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Abstract
Osteoporosis and derangement of calcium homeostasis are common complications of thalassemia. Despite being an important 
process for bone and calcium metabolism, little is known about intestinal calcium transport in thalassemia. Recent reports 
of decreases in both intestinal calcium transport and bone mineral density in thalassemic patients and animal models sug-
gested that defective calcium absorption might be a cause of thalassemic bone disorder. Herein, the possible mechanisms 
associated with intestinal calcium malabsorption in thalassemia are discussed. This includes alterations in the calcium 
transporters and hormonal controls of the transcellular and paracellular intestinal transport systems in thalassemia. In addi-
tion, the effects of iron overload on intestinal calcium absorption, and the reciprocal interaction between iron and calcium 
transport in thalassemia are elaborated. Understanding the mechanisms underlining calcium malabsorption in thalassemia 
would lead to development of therapeutic agents and mineral supplements that restore calcium absorption as well as prevent 
osteoporosis in thalassemic patients.
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Introduction

Calcium is one of the most important minerals in the body 
since it plays a crucial role in many physiological processes 
such as muscle contraction, neurotransmission, inflamma-
tion, blood clotting, intracellular signaling, and lactation. 
Maintenance of calcium homeostasis involves hormonal 

regulation of intestinal calcium absorption, bone remod-
eling process, and renal calcium excretion. Since calcium 
is obtained only through intestinal absorption, the amount 
of calcium absorbed partly determines the serum level of 
calcium, and consequently, bone mineral content and den-
sity. Calcium absorption is under the control of classical 
calciotropic hormones, i.e., parathyroid hormone (PTH) and 
1,25-dihydroxyvitamin D3 [1,25(OH)2D3], as well as some 
other humoral factors, such as calcitonin, prolactin, growth 
hormone, estrogen, and fibroblast growth factor (FGF)-23 
[1–5]. A decrease in calcium absorption over a period of 
time can lead to a low level of serum calcium, and sub-
sequently bone defects, which has been reported in many 
conditions and diseases including thalassemia.

Thalassemia is an inherited disease with hypochromic 
and microcytic anemia from defective α- or β-globin produc-
tion [6]. It affects approximately four out of every 10,000 
people globally [7], and more than 50% of β-thalassemic 
patients develop osteoporosis and osteopenia as well as 
bone deformity [8]. Other major problems in thalassemic 
patients and mutant animals consist of iron overload, sple-
nomegaly, abnormal heart rhythm, diabetes mellitus, and 
growth retardation (for review, please see Nienhuis and 

 *	 Narattaphol Charoenphandhu 
	 naratt@narattsys.com

1	 Department of Biochemistry, Faculty of Science, Mahidol 
University, Rama VI Road, Bangkok 10400, Thailand

2	 Center of Calcium and Bone Research (COCAB), 
Faculty of Science, Mahidol University, Rama VI Road, 
Bangkok 10400, Thailand

3	 Office of Academic Management, Faculty of Allied Health 
Sciences, Burapha University, Chonburi, Thailand

4	 Department of Physiology, Faculty of Medical Science, 
Naresuan University, Phitsanulok, Thailand

5	 Department of Physiology, Faculty of Science, Mahidol 
University, Rama VI Road, Bangkok 10400, Thailand

6	 Institute of Molecular Biosciences, Mahidol University, 
Nakhon Pathom, Thailand

http://crossmark.crossref.org/dialog/?doi=10.1007/s12576-018-0600-1&domain=pdf


222	 The Journal of Physiological Sciences (2018) 68:221–232

1 3

Nathan [9]). A significant decrease in intestinal calcium 
transport has also been reported in thalassemic patients 
[10]. Severely impaired intestinal calcium absorption has 
also been observed in thalassemic mice, and was found to 
be associated with their lower bone mineral density (BMD) 
[11, 12]. Although the improvement of calcium absorption 
has been shown to be an effective way of preventing and 
relieving osteoporosis [13, 14], it is not known how calcium 
absorption is affected by thalassemic condition, and whether 
it could be the cause of bone defect. This review will discuss 
changes in the intestinal calcium-transport mechanisms and 
possible cause of intestinal calcium malabsorption in thalas-
semia with evidence from both human and animal studies.

Calcium transport and its hormonal control 
in healthy individuals

In human and other mammals, calcium enters the body 
mainly through ingestion. Dietary calcium is absorbed 
across the intestinal epithelial cells by two pathways, i.e., 
transcellular and paracellular pathways. Although both 
calcium-transport mechanisms take place along the entire 
length of the small intestine, the transcellular calcium trans-
port is predominant in the proximal part, particularly the 
duodenum. Free-ionized calcium diffuses across the apical 
plasma membrane via transient receptor potential vanil-
loid calcium channel (TRPV) 5 and 6 and L-type voltage-
dependent calcium channel (e.g., Cav1.3) [15]. Cytoplasmic 
calcium is then translocated by binding to calbindin-D9k and 
probably also to calbindin-D28k, parvalbumin, and calmo-
dulin, to be extruded at the basolateral membrane through 
plasma membrane Ca2+-ATPase (PMCA) subtype 1b and 
Na+/Ca2+-exchanger (NCX)-1 [16–18]. Some intracellular 
vesicles can help ferry intracellular calcium and certain ions 
(e.g., iron) from the apical side to the basolateral side for 
extrusion [5].

Regarding the paracellular pathway, transepithelial trans-
port of calcium occurs through space between neighboring 
two epithelial cells. Calcium movement is driven by the 
free energy of electrochemical gradient (passive diffusion) 
or by solvent drag [15, 19, 20]. For solvent drag-induced 
calcium transport, the basolateral Na+/K+-ATPase (NKA) 
pumps sodium into the paracellular space creating Na+-rich 
hyperosmotic microenvironment that, in turn, draws water 
from lumen to the plasma side simultaneously with ionized 
calcium [21, 22]. Paracellular calcium diffusion is indeed 
regulated by tight junction proteins, such as claudins, which 
possess size- and charge-selective properties [15, 19]. The 
expression of some claudins, particularly claudin-2 and -12, 
is dependent on 1,25(OH)2D3 and may be responsible for 
the 1,25(OH)2D3-induced calcium transport across the para-
cellular pathway [23]. Generally, under normal diets, the 

level of ionized calcium in the duodenal lumen is relatively 
high (~ 5 mmol/l) as compared with plasma ionized calcium 
(1.1–1.3 mmol/l) [19]. Thus, there is a calcium gradient 
across the duodenal epithelium, which can be a driving force 
for the paracellular calcium absorption. Our previous study 
has shown that luminal calcium concentration of ~ 5 mmol/l 
is substantial to induce the paracellular transport of calcium 
across the intestinal epithelium, and it can contribute up to 
80% of the total calcium absorption, especially in the distal 
small intestine [19]. Moreover, the impaired paracellular 
pathway might also reduce the intestinal absorption of some 
other minerals, such as magnesium [24].

The relatively constant levels of plasma calcium are regu-
lated by an integrative response of the calcium-regulating 
organs organized as the parathyroid–kidney–intestinal axis 
[25, 26]. For instance, decreases in plasma calcium stimu-
late the parathyroid gland to secrete PTH, which raises the 
plasma calcium level by (i) enhancing calcium reabsorption 
in the thick ascending limb of the Henle’s loop and distal 
renal tubule within minutes, (ii) stimulating bone resorption 
within minutes to hours, and (iii) stimulating 1α-hydroxylase 
in the proximal renal tubule to increase the production of 
1,25(OH)2D3, which, in turn, potently stimulates intestinal 
calcium absorption within 24 h. PTH has also been reported 
to directly stimulate intestinal calcium absorption via L-type 
voltage-dependent calcium channel [27, 28]. On the other 
hand, an increase in plasma free-ionized calcium then 
induces negative feedback to inhibit PTH secretion through 
calcium-sensing receptor (CaSR), followed by a decrease in 
1,25(OH)2D3 production, thereby reducing calcium absorp-
tion [29, 30]. Moreover, certain local and systemic humoral 
factors, e.g., FGF-23, may negatively regulate the duodenal 
calcium transport in a calcium and/or 1,25(OH)2D3-depend-
ent manner.

FGF-23 was originally known as osteocyte/osteoblast-
derived phosphatonin—i.e., a phosphorus-regulating hor-
mone—and has recently been recognized as a new cal-
cium-regulating hormone [31–33]. Khuituan et al. [31, 32] 
demonstrated a novel role of FGF-23 as a negative feedback 
regulator of the 1,25(OH)2D3-enhanced duodenal transcel-
lular and paracellular calcium absorption in rodents. This 
finding provides an alternative explanation of how the duo-
denal enterocytes restrict excessive calcium transport and 
thus prevent lethal hypercalcemia. Meanwhile, an increase in 
serum phosphate level induces PTH and FGF-23 release that 
enhance phosphate excretion by suppressing 1α-hydroxylase 
and 1,25(OH)2D3 production [34, 35]. Calcium is also a 
potent stimulator of FGF-23 production via a vitamin D 
receptor (VDR)-independent manner [36].
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Evidence of calcium malabsorption 
and osteoporosis in thalassemia

Osteoporosis and osteopenia are among the most common 
complications in thalassemia, and are found in > 50% of 
β-thalassemic patients, especially patients with thalas-
semia major, the most severe form of β-thalassemia 
caused by βo/βo genotype (i.e., no β-globin chain and no 
hemoglobin A) [8, 37, 38]. A study in prepubertal chil-
dren (age 8–9 years old) showed a significant decrease in 
bone mineral density (BMD) in thalassemia major patients 
as compared to the age- and sex-matched constitutional 
short statue control [39]. Similarly, studies in children and 
adolescents (age 8–25 years old) with both transfusion-
dependent and transfusion-independent β-thalassemia 
major showed that most patients experienced osteope-
nia/osteoporosis, bone pain and short stature related to 
impaired bone formation and growth compared to the age-
matched controls [40–43]. The prevalence of bone frac-
ture was approximately 12% in all types of thalassemic 
patients, including β-thalassemia major, β-thalassemia 
intermediate, thalassemia E/β and α-thalassemia, with an 
equal distribution between both sexes [44]. Another study 
covering patients with a variety of thalassemia genotypes 
and age range (6–75 years old) showed a high incidence 
of bone fracture, bone pain, and increased bone turnover 
that were correlated with decreased BMD [45]. Studies in 
animal models confirmed a high incidence of osteopenia/
osteoporosis in thalassemia. Specifically, data from our 
studies using mice with C → T mutation at nucleotide 
654 of intron 2 (βIVSII-654) and hemizygous knockout of 
β-globin gene (BKO) as β-thalassemic animal models 
showed that both hemizygous βIVSII-654 knockin and BKO 
mice manifested a significant reduction in BMD, bone 
mineral content (BMC), bone volume, and bone thickness, 
as compared to the wild-type controls [46–48].

A potential cause of decreased BMD leading to osteo-
penia/osteoporosis could result from an imbalance in bone 
remodeling process, i.e., elevated bone resorption and/or 
reduced bone formation. Bone histomorphometric analy-
sis in thalassemic mice revealed that osteoclast surface, 
eroded surface, and osteoclast function were elevated 
in both hemizygous βIVSII-654 knockin and BKO thalas-
semic mice [46, 48]. Consistent with high bone resorp-
tion, higher circulating levels of osteoclastogenic factors 
including interleukin (IL)-1α, IL-1β, receptor activator of 
nuclear factor-κB ligand (RANKL), and tumor necrosis 
factor (TNF)-α were reported in thalassemic animals and 
patients, and were well associated with their decreased 
BMD [8, 47, 49–51]. These osteoclastogenic cytokines 
could also suppress osteoblast differentiation and activity, 
which in turn decrease bone formation. Furthermore, the 

known osteogenic factor, insulin-like growth (IGF)-1, was 
decreased in the serum of β-thalassemic patients together 
with lower BMD [39, 41, 42, 52, 53]. In contrast, serum 
levels of osteoblast differentiation inhibitors, namely Dick-
kopf-1 (a negative regulator of Wnt signaling) and scle-
rostin, were significantly higher in thalassemic patients 
[54, 55].

Other than the imbalanced bone remodeling process, 
hypocalcemia—possibly due to a decrease in calcium 
absorption—has been reported in both thalassemic animals 
and patients. Significant decreases in serum calcium and 
intestinal calcium absorption were observed in patients 
with thalassemia major together with the lower BMD [10, 
43, 56, 57]. Evidence from animal studies, such as hemizy-
gous βIVSII-654 knockin and BKO thalassemic mice, showed 
a marked decrease in calcium absorption across the small 
intestinal epithelium [11, 12, 58]. The phenomenon was pre-
sent in both sexes of animals, and the daily injection of 1 µg/
kg 1,25(OH)2D3 failed to restore normal intestinal calcium 
absorption in thalassemic mice despite being effective in 
enhancing calcium absorption in wild-type mice—presum-
ably a sign of 1,25(OH)2D3 resistance [11]. Our recent study 
also found that thalassemia-induced calcium malabsorption 
could be rescued by a long-time treatment with lower dose 
of 1,25(OH)2D3 or treatment with hepcidin [12], which will 
be discussed further in the following section.

The alterations of the intestinal 
calcium‑transport mechanisms 
in thalassemia

Direct evidence of thalassemia-induced changes in calcium 
transporters and/or the related proteins involved in intestinal 
calcium absorption is still limited. A study from our group 
showed downregulation of the transcellular calcium trans-
porters and calcium transport-related proteins, i.e., TRPV5, 
TRPV6, calbindin-D9k, and PMCA1b, in thalassemic mice 
(Fig. 1) [11]. This impairment probably accounted for the 
reduction in intestinal calcium absorption. Besides these 
calcium transporters, other membrane-transporting proteins 
may be indirectly involved in calcium transport. The study in 
pernicious anemia showed the decreased activity of jejunal 
NKA, which is important for stabilization of the intracellular 
Na+ necessary for the extrusion of absorbed calcium via 
the basolateral NCX1 [59]. Furthermore, calcium-binding 
proteins, which take part in the cytoplasmic calcium trans-
location, also play an important role in intestinal calcium 
transport. In addition to our report of decrease in the intes-
tinal expression of calbindin-D9k in thalassemic mice [11], 
there was another report of early life iron deficiency anemia 
that induced a decrease in calcium-binding protein parvalbu-
min in the rat hippocampus [60]. Even though the reported 
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decreased parvalbumin in iron deficiency anemia came 
from a different organ system, it suggested a possibility of 
anemia-induced downregulation of calcium-binding protein 
expression in thalassemia. Taken together, the reduced levels 
of calcium transporters and related proteins could account 
for the impaired intestinal calcium transport as can be seen 
in thalassemic patients and animal models.

Paracellular intestinal calcium transport, another cal-
cium transport system, represents the selective transpor-
tation of calcium through tight junction proteins, particu-
larly claudins and occludin [5]. As mentioned earlier, 
1,25(OH)2D3 has been shown to upregulate claudin-2 and 
-12, leading to the enhanced paracellular calcium transport 

in vitro and in vivo [5, 23]. Interestingly, hypoxia result-
ing from chronic anemia could lead to the activation of 
hypoxia-inducible factor (HIF)-1, which was also upregu-
lated in the placentae of women with iron deficiency ane-
mia and β-thalassemia trait carriers [61–63], and has been 
shown to suppress the expression of occludin and clau-
din-1 in human intestinal cells and rat duodenum [64, 65]. 
This body of evidence strongly supports the negative effect 
of thalassemia on the intestinal calcium transport (Fig. 1). 
However, more studies are needed to further provide the 
detailed molecular mechanisms of intestinal calcium trans-
port impairment in thalassemia.

Fig. 1   Schematic diagram shows possible mechanisms of calcium 
regulatory pathway and intestinal calcium absorption in thalassemia. 
Reduction of calcium-regulating hormones, i.e., parathyroid hor-
mone (PTH), calcitonin, and 1,25(OH)2D3, in thalassemia leads to 
a decrease in the intestinal calcium absorption. Inset The decreased 
intestinal calcium absorption in thalassemia is due to downregula-
tion of transcellular calcium transport-related proteins (TRPV5/6, 

PMCA1b, and NCX1). The possible mechanism may also involve 
downregulation of NKA and tight junction proteins, such as claudins, 
thereby compromising the paracellular calcium transport (for details, 
please see text). PVALB, parvalbumin; CaBP, calcium-binding pro-
teins (e.g., calbindin-D9k); Cav1.3, voltage-dependent calcium chan-
nel 1.3
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Thalassemia‑induced calciotropic 
endocrinopathies

As shown in Fig. 1, hormonal control plays an important 
role in the regulation of intestinal calcium absorption. 
Therefore, the defects or abnormalities of these hormones 
in many diseases, including osteoporosis and thalassemia, 
could greatly affect intestinal calcium transport. One of 
the key regulators for intestinal calcium absorption is 
1,25(OH)2D3, which directly stimulates calcium absorp-
tion by upregulating the expression and activities of sev-
eral calcium transporters, e.g., TRPV5, TRPV6, calbindin-
D9k [2, 31, 66]. PMCA1b expression and activity were also 
upregulated by 1,25(OH)2D3 in a human intestinal cell line 
and vitamin D-deficient mice, respectively [2, 67]. Fur-
thermore, 1,25(OH)2D3 enhanced NCX activity in chick 
duodenum and NCX expression in duodenum of vitamin 
D-replete mice [31, 32, 68]. Taken together, it is clear 
that 1,25(OH)2D3 has a crucial role in intestinal calcium 
transport; therefore, decreases in 1,25(OH)2D3 level and/
or its receptor can negatively affect the intestinal calcium 
transport.

In β-thalassemic patients, the level of serum 25-hydrox-
yvitamin D [25(OH)D] was significantly reduced as com-
pared to the healthy individuals [42, 43, 69–71]. Impaired 
1,25(OH)2D3 synthesis was also reported in β-thalassemia 
major patients [72]. In βIVSII−654 knockin thalassemic mice, 
vitamin D receptor was downregulated in the duodenal 
epithelial cells as compared to their wild-type littermates 
[11]. Other than thalassemia, patients with sickle cell ane-
mia also showed a decreased serum vitamin D level [73]. 
The reduced serum 1,25(OH)2D3 in thalassemic patients 
and animals was correlated with low serum calcium lev-
els and BMD, indicating that an impaired 1,25(OH)2D3 
production and function could potentially cause intestinal 
calcium malabsorption in thalassemia.

PTH has been known to increase serum calcium level 
by reducing urinary calcium reabsorption, stimulating 
bone resorption, and indirectly enhancing intestinal cal-
cium absorption by stimulating 1,25(OH)2D3 production. 
However, Picotto and coworkers showed that PTH might 
directly stimulate intestinal calcium transport, which was 
inhibited by Cav inhibitor [27]. Many studies reported the 
decreased serum PTH or hypoparathyroidism in patients 
with thalassemia major regardless of their age or blood 
transfusion status [40–43, 56, 69, 72, 74, 75]. Specifically, 
a reduction in serum PTH level is probably due to thalas-
semia-induced iron overload and iron deposit in the para-
thyroid gland, thus leading to parathyroid chief cell dys-
function and impairment of calcium homeostasis [76–78]. 
Decreased PTH was shown to correlate with lower serum 

and urine calcium levels and lower BMD in thalassemia 
[40, 43, 56, 57, 75]. Nevertheless, there was a paradox that 
low levels of PTH with its well-known bone resorption-
stimulating activity were present with lower BMD. Taken 
together, thalassemic patients demonstrated reductions in 
serum calcium level and BMD that were associated with 
decreased PTH level, suggesting a possibility of intesti-
nal calcium malabsorption from hypoparathyroidism in 
thalassemia. Furthermore, since PTH is a potent stimu-
lator of renal 1,25(OH)2D3 production, the thalassemia-
induced reduction in PTH level may cause a lower serum 
1,25(OH)2D3, thereby reducing intestinal calcium trans-
porter expression and transcellular calcium absorption [5, 
79, 80]. A decrease in PTH level may directly aggravate 
calcium malabsorption in thalassemia because it can exert 
a direct stimulatory effect on the intestine by increasing 
cellular calcium uptake and extrusion [27, 28, 81].

Another calcium-regulating hormone, calcitonin, was 
demonstrated to negatively regulate intestinal calcium 
absorption in several studies [82, 83]. However, some 
studies found positive effects of calcitonin on intestinal 
calcium absorption. Specifically high-dose calcitonin 
could induce intestinal calcium absorption [84], and 
chronic calcitonin treatment was able to increase serum 
calcium level through the stimulation of 1,25(OH)2D3 
production in rats [3, 85]. β-thalassemic patients were 
reported to have decreased levels of calcitonin and chronic 
calcitonin treatment could improve osteoporosis in these 
patients [52, 86], presumably due to an inhibitory effect 
of calcitonin on osteoclast function. Accordingly, the 
inappropriately decreased calcitonin levels in thalassemic 
patients could also contribute to intestinal calcium mal-
absorption possibly from lower 1,25(OH)2D3 production. 
Moreover, thalassemia-induced iron overload and iron 
deposit in the gonads further impaired production of sex 
steroids, particularly 17β-estradiol [12, 87, 88], which is 
one of the potent positive regulators of intestinal calcium 
absorption [89]. Thus, thalassemic patients experienced 
thalassemia-induced calciotropic endocrinopathies, lead-
ing to decreased levels of calcium transport-regulating 
hormones including 1,25(OH)2D3, PTH and calcitonin.

Regarding FGF-23, although it has been reported to 
negate intestinal calcium absorption in mice [31, 32], 
there are limited studies on the roles of FGF-23 on cal-
cium homeostasis in thalassemia. Most studies focused 
on the role of FGF-23 on iron metabolism [90–92]. For 
example, Bożentowicz-Wikarek and coworkers reported 
a low level of circulating iron being associated with an 
increase in FGF-23 levels [90]. Thus, more understanding 
about FGF-23 and thalassemia would help in improving 
bone health in thalassemic patients.
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Effects of thalassemia‑induced iron 
hyperabsorption, iron metabolism 
dysregulation, and iron overload 
on the intestinal calcium transport

Iron overload in thalassemic patients could have resulted 
from treatment involving repeated blood transfusion as 
well as ineffective erythropoiesis and the anemia-induced 
compensation iron hyperabsorption in the small intestine. 
In iron-overloading conditions, iron deposit in the solid 
organs (e.g., liver) and endocrine organs (e.g., pancreas 

and gonads) could lead to organ damage and endocrine 
disturbance, respectively [93–102]. As depicted in Fig. 2, 
upregulation of iron transporters, and subsequent increased 
iron absorption were reported in thalassemic patients 
[103]. Studies in non-transfusion-dependent thalassemic 
patients [104] and thalassemic mice with moderate ane-
mia [102, 105–107] also showed increased intestinal iron 
absorption. The iron transporters and related proteins that 
were upregulated in thalassemic mice included divalent 
metal transporter (DMT)-1 (an apical transporter for iron 
uptake), ferroportin-1 (a basolateral transporter for iron 
efflux from the enterocytes), neutral gelatinase-associated 

Fig. 2   Cellular mechanisms of iron transport in thalassemia. Under 
normal conditions, dietary iron in the intestinal lumen can traverse 
the apical membrane by several pathways, such as transferrin recep-
tor 1 (TfR1)-mediated uptake of iron-bound transferrin (Tf), divalent 
metal transporter 1 (DMT1)-mediated uptake of Fe2+, and Fe-heme 
uptake by heme carrier protein (HCP)-1. Although Fe3+ (non-heme 
iron) is more abundant than Fe2+, DMT1 predominantly transports 
Fe2+ in the presence of H+ in the lumen; therefore, it needs DCytb1 
to change the iron redox state. Meanwhile, after endocytosis, iron 
ions are liberated from Fe-Tf-TfR1 by a metalloreductase, six-trans-
membrane epithelial antigen of the prostate (STEAP)-3, before being 

transported into the cytoplasm via DMT1 to join the cellular labile 
iron pool (LIP). Iron in LIP can be distributed into mitochondria and 
ferritin, or extruded across the basolateral membrane by ferropor-
tin-1 (FPN). FPN is also a receptor for hepcidin, which can induce 
FPN internalization and degradation. In thalassemia, the upregulated 
expressions of DMT1 and TfR1 enhance apical iron uptake into the 
intestinal epithelial cells. In addition, a reduction in the hepcidin lev-
els decreases FPN internalization and degradation, which can, in turn, 
increase the number of FPN proteins in the basolateral membrane, 
and then enhances the intestinal iron absorption
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lipocalin (NGAL), and transferrin receptor (TfR)-1 [11, 
12, 105, 107]. In contrast, the expression of the negative 
regulator of intestinal iron transport, namely hepcidin, 
which is normally produced by the liver and binds to ferro-
portin-1, was decreased in thalassemic mice, and hepcidin 
treatment could alleviate iron overload in these mice [96, 
102, 105–108]. Thus, the upregulation of iron transporters 
as well as the downregulation of hepcidin could contribute 
to an increase in intestinal iron absorption, which would 
worsen the iron overload condition in thalassemia.

While iron absorption was upregulated in thalassemia 
[105], many studies showed a significant decrease in calcium 
absorption as mentioned previously [11, 12]. Recently, an 
inverse correlation between duodenal calcium transport and 
iron absorption was demonstrated in thalassemic mice [12]. 
Subcutaneous administration of hepcidin thus increased cal-
cium transport in these thalassemic mice. In this study, hep-
cidin showed its potential to effectively alleviate intestinal 
calcium malabsorption as well as to relieve iron overload 
by inhibiting intestinal iron transport in thalassemic mice. 
The mechanism(s) underlying this inverse correlation is not 
completely understood. Since iron and calcium did not share 
apical or basolateral transporters, it was likely that the inter-
action resided in the cytoplasm of intestinal epithelial cells, 
i.e., the intracellular translocation of their binding proteins 
or the membrane-bound vesicles [109]. In the duodenums 
of thalassemic mice, abolishment of hepcidin effects on 
calcium absorption by a chemical (e.g., chloroquine) that 
disrupted the function of intracellular vesicles and vesicu-
lar transport suggested the possible interaction between cal-
cium and iron transport systems in the vesicles [12]. These 
intracellular vesicles are believed to rapidly shuttle both 
calcium and iron from the apical side to basolateral side of 
the enterocyte. It has been suggested that the lysosome-like 
intracellular vesicles are able to accommodate iron [110], 
and they may use Ca2+/H+ exchanger (CAX) to accumulate 
calcium in exchange with H+ efflux into the cytoplasm [111]. 
Since the vesicular H+ efflux is dependent on cytoplasmic 
pH (i.e., acidic pH in the vesicle vs. more alkaline pH in 
the cytoplasm), an impairment of cellular pH balance may 
also diminish both calcium and iron absorption. Recently, an 
inhibitor of Na+/H+ exchanger (NHE)-3, which is essential 
for cellular pH regulation, was found to hinder the hepcidin-
induced calcium transport in the duodenums of BKO mice 
[58].

Other than thalassemic mice, the reciprocal correlation 
between calcium absorption and extracellular iron concen-
tration has been shown in human intestinal epithelial Caco-2 
cells [112]. Data from this cell line model showed that cel-
lular calcium absorption was increased with the decrease in 
the extracellular iron concentration, and the opposite trend 
could be seen when extracellular iron concentration was 
elevated [112]. Furthermore, the negative effects of iron 

overload on intestinal calcium transport could also occur 
through the decreases in calciotropic hormone levels. Lev-
els of vitamin D were apparently lower by ~ 90% in iron-
overloaded and multiple transfused thalassemic patients 
[113]. This suggested another possible consequence of iron 
overload-induced decrease in intestinal calcium absorp-
tion in thalassemic patients through the downregulation of 
calciotropic hormone, as depicted in Fig. 3. Consequently, 
bone loss occurs as a result of low blood calcium levels. 
Moreover, high iron levels can suppress osteoblast activity 
[114]. Although the reciprocal interaction between intestinal 
calcium absorption and iron absorption in thalassemia has 
been elaborated in many studies, more studies are needed 
to elucidate the connecting mechanisms between the two 
minerals. Manipulation of the iron transport system by using 
inhibitors (e.g., DMT1 inhibitor or recombinant hepcidin 
as a negative regulator of ferroportin-1 function) could be 
a potential novel intervention to assuage both intestinal 
calcium malabsorption and iron overload for thalassemic 
patients.

An iron chelator is often prescribed to mitigate iron over-
load in thalassemic patients. Up till now, there has been no 
study to investigate the direct effect of iron chelator [e.g., 
desferoxamine (DFO)] on serum calcium level. The potential 
association between DFO and hypocalcemia was reported 
in an infant with parenteral nutrition-associated aluminum 
overload, which could lead to impaired bone metabolism. 
The patient failed to respond to any calcium or vitamin D 
supplement, especially when the level of blood aluminum 
was high. However, shortly after DFO treatment, the urinary 
and blood calcium decreased. Accordingly, it was postulated 
that a decreased serum calcium level could indirectly come 
from an increased calcium accretion into bone as the level of 
aluminum was reduced during DFO treatment [115].

On the other hand, some studies have suggested the 
potential positive effects of iron chelator treatment that capa-
ble of improving hypoparathyroidism and hypothyroidism 
in thalassemia patients [56, 116]. One has shown no cor-
relation between hypothyroidism and the regularity of iron 
chelation treatment [117]. Others reported no significant 
side effects on calcium level or calciotropic hormones from 
oral intake of deferiprone, DFO, or a combination of both 
in thalassemia patients [118–120]. Thus, the effects of iron 
chelators, particularly DFO, remain controversial and need 
more investigation.

Conclusions and perspectives

Although thalassemia is a complex genetic disease affect-
ing several organs, including intestine and bone, it is a good 
model for investigating an association between iron and cal-
cium transport across the intestinal epithelium. Generally, 



228	 The Journal of Physiological Sciences (2018) 68:221–232

1 3

thalassemia with iron hyperabsorption leads to impaired 
calcium absorption. Negative correlation between iron and 
calcium transport has recently been demonstrated in the 
duodenum of thalassemic mice [12], consistent with the 
general recommendation that iron and calcium supplements 
should not be administered simultaneously. The thalassemia-
induced impairment in calcium transport is caused by sev-
eral factors, i.e., impaired calciotropic hormone production 
and response as well as low transcellular calcium uptake. 
Iron hyperabsorption results, in part, from aberrant hepcidin 
release and response, and overexpression of DMT1 and/or 
ferroportin-1. Correlations between serum hepcidin, iron, 
and other negative regulators of calcium absorption, e.g., 
FGF-23 [121], remain elusive. Understanding of the under-
lying mechanism by which iron hinders calcium transport 
across the intestinal epithelium is crucial for development 
of better calcium/iron supplement products, particularly for 
pregnant women who normally need both minerals for fetal 
development. Finally, hepcidin and iron transport block-
ers (e.g., DMT1 inhibitor) may be useful for thalassemic 
patients, who require reduction of iron absorption and res-
toration of intestinal calcium uptake.
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