27], or that it had no effects on GLUT4 protein level in 
hindlimb muscles of OVX rats [26].

Here, we have provided evidence for the first time that Ex 
training enhances basal levels of phosphorylated TBC1D1 
 Ser237, as well as GLUT4 protein, in the gastrocnemius mus-
cle of OVX rats (18 h after final training session). Actually, 
TBC1D1 abundances did not differ from AS160 among mul-
tiple rat muscles with divergent fiber type profiles, including 
the soleus, EDL, and tibialis anterior muscles [19].

We did not clarify why GLUT4 protein was increased in 
the Pla/Ex group without increased mRNA levels. There is 
some controversy as to the mechanism for the Ex-induced 
increase of GLUT4 protein levels; however, the majority of 
studies reported increased GLUT4 protein levels rather than 
mRNA levels. Gurley et al. reported that voluntary wheel run-
ning Ex increased muscle GLUT4 protein levels and improved 
fasting plasma insulin, but did not increase muscle GLUT4 
mRNA in high-fat diet-induced obese mice, suggesting that 
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a post-transcriptional mechanism regulated muscle GLUT4 
protein expression in response to Ex [49]. Similarly, a post-
transcriptional mechanism might explain our results, showing 
an Ex training-induced increase in muscle GLUT4 protein 
expression in OVX rats. Our data suggest the E2 upregulates 
AS160 gene expressions most likely by the transcriptional 
activation function of estrogen receptor (ER) and at least par-
tially by autoregulation of ER mRNA stabilities [50]. Taken 
together, the cellular mechanism underlying the beneficial 
effects of endurance Ex on the plasma glucose level might be 
distinct from that of E2 replacement.

In summary, this is a report showing endurance running 
Ex training which improves OVX-induced hyperglycemia 
and HOMA-IR, an indicator for insulin resistance, via acti-
vation of the TBC1D1/GLUT4 pathway in gastrocnemius 
by an alternative mechanism from action of E2 replacement 
or PF diet. Further study is required to identify the effects 
of endurance Ex training on insulin- and contraction-stimu-
lated glucose uptake and signaling pathways, on the basis of 
comparison with the effects of E2 replacement. Our results 
provide insights into the alternative effects of endurance 
Ex training on glucose metabolism under reduced estrogen 
function in postmenopausal women.
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