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Abstract
To investigate how the functional architecture is organized in layer 5 (L5) of the somatosensory cortex of a mouse in vivo, 
the input–output relationship was investigated using an all-optical approach. The neural activity in L5 was optically recorded 
using a Ca2+ sensor, R-CaMP2, through a microprism inserted in the cortex under two-photon microscopy, while the L5 
was regionally excited using optogenetics. The excitability was spread around the blue-light irradiated region, but the hori-
zontal propagation was limited to within a certain distance (λ < 130 μm from the center of the illumination spot). When two 
regions were photostimulated with a short interval, the excitability of each cluster was reduced. Therefore, a column-like 
architecture had functionally emerged with reciprocal inhibition through a minimal number of synaptic relays. This could 
generate a synchronous output from a region of L5 with simultaneous enhancement of the signal-to-noise ratio by silencing 
of the neighboring regions.
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Introduction

Generally, the mammalian neocortex consists of six layers, 
each of which is characterized by its cellular and network 
organization [1]. Neurons in each layer are also distinguished 

by their functional connectivity [2, 3]. For example, in the 
primary somatosensory cortex (S1), the major layer 4 neu-
rons receive thalamic inputs and project locally to other lay-
ers such as layer 2/3. On the other hand, the layer 5 (L5) 
pyramidal neurons produce major outputs to other cortical 
as well as subcortical regions. In other words, the L5 is a 
primary cortical layer involved in the integration of various 
sensory modalities as well as the top-down control of other 
brain regions.

Some regions of the neocortex are also functionally 
organized in a columnar fashion. That is, neurons having 
similar response properties are often perpendicularly arrayed 
through layers. For example, in the primary visual area (V1), 
neurons with similar orientational/directional preference 
are grouped together, forming a column of 0.1–0.5 mm in 
width, and are segregated in distribution from other neu-
rons of different preferences [4, 5]. During development, 
it has been computationally predicted and experimentally 
revealed that the spatiotemporal balance between excitatory 
and inhibitory connections in the local circuitry is one of the 
determinants of generating the regularly spaced columnar 
organization in V1 [6, 7]. Similarly, the functional archi-
tecture of the adult neocortex is presumed to be organized 
by the excitatory-inhibitory balance [8–10]. The cortical L5 
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consists of the excitatory pyramidal neurons and the inhibi-
tory interneurons of various subclasses with a characteristic 
morphological, molecular and electrophysiological feature 
[11–13]. However, because of the technical difficulties, it 
remains to be elucidated how the individual neurons are 
orchestrated to organize the functional architecture in the 
in vivo cortex [14].

In the present study, the computational processing in the 
L5 network of mouse S1 was characterized by the input–out-
put relationship. The neural activity was optically recorded 
while the L5 was regionally excited using optogenetics. Our 
all-optical approach revealed the functional emergence of 
a column-like cluster of active L5 neurons that were sur-
rounded by inactive neurons, and that the column-like clus-
ters inhibited each other. It is suggested that the excitatory 
projecting neurons and inhibitory interneurons form a cir-
cuitry of reciprocal inhibition to sculpture the output signals 
exiting from the L5.

Materials and methods

Animals

All experiments were carried out using wild-type C57BL/6 J 
mice (female, 8–12 weeks old, 20–30 gBW) in accordance 
with the animal experiment protocol approved by Tohoku 
University Committee for Animal Experiments (Approval 
no. 2017LsA-002) under the guidelines for Animal Experi-
ments and Related Activities of Tohoku University as well 
as the guiding principles of the Physiological Society of 
Japan and the National Institutes of Health (NIH), USA. 
The number of animals in this study was kept to a minimum 
and, when possible, all animals were anesthetized to mini-
mize their suffering. Animals had access to food and water 
ad libitum and were kept under a 12-h light–dark cycle.

Viral vectors

Adeno-associated virus (AAV) Helper-Free System (Agilent 
Technologies, Inc., Santa Clara, CA, USA) was used for 
the generation of the AAV-CaMKII-C1V1-Venus (DJ) viral 
vector. The purification method was modified from a previ-
ously published protocol [15]. Briefly, HEK293 cells were 
transfected with a pAAV-CaMKII-C1V1-Venus vector plas-
mid, pHelper and pAAV-RC (serotype DJ; purchased from 
Cell Biolabs Inc, San Diego, CA, USA), using a standard 
calcium phosphate method. Three days after transfection, 
cells were collected and suspended in artificial cerebrospi-
nal fluid (ACSF) containing (in mM) 124 NaCl, 3 KCl, 26 
NaHCO3, 2 CaCl2, 1 MgSO4, 1.25 KH2PO4, 10 d-glucose. 
Following multiple freeze–thaw cycles, the cell lysates 
were treated with benzonase nuclease (Merck, Darmstadt, 

Germany) at 37 °C for 30 min, and centrifuged 2 times at 
16,000g for 10 min at 4 °C. The supernatant was used as the 
virus-containing solution. Quantitative PCR was performed 
to measure the titer of purified virus. Virus aliquots were 
then stored at − 80 °C until use in the experiment.

The AAV1-CAG-R-CaMP2-WPRE-SV40poly was pro-
duced using the baculovirus-Sf9 expression system as pre-
viously described [16]. Briefly, the baculoviruses with the 
AAV construct and those with the RepCap1 helper construct 
were co-infected into Sf9 cells in a suspension culture. After 
2–4 days, the cells were treated with a hypotonic lysis buffer 
[1% Triton X-100, 10 mM HEPES (pH 8.0), 3 mM NaCl 
and 0.5 mM MgCl2] for 15 min at room temperature. After 
inactivating the baculoviruses, the lysate was centrifuged 
and the supernatant was mixed with AVB Sepharose (GE 
Healthcare UK Ltd. Little Chalfont, England) for 1 h at room 
temperature. By applying this mixture to a gravity-flow col-
umn (Bio-Rad Laboratories, Inc., Hercules, CA, USA), the 
viruses were eluted using an elution buffer (50 mM glycine 
at pH 3.0) and were further concentrated using Amicon Ultra 
100 K Centrifugal Concentrators (EMD Millipore-Merck 
KGaA, Darmstadt, Germany) with PBS. The final virus titer 
was 1.0 × 1013 gc/ml.

Immunohistochemistry

Cortical neurons were isolated from embryonic day-16 ICR 
mice (Japan SLC Inc., Shizuoka, Japan) using Nerve-Cells 
Dispersion Solutions (Sumitomo Bakelite, Tokyo, Japan) 
according to the manufacturer’s instructions, and grown 
in culture medium (Sumitomo Bakelite) under a 5% CO2 
atmosphere at 37 °C, and the viral solution containing AAV-
CaMKII-C1V1-Venus viruses was diluted in the culture 
medium (1/1000, finally 7 × 1010 copies/ml) 7 days in vitro 
(DIV). The cultured tissues were fixed with 4% paraform-
aldehyde (room temperature, 30 min) at 18 DIV and served 
for the immunohistochemistry.

After washing 3 times with phosphate buffer solution 
(PBS), the specimens were reacted with anti-GFP (rat serum, 
1:250, 04404-84, Nacalai) and either anti-pan CaMKII (rab-
bit serum, 1:250, gift from Dr. Kohji Fukunaga, Tohoku 
University) or anti-GABA (rabbit serum, 1:250, A2052, 
Sigma-Aldrich, St. Louis, MO) followed by secondary anti-
bodies conjugated with Alexa Fluor 546 (goat anti-rabbit 
IgG, 1:250, A11081, Thermo Fisher Scientific, Waltham, 
MA) and Alexa Fluor 488 (goat anti-rat IgG, 1:250, A11006, 
Thermo Fisher Scientific), respectively.

To evaluate the co-expression of CaMKII or GABA in the 
Venus-positive neurons, 10 fields (each 344,000 μm2) were 
selected randomly and viewed under a conventional epi-flu-
orescent microscope with 20× objective lens (Axiovert200, 
Carl Zeiss, Oberkochen, Germany) and the filter system 
either set at 17 (Alexa Fluor 488: excitation, 485 ± 20 nm; 
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dichroic mirror, 510 nm; emission, 515–565 nm) or set at 
20 (Alexa Fluor 546: excitation, 546 ± 12 nm; dichroic mir-
ror, 560 nm; emission, 575–640 nm), and imaged using a 
cooled CCD camera system (VB-7010, KEYENCE CO, 
Osaka, Japan).

Surgical procedures

After administration of the anti-inflammatory agents, dexa-
methasone sodium phosphate (1.3 mg/kgBW, Banyu Phar-
maceutical Co Ltd., Tokyo, Japan), sulfadiazine (24 mg/
kgBW, Kyoritsu Seiyaku, Tokyo, Japan), trimethoprim 
(4.8 mg/kgBW, Kyoritsu Seiyaku) and carprofen (6 mg/kg, 
Pfizer Inc., New York City, USA), the mice were anesthe-
tized by intraperitoneal injection of a ketamine-xylazine 
mixture (50 mg/kgBW ketamine, Daiichi Sankyo Co. Ltd., 
Tokyo, Japan and 10 mg/kgBW xylazine, Sigma-Aldrich, 
St. Louis, MO, USA). The skull was exposed, attached 
with a head chamber (CP-2, Narishige Inc., Tokyo, Japan) 
using glue (Loctite 4011, Henkel Co. Rocky Hill, CT06067, 
USA), and a hole was drilled (diameter, 3 mm) over the 
cortex S1 region at 2 mm lateral and 1 mm caudal from the 
bregma while being cleaned with physiological saline. The 
viral solution (R-CaMP2: 1.0 × 1013 gc/ml, C1V1: 2.0 × 1013 
gc/ml) was injected at 0.5 μl/min using a glass pipette (tip 
diameter, 20 µm, G-1.5, Narishige) that was siliconized 
with chlorotri-n-butylsilane (Alfa Aesar, Massachusetts, 
USA), into the cortex at 500–700 µm below the surface in a 
region without obviously large blood vessels. The reflector-
coated microprism (Micro prism 1 × 1 × 1, Nippon Elec-
tric Glass Co. Ltd., Otsu, Japan) was inserted (Fig. 1a, b) 
in order to see the rostral aspect of the coronary incision 
(width, 1 ~ 1.5 mm; depth, 1 ~ 1.5 mm) made by a micro-
blade (377615, Beaver-Visitec International, Inc., Waltham, 
MA 02452 USA) and covered by a round cover glass (diam-
eter, 2.7 mm; Matsunami Glass IND., Ltd., Osaka, Japan) 
with a head chamber (CP-2, Narishige) that was glued on 
the skull (Loctite 4011, Henkel). The mice recovered from 
the anesthesia on a heater (MP-914-NV, Vivaria Co., Osaka, 
Japan) while being administered intraperitoneally physio-
logical saline containing 5% glucose (0.1 ml) for hydration 
and nutrition, returned to the cage and kept for 1 month 
with food and water containing antibacterial agents (0.6%, 
Shinoral®, Boehringer Ingelheim, Ingelheim, Germany).

Photostimulation

To illuminate the targets directly through the objective lens 
we fabricated an epi-illumination system (ASKA Com-
pany, Katou, Japan) consisting of an LED array, a focusing 
lens, two objective lenses and a dichroic mirror (495 nm, 
FF495-Di03, Semrock, Inc., Rochester, NY, USA). The 
photostimulation was made by six blue LEDs (460 ± 10 nm, 

LXML-PB02, Philips Lumileds Lighting Co. San Jose, 
CA, USA) arrayed 2 × 3 (height × width) on a circuit board 
(p-ban.com Co., Tokyo, Japan) (Fig. 1c). Four green LEDs 
(520 ± 15 nm, LXML-PM01-0100, Philips Lumileds Light-
ing Co.) were set at the corners for position adjustment. Each 
LED was analog-regulated using an LED driver (RCD-24-
0.70, RECOM Power GmbH., Vienna, Austria; Supplemen-
tary Figure 1) and a computer with a homemade driving 
program (C++). The photostimulation of L5 was made by 
the 3 blue LEDs in the lower line that were turned on indi-
vidually for 4 ms with a variable interval between 5 and 9 s. 
The total number of photostimulations was set at 900. The 
power density (irradiance) of each LED was directly meas-
ured under microscopy by a visible light-sensing thermopile 
(MIR-101Q, SSC Co., Ltd., Kuwana City, Japan) and was 
2.0 mW/mm2 at its focus.

Imaging

Although the cortical tissue was hard to visualize for indi-
vidual neurons immediately after surgery, it had cleared 
up over the following 3 weeks, probably because of the 
suppression of inflammation and gliosis. One month after 
surgery, each awake mouse was restrained under the micro-
scope (ECLIPSE FN1, Nikon Co., Tokyo, Japan) with 
16 × water-immersion objective lens (CFI75 LWD 16 × W, 
Nikon: NA, 0.8 and WD, 3.0) using a head-holding device 
(MAG-1, Narishige). The microscope was focused on the 
region 500–750 µm under the cortical surface (layer 5, L5) 
of S1 through the microprism, and the images for R-CaMP2 
were acquired using a two-photon microscopy system (A1R 
MP+, Nikon) with a femtosecond-pulsed laser (Mai Tai® 
DeepSee™, Spectra-Physics, Newport Co., Santa Clara, CA, 
USA) at 1000 nm for excitation, and a suppression filter 
(629 ± 56 nm) for detection (Fig. 1d). The imaging field was 
256 × 512 pixels (375 × 750 μm) at 50–150 µm away from 
the surface of the microprism and sampled at 3.6 fps.

The R-CaMP2 images were analyzed using ImageJ and a 
homemade program (C++) according to the following pro-
cedures. (1) Two-dimensional movement of the image was 
corrected frame-by-frame. (2) Every single frame capturing 
the LED-dependent noise at the instance of photostimula-
tion (4 ms), which contained the stray LED light and the 
R-CaMP2 fluorescent light excited by the LED with/without 
direct activation of neurons, was removed from the image 
stack. (3) Circular regions of interest (ROIs) were manually 
set on the neuron-like cell bodies and their average bright-
ness values were sequentially measured as a function of 
time. (4) For every 10 frames (duration, 10/3.6 ≈ 2.8 s) the 
standard deviation (SD) was calculated and its minimum was 
defined as noise SD (SD0). (5) The baseline fluorescence 
(Fb) of an ROI was updated with time in a series of records 
as the average fluorescence of 4 serial frames in which the 
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Fig. 1   The experimental setup. a Insertion and fixation of the micro-
prism: the top view (top) and the side view (bottom). b Attachment 
of the head chamber on the mouse. c The array of power LEDs on 
the circuit board. d Schematic drawings of the all-optical system. The 

LED light was focused in the cortical layer 5 (L5) directly through the 
dichroic mirror, the objective lens and the microprism with no inter-
ference from the two-photon imaging system
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range was within ± 3SD0. Otherwise, it was not updated. (6) 
The activated fluorescence (Fa) of the same ROI was defined 
as the value that exceeded + 6SD0 and its magnitude was 
expressed as ΔF/F = (Fa − Fb)/Fb. (7) The onset of each 
Ca2+ spike was determined according to the last baseline 
point just before the activated points.

Statistics

All data in the text, figures and tables are expressed as 
mean ± SEM. The statistical evaluation was conducted 
using Fisher’s exact test for the frequency, Mann–Whitney 
U test for unpaired data, t-test for paired data, and one-way 
ANOVA with a Bonferroni post hoc test for data in order 
unless otherwise noted. The numbers of samples used for the 
statistics (n) are shown in the figure legends. It was judged 
as statistically insignificant when P > 0.05.

Results

In the present study, the adult mice were compelled to 
express channelrhodopsin and Ca2+ sensor in the somatosen-
sory cortex (S1) using AAV. To photostimulate the local 
network, a chimeric channelrhodopsin between channelrho-
dopsin-1 (ChR1) and one of the Volvox-derived channelrho-
dopsins, C1V1 [17], was expressed in L5 under the CaMKII 
promotor. To record the network activity, the L5 neurons 
expressed R-CaMP2 [18], one of the RFP-derived Ca2+ sen-
sors, non-selectively under the CAG promotor. The C1V1-
expressing neurons were identified immunohistochemically 
for the primary cultures from mouse cortex using anti-Venus 
antibodies. Among 111 Venus-positive neurons, 86 were 
obviously positive with CaMKII (Fig. 2a–c), whereas 4 were 
positive with GABA among 142 Venus-positive neurons 
(Fig. 2d–f). Thus, the probability of GABA co-expression 
was negligible relative to that of CaMKII (Fig. 2g).

The L5 neurons were visualized through a microprism 
inserted in the somatosensory cortex under two-photon 
microscopy (Fig. 3a, Supplementary Figure 2 and Sup-
plementary Video 1). That is, neurons deep in the L5 were 
viewed from the side. On the other hand, the light from an 
array of blue LED chips was focused on the imaging plane 
through the objective lens and the microprism. Each LED 
chip illuminated one of the three circular targets (diam-
eter, ~ 100 μm), A, B or C, which were aligned in the L5 
parallel to the cortical surface (Fig. 3a). The LED chips 
were turned on and off by one of the following modes of 
spatiotemporal pattern: the “single-mode”, by which each 
of 3 targets was illuminated one by one in a random order 

and the “multi-mode”, by which 2 of 3 targets were illu-
minated simultaneously or sequentially with an interval of 
either 2, 4 or 12 ms. These two modes were scrambled in 
order while imaging the R-CaMP2 fluorescence (Fig. 3b).

Response to the single‑mode photostimulation

A number of R-CaMP2-positive neurons were identified 
in an imaging plane set in the L5 of S1 (Fig. 3a). While 
transient increments of ∆F/F, which were judged as Ca2+ 
spikes, occurred spontaneously under the awakened con-
dition, they were often evoked immediately after pho-
tostimulation (Fig. 3b). For every L5 neuron, the Ca2+ 
spikes were aligned to the single-mode photostimulation 
at each of 3 targets, A, B and C, as shown by the sample 
raster plots in Fig. 3c–e. As shown in the histograms in 
Fig. 3f–h, the frequency of the Ca2+ spikes was signifi-
cantly increased in the first scanning frame (~ 280 ms) 
just after the single-mode photostimulation at target B 
(P < 0.05, Fisher’s exact test), but not at either target A 
or C. Therefore, this neuron was judged to be the target 
B-responsive neuron. A target-responsive neuron was thus 
defined as a ROI in which the frequency of Ca2+ spikes in 
response to the stimulation of the target was significantly 
larger than that in response to either of the other two tar-
gets. In summary, of 354 neurons in total (n = 5 animals), 
224 were the target-responsive neurons (65 ± 9%, n = 5), 
121 (32 ± 7%, n = 5) were non-responsive and 9 (3 ± 2%, 
n = 5) showed significant decreases in the frequency 
of Ca2+ spikes after the single-mode photostimulation 
(P < 0.05, Fisher’s exact test).

The target A-, target B-, and target C-responsive neu-
rons were respectively distributed close to the targets 
A, B and C, although a small number of neurons were 
responsive to multiple targets (Fig. 4a–c). Therefore, the 
excitatory influence of photostimulation, directly or indi-
rectly, diminished with distance along a direction parallel 
to the cortical surface. To further analyze this, the imag-
ing plane was divided into perpendicular stripes of 25 µm 
width (Fig. 4d, top) and the response probability of neu-
rons in a stripe was averaged for each target to derive the 
ensemble response probability (p). As shown in Fig. 4d 
(bottom), p was highest around at the center of the target 
and decreased with distance (x). The relationship almost 
followed a single exponential function (Fig. 4d),

 
where λ is the length constant. The λ values were simi-

lar among targets of photostimulation and among animals 

p = pmaxe
−

x

� ,
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in a range of 37–129 µm (63 ± 7 µm, n = 14 targets, 5 
animals).

Response to the multi‑mode photostimulation

Would the simultaneous photostimulation of multiple tar-
gets enhance the responsiveness of a neuron? As shown in 
the example shown in Fig. 5a, the ensemble response prob-
ability of neurons in a perpendicular stripe to simultane-
ous photostimulation at targets A and B (A + B) tended to 
be smaller than that to single-mode stimulation at target A 
or B. Therefore, the photostimulations at target A and B 
reciprocally inhibit each other. Similar reciprocal inhibition 
was present between photostimulations at targets B and C 
(Fig. 5b) or between photostimulations at targets A and C 

(Fig. 5c). To evaluate the reciprocal inhibition quantitatively, 
neurons distributed in the region of 6 stripes around each tar-
get (range ± 75 µm from the center) were selected and their 
ensemble response probabilities were compared between 
single-mode and multi-mode photostimulations (Fig. 5d–f). 
The response probability to the simultaneous photostimu-
lation was indeed smaller than that to single-mode photo-
stimulation with significant (or nearly significant) differ-
ence. In summary, the ensemble response probability to the 
simultaneous multi-mode photostimulation was 0.16 ± 0.01 
(n = 30 cases, 5 animals), which was significantly smaller 
than that to the single-mode photostimulation, 0.25 ± 0.02 
(n = 15 cases, 5 animals) (P < 0.05, Mann–Whitney U test).

The magnitude of reciprocal inhibition was actually 
dependent on the interval between two photostimulations. 

Fig. 2   Cortical expression of C1V1, a chimeric channelrhodopsin 
between channelrhodopsin-1 (ChR1) and one of the Volvox-derived 
channelrhodopsins. a–c  Excitatory neurons in culture: C1V1-Venus 
immunoreactivity (a), CaMKII immunoreactivity (b) and the merge 
(c). d–f Inhibitory neurons in culture: C1V1-Venus immunoreactivity 

(d), GABA immunoreactivity (e) and the merge (f). g Co-expression 
of CaMKII and GABA in the Venus-positive neurons (summary of 10 
visual fields). Scales, 50  µm for all. ***P < 0.0005, Mann–Whitney 
U test
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To evaluate the effect of target B photostimulation on the 
target A responsiveness (A/B), for example, the neurons 
distributed in the region of 6 stripes around the target were 
again selected, and the relative ensemble probabilities were 
compared for photostimulations at B before those at A by 
12 ms (A/B, − 12), by 4 ms (A/B, − 4), by 2 ms (A/B, 
− 2), simultaneously at A and B (A/B, 0), at B after A by 
2 ms (A/B, 2), by 4 ms (A/B, 4) and by 12 ms (A/B, 12). 
As shown in Fig. 6a, the relative probability was depend-
ent on the interval in any combination of photostimulations: 
minimal at 0 ms and almost negligible at ± 12 ms. Similar 
multi-mode photostimulation was then subdivided into two 
classes: (1) multi-mode photostimulation of two close targets 
(A/B, B/A, B/C or C/B), and (2) that of two remote tar-
gets (A/C or C/A), and summarized for 5 animals (Fig. 6b). 
As there was no significant difference between these two 
classes at any interval (P > 0.2), the effects of the interval 

were evaluated for all pairs (n = 30, 5 animals) and found to 
be asymmetrical. For example, the relative probability at − 4 
and − 2 was respectively smaller than that at 4 and 2 with 
significant difference (P < 0.05 and < 0.01). Although the 
differences between − 12 vs − 4 and 0 vs 2 were significant 
(P < 0.01), the differences between − 2 vs 0 and 4 vs 12 were 
insignificant (P > 0.05).

Discussion

All‑optical approach

The neuronal network in the brain can be regarded as a kind 
of multi-dimensional transfer function of time and has been 
investigated through analyzing the input–output relationship. 
The optical imaging of neuronal activity using genetically 

Fig. 3   Neuronal responses to the L5 photostimulation. a A typical 
R-CaMP2 fluorescence image at L5 through the prism. The targets 
of photostimulation, A, B, and C are overlaid (circles). One of the 
regions of interest (ROI) #48 is encircled in green. b A sample record 
of Ca2+ signals (∆F/F of the R-CaMP2 fluorescence) at ROI #48. 
The timing of each photostimulation is shown by a vertical bar (from 
left to right); the multi-mode photostimulation at A after C with 2 ms 
delay, the multi-mode photostimulation at A and B simultaneously, 

the single-mode photostimulation at B, the single-mode photostimu-
lation at B and the multi-mode photostimulation at C after A with 
2 ms delay. Asterisk (red), the onset of the Ca2+ response. c–e Raster 
plots of the Ca2+ spikes from the ROI #48 aligned to the single-mode 
photostimulation (dark bars) at A, B and C, respectively. f–h Histo-
grams of the time-dependent frequency of Ca2+ spikes in relation to 
the single-mode photostimulation (dark bars) at A, B and C, respec-
tively. *P < 0.05, Fisher’s exact test (color figure online)
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encoded Ca2+ indicators or voltage sensors would be advan-
tageous over other methods in the high spatiotemporal reso-
lutions discriminating individual neurons [19–22]. As an 
artificial input, the optical stimulation using optogenetics has 
advantages over other methods such as electrical stimulation 
in its high spatiotemporal precision [23–28]. However, the 
power of visible light is massively attenuated with distance 
because of scattering and absorption by the brain tissue [25, 
29]. On the other hand, a strong light would actuate neu-
rons non-selectively in its path. To solve this, two-photon 
optics has been applied for both photostimulation of tar-
get neurons and imaging of neuronal activity in the mouse 
brain in vivo: L2/3 of somatosensory cortex [30] and visual 
cortex [31]. Although the conventional diffraction-limited 
two-photon laser system has been rather ineffective for excit-
ing neurons due to the small single-channel conductance of 
channelrhodopsins (40 fS ~ 1.1 pS for ChR2 and ChR1/2 
chimera) [32–34] and insufficient two-photon absorption 
volume (~ 2–5 μm3) [35], attempts have been made to apply 
the high energy of a laser over the cell of interest for a short 
duration [28, 36–38].

Recently, deep cortical layers have been imaged by 
combining a microscope with a microprism inserted in 
the in vivo brain [39]. As a result, the microscopic light is 
expected to be focused on the vertical visual field directly 
without mediating tissue while collecting the sample light 

with minimal diffraction. In the present study, the blue 
LED light was directly focused in the L5 of mouse cortex 
through a microprism to excite the neurons that expressed 
C1V1. Our approach has several advantages and disadvan-
tages. It can excite a homogeneous group of neurons at once 
because of the localization of a light path within the layer, 
although is difficult to differentiate individual cells for exci-
tation because of the low spatial resolution of a single pho-
ton beam. The on–off timing of irradiation can be precisely 
regulated for multiple targets when each LED is individually 
regulated. It can be combined with any microscopic system 
with minimal modification. However, the possibility should 
be kept in mind that the two-photon imaging could depolar-
ize the membrane potential of a C1V1-expressing neuron 
with increased excitability. Although some of the cortical 
connections were disrupted or disorganized by the chronic 
insertion of a microprism, the basic properties of the local 
circuit should remain intact [39]. Since the LED pulse was 
short in duration (4 ms), it would evoke only a few action 
potentials in neurons that expressed C1V1 [17, 40]. On the 
other hand, the Ca2+ spike is assumed to be generated by a 
burst of action potentials because of the response character-
istics of R-CaMP2 [18]. Although we made a ROI on a neu-
ron-like cell body, the measured fluorescence may have been 
contaminated with that from the neighboring neuropil. This 
approach could be improved by increasing the resolution of 

Fig. 4   L5 neuron activation 
by single-mode photostimu-
lation. a Distribution of the 
target A-responsive neurons. 
The same sample is shown in 
Fig. 3. b Distribution of the 
target B-responsive neurons. 
c Distribution of the target 
C-responsive neurons. d The 
ensemble response probability 
of neurons as a function of 
the distance along a direc-
tion parallel to the cortical 
surface; the responsiveness to 
A-photostimulation (light blue 
columns), B-photostimulation 
(light green columns) and 
C-photostimulation (yellow 
columns), respectively. e The 
ensemble response probability 
(p) as a function of distance (x) 
from the center of each target; 
A-photostimulation (light blue 
diamonds), B-photostimulation 
(light green triangles) and 
C-photostimulation (yellow 
circles). Each line is the least-
squares fitting curve of a single 
exponential function (color 
figure online)
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the irradiating apparatus using a digital micromirror device 
(DMD), liquid crystal display, and liquid crystal on a silicon/
spatial light modulator (LCoS/SLM) [41–44]. For example, 
point irradiation of blue light on the background of yellow/
red light would excite individual cells that express step-
function opsins (SFO) in the membrane with high precision 
and efficiency [45–47].

Functional emergence of column‑like architecture

The present study is the first all-optical approach to inves-
tigate the input–output characteristics of the deep cortical 
layer circuitry in an awake mouse. The excitability was 
spread around the blue-light irradiated region, but the hori-
zontal propagation was limited within a certain distance 
(λ < 130 μm from the center of the spot) and within a single 
frame of imaging (< 0.3 s). Therefore, a column-like excita-
tory cluster 100–300 μm in diameter appeared to emerge 
transiently in response to an input into L5. Some neurons in 
the cluster may have expressed C1V1 to be excited directly 

by the blue light irradiation on their soma, dendrites and/
or axons, and others should have been excited indirectly 
through synapses. In addition, a C1V1-expressing neuron 
could also be synaptically activated to generate Ca2+ spikes 
even if the light-dependent depolarization of its membrane 
potential would be subthreshold for generating action poten-
tials. Nevertheless, the column-like cluster, which consists 
of the directly and indirectly activated neurons, functionally 
emerged with regional photostimulation of L5 with a spati-
otemporal restriction. The size of the column-like cluster is 
consistent with that of functional columns described previ-
ously [3–5, 48], and that predicted from the receptive field of 
individual neurons [13]. It is possible that this column-like 
excitatory cluster consists of smaller substructures, such as 
an L5 microcolumn/lattice [49, 50] and cortical microcircuit 
[51–54]. The functional organization of these substructures 
should be revealed in the future by differential optogenetic 
excitation of neuronal subtypes [55, 56] that have been clas-
sified by morphology, projection targets, electrophysiologi-
cal properties, local excitatory connectivity and long-range 

Fig. 5   L5 neuron activation by 
multi-mode photostimulation. 
a The ensemble response prob-
ability of neurons to the simul-
taneous photostimulation of tar-
gets A and B (A + B, dark blue 
columns) as a function of the 
distance along a direction paral-
lel to the cortical surface, where 
the background columns are the 
ensemble response probability 
to the single-mode photostimu-
lation at A (light blue) and at B 
(light green). b Similar to A, but 
of targets B and C (B + C, dark 
green columns). c Similar to A, 
but of targets A and C (A + C, 
brown columns). d Comparison 
of the average response prob-
ability of the region ± 75 µm 
from the center of targets A 
and B (double-headed arrows 
shown in A). The symbols with 
lines indicate the individual 
data whereas each column 
with bars is mean ± SEM (A: 
n = 5, B: n = 5, A + B: n = 10). 
e Similar to D, but of targets 
B and C. f Similar to D, but 
of targets A and C. *P < 0.05, 
***P < 0.0005, paired t-test 
(color figure online)
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inputs [57]: the corticocallosally projecting slender-tufted 
(L5A) and subcortical targeting thick tufted (L5B) pyrami-
dal neurons [58–62]; the corticopontine (CPn) and crossed 
corticostriatal (CCS) neurons [63].

Reciprocal inhibition

The neocortical circuit is composed of excitatory princi-
pal neurons and inhibitory interneurons. As a result, the 

excitation of L5 pyramidal neurons should inhibit other 
neurons and vice versa through inhibitory interneurons 
in the L5 and/or via other layers [57]. It has been postu-
lated that the L5 output signal should be sculptured by 
the excitatory-inhibitory balance [8, 13]. This notion was 
confirmed by the present study showing that the column-
like excitatory clusters inhibited each other reciprocally 
with a minimal number of the synaptic relays because 
the inhibition was maximal when neurons in another 
target were excited before 0–2 ms. However, there was 
a negligible possibility that the inhibitory neurons were 
directly activated by light because of the negligible expres-
sion of C1V1 under the CaMKII promotor using AAV. 
The inhibition propagated horizontally without obvious 
attenuation: the inhibition between adjacent targets (dis-
tance, ~ 150 µm) was similar to that between remote targets 
(distance, ~ 300 µm). These facts are consistent with that 
some types of cortical interneurons such as the parvalbu-
min (PV)-expressing basket cells and chandelier cells have 
long-range connections with L5 pyramidal neurons [64, 
65]. These neurons as well as other types of interneurons, 
such as the somatostatin (SOM)-expressing Martinotti 
cells [66, 67], may be involved in the reciprocal inhibition. 
Once an input is made regionally in the L5, the column-
like excitatory cluster should be self-organized through 
local excitatory connections among L5 pyramidal neurons 
and sculptured spatially and temporally by the long-range 
reciprocal inhibitory connections. This could generate a 
synchronous output from a region of L5 with simultaneous 
enhancement of the signal-to-noise ratio by the silencing 
of neighboring regions [6, 68, 69]. It is hypothesized that 
the long-range inhibitory signals also sculpture other lay-
ers such as layer 2/3 to help the functional emergence of 
a column-like architecture through the layers in a manner 
dependent on the L5 inputs [70]. In the primary sensory 
cortex, the thalamic inputs would excite L5 pyramidal 
neurons directly or indirectly through activation of layer 
4 [3, 13, 56]. The regional excitation of L5 would, in turn, 
conduct the cortical circuitry to generate a column-like 
functional architecture. This hypothesis could be tested in 
the future through an all-optical approach in combination 
with a multilayer imaging system [39].
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