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Abstract
We previously reviewed our study of the pharmacological properties of cardiac Na+/Ca2+ exchange (NCX1) inhibitors among 
cardioprotective drugs, such as amiodarone, bepridil, dronedarone, cibenzoline, azimilide, aprindine, and benzyl-oxyphenyl 
derivatives (Watanabe et al. in J Pharmacol Sci 102:7–16, 2006). Since then we have continued our studies further and 
found that some cardioprotective drugs are NCX1 stimulators. Cardiac Na+/Ca2+ exchange current (INCX1) was stimulated 
by nicorandil (a hybrid ATP-sensitive K+ channel opener), pinacidil (a non-selective ATP-sensitive K+ channel opener), 
flecainide (an antiarrhythmic drug), and sodium nitroprusside (SNP) (an NO donor). Sildenafil (a phosphodiesterase-5 inhibi-
tor) further increased the pinacidil-induced augmentation of INCX1. In paper, here I review the NCX stimulants that enhance 
NCX function among the cardioprotective agents we examined such as nicorandil, pinacidil, SNP, sildenafil and flecainide, 
in addition to atrial natriuretic (ANP) and dofetilide, which were reported by other investigators.

Keywords  Cardiac Na+/Ca2+ exchanger (NCX1) · Cardiac Na+/Ca2+ exchange current (INCX1) · NCX1 stimulator · Patch-
clamp method · Cardioprotective drug

Introduction

The plasma membrane Na+/Ca2+ exchanger (NCX) is a 
bi-directional transporter that mediates the electrogenic 
exchange of 3Na+ for 1Ca2+. Among the three NCX sub-
types, cardiac NCX (NCX1) is abundantly expressed in the 
heart, smooth muscle, and other tissues. NCX1 plays an 
important role in the regulation of intracellular Ca2+ homeo-
stasis to maintain mechanical activity and normal electrical 
rhythm in the heart. In physiological conditions in the heart, 
NCX1 operates in either Ca2+ exit (generating an inward 
membrane current) mode or Ca2+ entry (outward membrane 
current) mode, depending on the membrane potential during 
the action potential (AP) and ion gradients across the plasma 
membrane. To maintain stable excitation–contraction cou-
pling, the Ca2+ entry must be balanced by Ca2+ exit. The 
NCX1 and ATP-dependent Ca2+ pump are the two mecha-
nisms that regulate Ca2+ exit via plasma membrane, and the 
dominant role of NCX1 has been well known. Especially 

during normal diastole of cardiomyocytes, NCX1 contrib-
utes to an approximately 20–30% reduction of [Ca2+]i by 
expelling Ca2+ from the cytoplasm [1–3].

The canine NCX1 protein has a molecular mass of 
110 kDa and consists of 970 amino acids. In 1999, two 
research groups suggested that mammalian NCX1 protein 
comprises nine trans-membrane segments (TMS) and a large 
hydrophobic loop between 5 and 6 TMS, with the NH2- and 
COOH-terminals located on the external and internal sides, 
respectively [4, 5]. In 2013, two groups published ten TMS 
topology models of mammalian NCX1. The major differ-
ence between them is in the orientation of the three C-ter-
minal TMS, but not in the large intracellular loop containing 
about 550 amino acids between TMS 5 and 6 [6, 7]. The 
large cytoplasmic domain is involved in the regulation of 
NCX1 by cytoplasmic factors including exchanger inhibitory 
peptide (XIP), Na+, Ca2+, and protein kinase C (PKC) [8, 9].

The pharmacological agents for NCX1 regulation are 
classified into two groups: stimulators and inhibitors. The 
pharmacology of NCX1 inhibitors has been reported by 
several researchers [9–11]. On the other hand, there are 
next to no reports on NCX1 stimulants among cardiopro-
tective agents. This review is about the properties of NCX1 
stimulators among cardioprotective drugs including nico-
randil, pinacidil, flecainide, sodium nitroprusside (SNP), and 
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sildenafil, which we have investigated to date, as well as 
atrial natriuretic peptide (ANP) and dofetilide.

NCX1 and NO/cGMP/PKG signaling pathway

In the cytoplasm, nitrate oxide synthase (NOS) produces 
NO, which activates a soluble guanylate cyclase (GC) and 
increases intracellular guanosine 3′,5′-cyclic monophosphate 
(cGMP) and thereby activates cGMP dependent protein 
kinase (PKG). Several studies have indicated that NCX1 
function may be stimulated through the NO/cGMP/PKG 
signaling pathway in in vitro [12–14]. Horie et al. (1991) 
reported in single cardiac cells that nicorandil, which has 
nitrate-like activity and a KATP channel opening activity, 
decreases the resting level of intracellular Ca2+ ([Ca2+]i) via 
cGMP-mediated activation of plasma membrane transport-
ers [15]. In addition, Baczkó et al. (2004) reported that, in 
rat cardiac myocytes, another KATP channel opener (pinaci-
dil) prevents hypoxia/reoxygenation-induced Ca2+ overload 
[16]. This effect was due to hyperpolarization of the dias-
tolic membrane potential, which may facilitate Ca2+ exit by 
NCX1. From these two reports, we suspected a relationship 
between KATP channel openers and NCX1. Therefore, we 
investigated the effects of KATP channel openers on NCX1 
function and possible involvement of the NO/cGMP/PKG 
signaling pathway.

Nicorandil

Nicorandil (N-(2-hydroxyethyl)-nicotinamide nitrate) is 
widely used as an anti-angina drug with nitrate-like activ-
ity and KATP channel opening activity. This agent has car-
dioprotective effects by shortening action potential duration 
(APD) and hyperpolarizing membrane potential during 
cardiac ischemia/reperfusion injury. Nicorandil has multi-
ple additional effects including anti-fibrotic activity, anti-
apoptotic activity, and reactive oxygen species (ROS) pre-
vention [17]. Regarding ion channels, nicorandil enhances 
Ca2+-dependent K+ current in rat smooth muscles [18], and 
cAMP-dependent Cl− current in guinea-pig cardiomyocytes 
via increasing intracellular cGMP [19]. In addition, nico-
randil acutely increases cGMP levels by activating soluble 
GC via NO-dependent or -independent pathways in smooth 
muscles and cardiac cells [20–23].

In patch-clamp and fluorescent Ca2+ indicator (Fura-2/
AM) studies, we examined the acute effect of nicorandil on 
cardiac Na+/Ca2+ exchange current (INCX1) in single guinea-
pig ventricular cells. Nicorandil enhanced INCX1 in a con-
centration-dependent manner, with EC50 values of 8.3 and 
6.6 μM for the outward and inward INCX, respectively, and 
Hill coefficients of approximately 1 [24] (Fig. 1a–c). Since 
nicorandil has nitrate-like activity, we first focused on the 

NO/cGMP/PKG signaling pathway. We observed that 8-Br-
cGMP at 100 μM significantly enhanced INCX compared 
to control in single guinea-pig ventricular cells [24]. The 
nicorandil-induced INCX was significantly inhibited by ODQ, 
a soluble GC inhibitor, at 10 μM [24] (Fig. 1e). Interestingly, 
the nicorandil-induced INCX increase was hardly prevented 
by L-NAME, an NO synthase (NOS) inhibitor, at 10 μM 
[24] (Fig. 1d). Liou et al. (2011) reported that nicorandil 
increased NO and eNOS phosphorylation in cardiac fibro-
blasts and these effects were time dependent [25]. It took 
more than 30 min for nicorandil to significantly increase 
both eNOS phosphorylation and NO generation [25]. Since 
the perfusion time (< 5 min) of nicorandil was shorter than 
30 min in our experiment, the nicorandil-induced INCX 
increase must be NO independent in single guinea-pig ven-
tricular cells. Similar results were obtained by Minamiyama 
et al. (2007), who reported that nicorandil elevated cGMP 
levels without NO generation in rat liver, aorta, and human 
coronary smooth muscle cells in vitro [23]. Although we did 
not examine the effect of PKG on INCX, our results suggest 
that nicorandil-induced INCX1 increase is mediated by the 
PKG signaling pathway through an increase in intracellular 
cGMP.

Furthermore, to clarify the site of action of nicorandil 
on NCX1, we used the fibroblast cell line, CCL39 stably 
expressing a canine heart NCX1 isoform and its mutant. In 
this NCX1 mutant, amino acids (Δ)247–671 are deleted, 
which is a large portion of the long intracellular loop 
between TMS 5 and 6, and which includes the XIP region, 
Ca2+ binding domain, phosphorylation sites, and various 
modulating sites [8, 9, 26]. We examined the effects of 
nicorandil on INCX in cells expressing wild-type NCX1, 
its mutants, and in isolated guinea-pig cardiac ventricular 
myocytes [24] (Fig. 2a, c). The enhancement ratios of INCX1 
by nicorandil were similar between the wild-type NCX1 
expressing cells and the guinea-pig cardiac ventricular myo-
cytes [24] (Fig. 2c). On the other hand, nicorandil did not 
increase INCX1 in the mutant expressing cells [24] (Fig. 2b, 
c). These results indicated that the large intracellular loop 
between TMS 5 and 6 may be responsible for the site of 
action of nicorandil on NCX1.

Pinacidil

Pinacidil, which was initially developed as an antihyperten-
sive drug, is a non-selective KATP channel opener without 
nitrate-like activity. The non-selective KATP channel open-
ers have properties that open both plasma membrane KATP 
(pmKATP) and mitochondria KATP (mitoKATP) channels.

In the patch-clamp study and Fura-2/AM study, we exam-
ined the effect of pinacidil on INCX1 in single guinea-pig 
cardiac ventricular myocytes. Pinacidil enhanced INCX1 in a 
concentration-dependent manner with EC50 values of 23.5 
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and 23.0 μM for the outward and inward INCX1, respectively, 
and Hill coefficients of approximately 1 [27] (Fig. 3a).

KATP channels are regulated by the NO/cGMP/PKG 
signaling pathway in rat and rabbit hearts [28, 29]. On the 
other hand, two groups suggested a possible link between 
KATP channels and NO generation in the rabbit mesenteric 
artery and rat heart [30, 31]. We examined the relationship 
between the INCX1 increasing effect of pinacidil and the NO/
cGMP/PKG signaling pathway. In our study, L-NAME, 
ODQ, and KT-5823, a PKG inhibitor, completely blocked 
the pinacidil-induced INCX1 increase [27] (Fig. 3b). Gliben-
clamide, a non-selective KATP channel blocker, completely 
blocked the pinacidil-induced INCX1, but 5-HD, a selective 
mitoKATP channel inhibitor, did not [27] (Fig. 4a). These 
results suggest that the pinacidil-induced INCX1 increase 
may be due to pmKATP channel opening, but not due to 
mitoKATP channel opening.

The next question that arises is how pinacidil gener-
ates NO. We tested NO production by pinacidil using a 

fluorometric assay kit in single cardiomyocytes. Pinacidil 
increased NO about twice as much as the control and pinaci-
dil-induced NO was significantly inhibited by glibenclamide 
and L-NAME [27] (Fig. 4b). These results suggest that pina-
cidil may generate NO directly, or indirectly by pmKATP 
channel opening, and increase INCX1 by phosphorylation via 
PKG as a result of activation of the NO/cGMP/PKG signal-
ing pathway.

Reactive oxygen species (ROS) enhance NCX1 func-
tion in cardiac ventricular myocytes [32–34]. Krenz et al. 
(2002) have reported that KATP channel opening con-
tributed to generation of ROS in vascular smooth muscles 
[35]. There may be a positive feedback relationship for 
ROS release by interaction between pmKATP channel and 
mitoKATP channel opening in cardiomyocytes. However, 
in our study, 30 μM pinacidil-induced INCX1 was not inhib-
ited by 1 mM N-2-(mercaptopropionyl) glycine (MPG), an 
ROS scavenger, or by 5-HD [27] (Figs. 3c, 4a right). There 
are two reports that affirm these results. Pinacidil generated 

ed 

a b c

Fig. 1   Effect of nicorandil on INCX1 (modified from [24] with permis-
sion). a Chart recording on INCX1. The ramp pulse was initially depo-
larized from a holding potential of − 60 to +60 mV, then hyperpolar-
ized to − 120 mV, and then depolarized back to − 60 mV at a rate of 
680  mV/s. A ramp pulse was given every 10  s. INCX was inhibited 

completely by KB-R7943, a potent inhibitor of INCX, at 50 μM. b I–V 
curves on INCX1. c Concentration–response curves of the pinacidil on 
INCX. d and e Summarized data of L-NAME and ODQ on INCX1. Cont 
control, Nico nicorandil, KB-R KB-R7943
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ROS in a concentration-dependent manner in the rabbit 
heart, but it took more than 30 min for pinacidil to signifi-
cantly increase ROS [36]. Holmuhamedov et al. (1998) indi-
cated that in isolated cardiac mitochondria pinacidil acutely 
decreased mitochondrial membrane potential by mitoKATP 
channel opening in a concentration-dependent manner at 
a concentration of 100 μM or higher [37]. These reports 
suggest that 30 μM pinacidil application for 2–3 min may 
not generate ROS by mitoKATP channel opening. There-
fore, pinacidil-induced INCX1 is not caused by ROS and/or 
mitoKATP channel opening.

There are multiple isoforms of phosphodiesterases 
(PDEs) in cardiomyocytes that can hydrolyze cAMP and/or 
cGMP. Sildenafil, a PDE5 inhibitor, has specific properties 

such as inhibiting hydrolyzation of cGMP and increasing 
intracellular cGMP accumulation [38]. In our patch-clamp 
study, sildenafil at 10 μM further increased 10 μM pina-
cidil-induced INCX1 [27] (Fig. 4c). In the case of a low or 
high concentration of pinacidil, the signaling pathway that 
enhances NCX1 function may be different.

KATP channel openers and NO production

How is KATP channel opening involved in the production 
of NO? KATP channels in vascular smooth muscle cells 
regulate the membrane potential. Opening of smooth muscle 
KATP channels by KATP channel openers causes membrane 
hyperpolarization. The opening of KATP channels in the 
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endothelium may elevate intracellular Ca2+ concentration, 
which stimulates the secretion of vasoactive factors via NOS 
activation [39]. NO release was dependent on the activa-
tion of endothelial KATP channels in the pig endocardial 
artery [40]. Recently, it was reported in endothelial colony-
forming cells that the KATP channel openers nicorandil and 
iptakalim led to Ca2+ influx and activation of CaMKII, with 
increased phosphorylation levels of CaMKII, eNOS, and 
Akt, while these phosphorylations were abolished by glib-
enclamide [41]. These results suggest that intracellular Ca2+ 
increase may contribute to the opening of KATP channels, 
but this concept is still controversial. Katakam et al. (2015) 
indicated for the first time that diazoxide, a mitoKATP chan-
nel opener, depolarized mitochondria and increased [Ca2+]i 
in cultured neurons [42]. Diazoxide thus increased nNOS 
phosphorylation and increased NO production. Our study 
suggests that nicorandil, a hybrid KATP channel opener, 
increases INCX1 though the cGMP/PKG signaling pathway. 
Since the pinacidil-induced NO increase was inhibited by 

glibenclamide and L-NAME in a fluorometric assay, pina-
cidil may directly or indirectly generate NO [27] (Fig. 4b). 
From these results, we proposed that pinacidil, which does 
not possess nitrate-like activity, increases INCX1 though the 
NO/cGMP/PKG signaling pathway.

However, how does KATP channel opening induce the 
pinacidil activation of NOS? The opening of KATP channels 
in the endothelium may elevate intracellular Ca2+ concen-
tration, which stimulates NOS activation [39]. NCX con-
tributes to Ca2+ homeostasis in endothelial cells. In vascu-
lar endothelial cells, consistent with a pivotal role of NCX 
in Ca2+-dependent activation of eNOS, NCX protein was 
detected in caveolin-rich membrane fractions containing 
both eNOS and caveolin-1. This suggests that a functional 
interaction between endothelial NCX and eNOS may take 
place in caveolae [43]. Therefore, KATP channels, NOS, 
and NCX may be colocalized in caveolae of the plasma 
membrane. It is known that NCX1 increased or up-regu-
lated in animal and clinical studies in heart failure (HF). 
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Cardiomyocytes as well as endothelial cells and smooth 
muscle cells contain caveolin-1, -2, and -3 [44]. The muscle-
specific isoform, caveolin-3, increased in HF [45]. NCX1 
co-precipitated with caveolin-3 [44]. Myocardial NO sign-
aling may be elevated in HF. The increase in caveolin-3 
and sarcolemmal caveolae is associated with augmented 
nitric oxide signaling in canine pacing-induced HF [45]. 
Endothelial NOS (eNOS) and neuronal NOS (nNOS) are 
constitutively expressed in cardiomyocytes and endothelial 
cells, and inducible NOS (iNOS) is also expressed in normal 
cardiomyocytes [46, 47]. Various ion channels in cardio-
myocytes are colocalized with different types of NOS, as 
reviewed by Gonzales et al. (2009) [48]. There may be a 
close relationship between KATP channel opening and NOS 
activation in cardiomyocytes. If there are microdomains such 
as caveolae where KATP channels, NOS, GC, and PKG are 
colocalized just below the cardiac cell membrane [43, 48], 
NOS may be activated by the opening of KATP channels and 
induce NO production. We found two reports that support 
this hypothesis. One notes that KATP channel opening by 
levosimendan may activate nNOS and thereby generate NO 
in the hippocampus and temporal cortex [49]. Another report 

indicates that vasodilatation caused by KATP channel open-
ing by minoxidil was inhibited by L-NAME in rat renal vas-
cular smooth muscles [50]. Assuming that the KATP chan-
nel opening may mechanically or redox chemically activate 
NOS, which may be colocalized with the KATP channel, the 
activation of NOS generates NO and activates the cGMP/
PKG signaling pathway in cardiomyocytes. In endothelial 
colony-forming cells, the KATP channel openers nicorandil 
and iptakalim led to Ca2+ influx, and activated CaMKII with 
increased phosphorylation levels of CaMKII, eNOS, and 
Akt, while their phosphorylation was abolished by gliben-
clamide [41]. KATP channel opening decreases [Ca2+]i in 
cardiomyocytes. Therefore, the mechanism of NOS activa-
tion in cardiomyocytes by KATP channel opening may be 
different from that of endothelial cells. However, we have 
not been able to find any report to date on the molecular link 
between KATP channel opening and NOS activation. On 
the contrary, we found reports that KATP channel openers 
such as pinacidil, diazoxide, cromakalim, and minoxidil did 
not increase cGMP in rat intact aorta smooth muscle [51, 
52]. Whether all KATP channel openers activate NOS and 
increase INCX1 needs to be investigated.

Fig. 4   a Summary data of glib-
enclamide, 5-HD and MPG on 
pinacidil-induced INCX1 increase 
(modified from [27] with 
permission). b Summary data 
of pinacidil on NO in isolated 
cardiac ventricular myocytes. 
The effect of glibenclamide and 
L-NAME on pinacidil-induced 
NO (modified from [27] with 
permission). c Summary data of 
sildenafil on pinacidil-induced 
INCX increase (modified from 
[27] with permission). CTL 
control, Glib glibenclamide, Pin 
pinacidil, Sil sildenafil

a

b c
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SNP and ANP

Vasodilatating NO donors such as sodium nitroprusside 
(SNP) and alpha-human atrial natriuretic peptide (α-hANP) 
are widely used for the treatment of congestive heart failure. 
SNP is an atrial and venous dilator that decreases cardiac 
preload and afterload. ANP activates GC and increases 
cGMP as a second messenger. ANP has various effects, 
including as an anti-inflammatory, and inhibitory effects on 
the rennin–angiotensin system and sympathetic tone [53].

SNP and 8-Br-cGMP, a membrane-permeable analog of 
cGMP, stimulated NCX1 activity by stimulating soluble 
GC via an NO-dependent or NO-independent pathway in 
vascular smooth muscle cells, C6 glioma cells, and astro-
cytes [12, 14, 54]. We examined the effects of SNP and 
8-Br-cGMP on INCX1 in guinea-pig cardiomyocytes by the 
patch-clamp method. SNP at 1 mM and 8-Br-cGMP at 

100 μM stimulated INCX1 [24, 27] (Fig. 5a). Nashida et al. 
(2011) reported that SNP decreases intracellular Ca2+ con-
centration by activation of the Ca2+ exit mode of NCX1 
through the NO/cGMP/PKG signaling pathway [55]. Furu-
kawa et al. (1991) reported that α-human ANP at 100 nM 
increases the Ca2+ efflux via NCX1 (ionomycin-induced 
45Ca2+ efflux) in rat aorta vascular smooth muscle cells 
and suggested that the NCX1 function increase by ANP 
may be dependent on the cGMP/PKG signaling pathway 
[12].

Fig. 5   Effect of flecainide 
and SNP on INCX1. a Sum-
mary data of SNP at 1 mM on 
INCX1 (modified from [27] with 
permission). b Summary data 
of flecainide on INCX1 (modified 
from [59] with permission)
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Antiarrhythmic drugs that activate NCX1 
function

Flecainide

Flecainide is a class Ic antiarrhythmic agent in Vaughan Wil-
liams classification and is used primarily in the treatment of 
supraventricular arrhythmias [56]. The acute effects of fle-
cainide are inhibition of peak Na+ channels (peak INa), late Na+ 
channels (late INa), L-type Ca2+ channels (ICa-L), two voltage-
gated K+ channels, i.e., delayed rectifier K+ channels at the 
rapid component (IKr) and the transient outward K+ channels 
(Ito), and the human Ether-à-go-go-Related Gene (hERG) 
potassium channel [57].

Flecainide at 5 μM decreased the amplitude of DADs in dog 
Purkinje fibers [58]. We examined the effect of flecainide on 
INCX1 in single guinea-pig cardiac ventricular cells. Flecainide 
at 30–100 μM stimulated INCX1 by 30–60% in a concentration-
dependent manner by the patch-clamp method [59] (Fig. 5b). 
Sikkel et al. (2013) reported that flecainide at 5 μM signifi-
cantly stimulated NCX1-mediated Ca2+ efflux in isolated rat 
cardiomyocytes and suggested that this effect contributed to 
reducing [Na+]i [60].

Cardioprotective drugs that inhibit INa, ICa, and IK such 
as amiodarone, bepridil, aprindine, and dronedarone inhib-
ited INCX1 in a concentration-dependent manner in isolated 
guinea-pig cardiomyocytes, as reviewed previously [10]. In 
addition, ranolazine and carvedilol, which inhibited INCX1, also 
suppressed INa, ICa, and IK [61, 62]. However, strangely, only 
flecainide, which suppressed INa, ICa, and IK, activated INCX1 in 
our study. Further studies are required to elucidate the molecu-
lar mechanisms of flecainide that activated the NCX1 function.

Dofetilide

Dofetilide, a Class III antiarrhythmic drug in Vaughan Wil-
liams classification, prolongs APD by inhibiting delayed out-
ward rectifying K+ current and has a positive inotropic effect 
in guinea-pig cardiomyocytes [63]. Dofetilide increased the 
amplitude of DADs induced by cardiac glycoside acetyl-stro-
phanthidin in isolated cardiac Purkinje fibers using microelec-
trode techniques [64]. Dofetilide dose-dependently increased 
INCX1 with EC50 values of 0.149 μM and 0.249 μM for the 
inward and outward components, respectively, in rat car-
diac ventricular myocytes [65]. However, there has been no 
report on the molecular mechanisms of activation of INCX1 
by dofetilide.

NCX1 stimulators that protect or inhibit 
delayed afterdepolarizations (DADs)

An augmented NCX1 function may play an important 
role in cardiac arrhythmogenesis. The cardiac arrhyth-
mia is induced by concomitant triggers such as extrasys-
tole, intracellular Ca2+ overload, and spontaneous Ca2+ 
release. The activated Ca2+ efflux mode of NCX1 may 
cause DADs, and ventricular arrhythmias [66, 67]. There-
fore, NCX inhibitors may have antiarrhythmic actions 
by inhibiting intracellular Ca2+ overload in cardiomyo-
cytes, or by directly inhibiting the inward INCX1 [68, 69]. 
In our study, 30 μM carvedilol, which suppressed INCX1, 
also inhibited ouabain-induced DADs with 0.1 Hz pulse 
stimuli in isolated guinea-pig ventricular myocytes [62] 
(Fig. 6a). DADs are almost entirely due to the inward 
INCX1, not Ca2+-activated Cl− current or Ca2+-activated 
non-selective cation current [70]. Though nicorandil, pina-
cidil, and flecainide protected against or attenuated both 
spontaneous and triggered activities such as ouabain- or 
acetylstrophantidin-induced DADs in in vitro and in vivo 
studies [71–76], these three drugs enhanced INCX1 in our 
patch-clamp experiment using guinea-pig cardiac ventric-
ular myocytes. Furthermore, in this study nicorandil also 
protected against ouabain-induced DADs in single guinea-
pig cardiac ventricular myocytes [24] (Fig. 7b, c). Why do 
nicorandil, pinacidil, and flecainide, which increase INCX1, 
prevent or suppress DADs? 

Both nicorandil and pinacidil have a KATP channel 
opening effect. Pharmacological properties in common 
to these two drugs are shortening APD and hyperpolar-
izing membrane potential by ATP-sensitive K+ (KATP) 
channel opening. In our study, nicorandil inhibited ICa and 
shortened APD via KATP channel opening [24] (Fig. 7a). 
The INCX1 increase by nicorandil and pinacidil may be as 
a result of phosphorylation by PKG via the cGMP/PKG 
signaling pathway. While the Na+/K+ pump in the plasma 
membrane is also activated by cGMP, the cGMP-mediated 
increase in NCX1 function decreases [Ca2+]i in cardiac 
cells [13]. Furthermore, both the functional densities of 
NCX1 and the Na+/K+ pump were 3- to 3.5-fold more in 
the transverse tubule plasma membrane than that in the 
external plasma membrane in rat cardiac ventricular myo-
cytes [77]. In rat vascular smooth muscle cells, the Na+/K+ 
pump may affect the gap junction conductivity by chang-
ing [Ca2+]i of the microdomain via modulation of NCX1 
activity [78]. The functional interaction between NCX1 
and the Na+/K+ pump may be pivotal for the contraction 
of cardiac muscle. Especially in the microdomain of the 
plasma membrane in the heart, NCX1 and the Na+/K+ 
pump may closely interact to regulate [Na+]i and [Ca2+]i. 
Both nicorandil and pinacidil may decrease resting [Ca2+]i 
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Fig. 6   Effect of carvedilol on DADs ([62] with permission). a (Left) 
Control condition. (Middle) DADs were induced by ouabain and 
electrical stimulation. (Right) The inhibitory effect of carvedilol on 

DADs. b Summarized data of carvedilol on DAD amplitude. c Sum-
marized data of carvedilol on resting membrane potential (RMP)
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induced by ouabain. (Right) The inhibitory effect of nicorandil on 
DADs. c Summarized data of nicorandil on DADs
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via the activation of both NCX1 and the Na+/K+ pump by 
the cGMP/PKG signaling cascade in cardiomyocytes. The 
cardioprotective effects of nicorandil and pinacidil against 
DADs may be mainly due to shortening APD in addition 
to the enhancement of Ca2+ efflux by NCX1.

[Na+]i is a key modulator of intracellular Ca2+ cycling in 
the heart. An enhancement of late INa increases the intracel-
lular Na+ concentration and thereby increases Ca2+ influx 
via the outward mode of NCX1 during the plateau phase 
of the action potential (AP). Late INa-mediated [Na+]i load-
ing may increase diastolic [Ca2+]i, Ca2+ extrusion by the 
inward mode of NCX1, and DADs formation [79, 80]. The 
inhibitory effect of flecainide on cardiac Nav1.5 channels 
increased the triggering threshold by inhibiting both peak INa 
and late INa. Therefore, flecainide indirectly reduced [Ca2+]i 
by the Ca2+ efflux mode of NCX1 as well as the incidence 
of DADs [81]. On the other hand, in one report, flecainide 
at 6 μM failed to abolish isoproterenol-induced DADs but 
suppressed isoproterenol-induced triggered activity in mice 
[82]. Further studies are required to clarify whether or not 
flecainide inhibits DADs.

Up‑regulation of NCX1 gene expression 
and NCX1 inhibitor

Xu et al. (2009) reported that chronic administration of 
KB-R7943, an NCX inhibitor, up-regulated NCX1 gene 
expression in both isolated cardiomyocytes and intact mouse 
heart [83]. In response to chronic NCX1 inhibition, p-38 
forms NCX1-p38 complex [83]. Furthermore, NCX1-p38 

complex results in NCX1 up-regulation via activation of 
p-38 signaling pathway [83]. During hypertrophy and heart 
failure, up-regulation of NCX1 can be considered as a com-
pensatory adaptation to improve contractile function. How-
ever, this compensation invites an increased risk of arrhyth-
mia, such as DADs.

Summary

The KATP channel openers nicorandil and pinacidil, and 
ANP and SNP, as well as the Na+ channel blocker flecainide 
and the K+ channel blocker dofetilide, increased NCX1 func-
tion (Table 1). The effects of nicorandil and ANP on NCX1 
may be mediated by a PKG signaling pathway through an 
increase in intracellular cGMP (Fig. 8). The effect of pina-
cidil on NCX1 is mediated by a PKG signaling pathway 
and pmKATP channel opening (Fig. 8). Little is known 
about the coexistence and functional cooperation mecha-
nism among NCX1, NOSs and KATP channels in caveolae 
on the membrane in cardiomyocytes. The effect of SNP on 
increasing NCX1 may be dependent on the NO/cGMP/PKG 
signaling pathway (Fig. 8). On the other hand, the molecular 
mechanisms of flecainide and dofetilide, which activated the 
NCX1 function, have not been reported. The up-regulation 
of NCX1 during hypertrophy and heart failure can be con-
sidered a compensatory adaptation to improve contractile 
function. However, this compensation increases risk of 
arrhythmia. Therefore, further studies are also required to 
elucidate the role of NCX1 gene expression for myocardial 
protection.

Table 1   Properties of NCX1 stimulants

EC50 Half-maximum concentration for enhancement of the drug, []: Reference No.

NCX1 stimulants Drug class EC50 value, potential Preparation

Nicorandil KATP channel opener Nitrate generator EC50 15.0 μM (outward), 8.7 μM (inward) 
Approximately 60% enhancement 
(100 μM, outward and inward)

Guinea-pig ventricular myocytes [24]

Pinacidil Non-selective KATP channel opener EC50 23.5 μM (outward), 23.0 μM 
(inward) Approximately 55% enhance-
ment (100 μM, outward and inward)

Guinea-pig ventricular myocytes [27]

SNP NO donor 34.3 ± 8.1% enhancement (1 mM, out-
ward)

Guinea-pig ventricular myocytes [27]

α-hANP Peptide hormone 46 ± 10% enhancement (100 nM, inward) Rat Aorta vascular smooth muscle [12]
Sildenafil PDE5 inhibitor Pinacidil-induced I NCX increase 

(outward, 10 μM pinacidil 
16 ± 8.1%, + 10 μM sildenafil 
48.5 ± 2.2% enhancement)

Guinea-pig ventricular myocytes [27]

Flecainide Class Ic antiarrhythmic drug Approximately 60% enhancement 
(100 μM, outward and inward)

Guinea-pig ventricular myocytes [59]

Dofetilide Class III antiarrhythmic drug EC 50 0.249 μM (outward), 0.149 μM 
(inward) Approximately 120% enhance-
ment (1 μM, outward)

Rat Ventricular myocytes [65]
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