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Abstract
Dysfunction of mitophagy, which is a selective degradation of defective mitochondria for quality control, is known to be 
implicated in the pathogenesis of Parkinson’s disease (PD). However, how treadmill exercise (TE) regulates mitophagy-
related molecules in PD remains to be elucidated. Therefore, we aimed to investigate how TE regulates α-synuclein (α-syn)-
induced neurotoxicity and mitophagy-related molecules in the nigro-striatal region of 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP)-mice. Our data showed that TE exhibited a significant restoration of tyrosine hydroxylase and motor 
coordination with suppression of α-syn expression, hallmarks of PD, possibly via up-regulation of lysosomal degradation 
molecules, LAMP-2 and cathepsin L, with down-regulation of p62, LC3-II/LC3-I ratio, PINK1 and parkin in the substantia 
nigra of MPTP mice. Therefore, these results suggest that treadmill exercise can be used as a non-invasive intervention to 
improve the pathological features and maintain a healthier mitochondrial network through appropriate elimination of defec-
tive mitochondria in PD.

Keywords  Parkinson’s disease · α-Synuclein · Tyrosine hydroxylase · Treadmill exercise · PINK1/Parkin · Mitophagy · 
Lysosomal degradation

Introduction

Parkinson’s disease is a geriatric illness that shows neurobe-
havioral function defects resulting from specific neuronal 
degeneration of substantia nigra pars compacta (SNpc). The 
role of α-syn in cellular toxicity, which is a hallmark of PD, 

is unclear, but aberrant expression of α-syn is generally rec-
ognized to be toxic to dopaminergic neurons [1].

Many studies have suggested that a diverse range of 
molecular mechanisms, including mitochondrial dysfunc-
tion, the ubiquitin–proteasome system, aberrant autophagy, 
and oxidative stress contribute to the loss of dopaminergic 
neurons with aggregation of α-syn [2–4]. More detailed 
analyses reported that abnormal accumulation of α-syn 
could induce oxidative stress by disrupting mitochondria, 
resulting in neuronal cell death with accumulation of defec-
tive mitochondria [5, 6].

Mitophagy, defined as the selective degradation of 
dysfunctional mitochondria, exists to regulate cellular 
homeostasis. Interestingly, it has been discovered that 
α-syn-induced cellular toxicity might be associated with 
mitophagy [7], and overexpression of α-syn induces defec-
tive mitophagic clearance (mitophagic flux), preceding 
dopaminergic neuronal cell death [8]. In addition, the acti-
vation of mitophagy through diverse stimuli promotes neu-
roprotective effects [9] and attenuates mitochondrial dys-
function [10]. These results imply that the regulation of the 
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mitophagic process might contribute to a decrease in aber-
rant expression of α-syn, alleviating the progressive loss of 
dopaminergic neurons. However, the underlying mechanism 
of this phenomenon needs to be fully elucidated in PD.

Since most PD patients are only aware of the disease 
after clinical symptoms have appeared, the period of treat-
ment is delayed. Physical exercise (PE), which is one of the 
strategies used against neurodegenerative diseases, includ-
ing Alzheimer’s disease (AD), Huntington’s disease (HD) 
and PD, has been suggested as an effective intervention for 
prevention as well as treatment [11]. Moreover, it has been 
discovered that PE ameliorates pathological features such 
as α-syn, tyrosine hydroxylase (TH) and motor behavioral 
deficits in an animal model of PD [12].

More detailed research has shown that, as a protective 
mechanism for reversing the diverse pathological features, 
PE regulates the mitophagy process [13]. However, it 
still remains to be fully elucidated as to whether TE miti-
gates motor function and pathological features and how 
mitophagy-related molecules are regulated in PD. Therefore, 
this study aimed to investigate whether 8 weeks of treadmill 
exercise ameliorates motor behavioral deficits and pathologi-
cal features through the regulation of mitophagy signaling 
molecules in the SN of MPTP-induced mouse model PD.

Experimental methods

Animals

All animal experimental procedures used in this study 
were approved by the Institutional Animal Care and Use 
Committee at Korea National Sport University (KNSU-
IACUC-2014-02). Thirty young adult (8-week-old) male 
C57BL/6 mice were purchased from Samtako (Osan, 
Korea). The mice were maintained at a 12:12 h dark–light 
cycle environment, housed at 22 ± 2 °C with 50% relative 
humidity, and had free access to standard chow diet (Purina 
Mills, Seoul, Korea) ad libitum.

MPTP‑induced mouse model of Parkinson’s disease

To induce the mouse model of Parkinson’s disease, young 
adult (8-week-old) male C57BL/6 J mice were injected with 
a total of 10 doses of 25 mg/kg MPTP (Sigma-Aldrich, St. 
Louis, MO) and 250 mg/kg Probenecid (Sigma-Aldrich, St. 
Louis, MO) for 5 weeks by intraperitoneal injection. Then, 
we anesthetized the MPTP mice (n = 10) at the end of the 
5 weeks of MPTP administration to provide clues to the 
pathogenesis of PD. The other ten control mice received the 
same dose of normal saline.

Treadmill exercise

At 13  weeks of age, MPTP-induced PD mice and the 
control mice were divided into one of the following 
groups until the age of 21 weeks: C57BL/6 mice with 
saline injection (CON, n = 10), MPTP mice in sedentary 
condition (MPTP, n = 10) and MPTP mice on treadmill 
exercise (MPTP-TE, n = 10). Standard laboratory cages 
(330 × 180 × 140 mm) were used for all mice. In addition, 
treadmill exercise was performed using a Rodent Tread-
mill (8 lanes, Dae-myung Scientific Co, Ltd, Korea). Pre-
exercise was performed at 8 m/min, 30 min/day for 5 days 
to familiarize the mice with the treadmill-exercise envi-
ronment. After this period, exercise protocol (6 m/min for 
the first 5 min, 9 m/min for the next 5 min, 12 m/min for 
the next 20 min, 15 m/min for the next 5 min, and 12 m/
min for the last 5 min) was conducted 5 days a week at a 
gradient of 0° for 8 weeks [14, 15]. However, a sedentary 
group remained in their home cage throughout the course 
of the experiment.

Rota‑rod test for behavioral testing

In this behavioral test, mice were made to walk on top of a 
rotating cylinder to evaluate their motor coordination func-
tion and sense of balance before and after the experiment. 
A Rota-rod (JD-A-07RA5, Jeung Do Bio & Plant Co, Ltd) 
was used to gradually increase the speed every 30 s, and 
the time when the test animal fell off was recorded. First, 
the mice were allowed to get acclimated to the rotating 
cylinder moving at 10 rpm for 120 s. Rota-rod tests were 
performed before and after 8 weeks of treadmill exercise. 
The speed was increased by 5–40 rpm and two sessions 
were measured to calculate the average. The maximum 
performance time was limited to 300 s.

Brain tissue extraction and fixation

All animal models were anesthetized by inhaling CO2 gas, 
and then we extracted the brain tissue sample and sepa-
rated the tissue (substantia nigra). All samples were stored 
at − 80 °C in a deep freezer (SANYO, Japan) until needed 
for biochemical assay. Extraction of brain tissues for 
immunohistochemical analysis proceeded as follows. After 
opening the thoracic cavity, 0.1 M phosphate buffer saline 
(PBS) and 4% paraformaldehyde (PFA) solution mixed in 
0.1 M phosphate buffer solution were perfused through 
the left ventricle. Fixed brains were extracted and placed 
in 4% PFA solution for 12 h, and then it was precipitated 
for 5 straight days in 30% sucrose solution. Serial coronal 
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sections sliced into 40-μm-thick slices were made by using 
a freezing microtome (Leica, Nussloch, Germany).

Isolation of brain mitochondria fraction

Mitochondria were extracted by using a commercial Mito-
chondrial Extraction Kit (NOVUS, IMGENEX Corporation, 
San Diego, CA). Following the homogenization of brain tis-
sue by using 1 ml of homogenizing buffer per 70 mg, it 
was centrifuged at 3000 rpm for 10 min at 4 °C. Extracted 
supernatant was again centrifuged at 12,000 rpm for 30 min 
at 4 °C. After that, the supernatant (cytosolic fraction) was 
extracted. The pellet left was centrifuged with 1 ml of 1× 
suspension buffer at 12,000 rpm for 10 min at 4 °C. After 
that, the pellet left after discarding the supernatant was 
mixed with 1 ml of suspension buffer, and again centrifuged 
at 12,000 rpm for 10 min at 4 °C. The pellet left follow-
ing the elimination of supernatant was mixed with 1 ml of 
mitochondrial lysis buffer for 30 min at 4 °C. The superna-
tant (mitochondrial fraction) obtained by centrifuging the 
extracted supernatant (mitochondrial extract) at 12,000 rpm 
for 5 min at 4 °C was extracted.

Western blotting

After the protein sample was loaded into the stacking gel 
well in the Mini-Protein II dual-slab apparatus (Bio-Rad, 
CA, USA) with a standard marker (Page Rular Pre-stained 
Protein Ladder #SM0671-Fermertas) at a concentration of 
30 μg total protein, the protein sample was electrophoresed 
at 80 V. A polyvinylidine difluoride (PVDF) membrane 
(Immuno-Blot, PVDF, Bio-Rad, CA, USA) was reacted 
to induce membrane activation for 2 min. Proteins were 
transferred for 1 h at a constant voltage of 200 mA. Each 
membrane was blocked in 3% BSA, followed by incuba-
tion with the primary antibody: α-synuclein (BD bioscience, 
1:1000); tyrosine hydroxylase (Millipore, 1:1000); PINK1 
(Abcam, 1:1000); parkin (Abcam, 1:1000); p62 (Cell Sign-
aling, 1:1000); LC3A/B (Abcam, 1:1000); LAMP2 (Santa 
Cruz, 1:1000); cathepsin L (Abcam, 1:1000); Tom 20 (Santa 
Cruz, 1:1000); β-actin (Santa Cruz, 1:1000) diluted in 3% 
BSA for 12 h at 4 °C. Following washing each membrane 
with 0.05% TBS-T solution, it was incubated with the sec-
ondary antibody diluted in blocking solution for 120 min: 
horseradish peroxidase (HRP)-conjugated goat anti-rabbit 
(1:5000); horseradish peroxidase (HRP)-conjugated rabbit 
anti-goat (1:5000); horseradish peroxidase (HRP)-conju-
gated goat anti-mouse (1:5000). Next day, each membrane 
was colorized by soaking in luminol reagent solution. Then, 
protein bands were detected using an image analysis system 
(Molecular Imager Chemi Doc XRS System, Bio-Rad, USA) 
and measured by using Quantity One 1-D Analysis Software 
(Bio-Rad, USA).

Immunohistochemistry

In this study, brain tissue sections (40 μm) of an animal 
model were analyzed by using a free-floating method. 
Antigen retrieval was performed by boiling the sections 
in 0.01 M sodium citrate buffer at 67 °C for 1 h. Five 
percent normal donkey serum (2309032, Millipore, USA) 
was used to block non-specific bindings for 1 h at room 
temperature. The sections were then incubated overnight 
with the primary antibody: anti-TH (Millipore, AB152, 
Germany) at 4 °C. The next day, tissue samples were incu-
bated with the secondary antibody: biotinylated anti-rabbit 
lgG (H + L) (Vector laboratories, Inc, BA-1000, USA). 
Avidin–biotin–peroxidase complex (Vectastain-Elite ABC 
kit, Vector Laboratories) was used to react to the tissues 
at 37 °C. Brain tissues were visualized using DAB per-
oxidase substrate solution (SK-4100, Vector Laborato-
ries, USA) for 3–5 min. Visualized tissue samples were 
mounted on gelatin-coated slide glass and immersed in 80, 
90, 100% Et-OH for dehydration, and then cleared with 80, 
90, 100% xylene. Finally, the slide glasses were covered 
using Permount medium and cover glasses. Images were 
observed using an optical microscope (Leica Microsys-
tems, DM 2500, Germany).

Immunofluorescence staining

Brain samples (40 μm) of each group were washed out with 
10 mM phosphate buffer saline (PBS). Antigen retrieval 
was performed by boiling the sections in 0.01 M sodium 
citrate buffer at 90 °C for 1 h. Ten percent normal donkey 
serum (2309032, Millipore, USA) was used to block non-
specific bindings for 1 h at room temperature. The sections 
were then incubated overnight with the primary antibody: 
anti-α-synuclein (BD bioscience, USA) at 4 °C. The fol-
lowing day, tissue samples were incubated with the second-
ary antibody: Cy3-conjugated donkey anti-mouse (Jackson 
Immunochemicals, West Grove, PA, USA). After the tis-
sues had been washed out 3 times, they were mounted on 
poly-l-lysine coated glass slides with Vectashield (Vector 
Laboratories, Burlingame, CA, USA). Analysis of results 
was conducted by using an immunofluorescence microscope 
(Leica Microsystems, TCS SP8, Germany).

Detection and quantification of immunolabeled 
cells

The counting of immunolabeled positive cells in response 
to the antibodies was carried out manually, and the results 
for all animals in the group were averaged. The definition 
of the area was based on the bregma point, referring to the 



710	 The Journal of Physiological Sciences (2018) 68:707–716

1 3

Mouse Brain Atlas: C57BL/6 J (website; http://www.mbl.
org/atlas170/atlas170_frame.html).

Statistical analysis

Data were analyzed using SPSS version 18.0 (SPSS, 
Inc., Chicago, IL, USA). All values are expressed as 
mean ± SEM. Statistical significance was determined using 
an independent t-test or a one-way ANOVA when compar-
ing the groups. A least significant difference (LSD) post hoc 
test was followed for all pair-wise multiple comparisons if 
a statistically significant group main effect was found. Dif-
ferences were considered to be statistically significant at 
α = 0.05. In addition, the results (% of expression levels 
derived from each experiment) obtained by western blot-
ting analysis (six mice per group) were used for correlation 
analysis.

Results

Treadmill exercise ameliorates motor behavioral 
deficits in MPTP mice

Figure 1 shows the results of the rota-rod test as behavioral 
assessment. MPTP mice showed significant reduction in the 
retention time compared with saline-treated control mice 
on the rota-rod test (independent t-test, t = 18.56, df = 28, 
p < 0.001, Fig. 1a). On the other hand, MPTP mice observed 
after treadmill exercise showed significant improvement in 
the retention time as compared to MPTP mice [LSD post hoc 
test, F(2,29) = 35.37, p < 0.001, one-way ANOVA, Fig. 1b], 
suggesting that treadmill exercise restores motor behavioral 
deficits while MPTP administration promotes motor coor-
dination dysfunction.

Treadmill exercise suppresses α‑syn expression 
in substantia nigra and striatum of MPTP mice

To determine whether treadmill exercise down-regulates the 
expression of α-syn protein in MPTP mice (since aggrega-
tion of α-syn is one of the neuropathological hallmarks of 
PD, being directly toxic to neurons [16]), we performed a 
western blot followed by immunofluorescence analysis. One-
way ANOVA of α-syn data indicated significant effects for 
the groups (SN, F(2,17) = 21.18, p < 0.001). As shown in 
Fig. 2a, b, MPTP mice with treadmill exercise had a signifi-
cantly lower level of α-syn than MPTP mice in the substantia 
nigra (SN). In addition, we analyzed substantia nigral and 
striatal α-syn immunoreactivity with higher magnification. 
As shown in Fig. 2c, immunolabeling with α-syn specific 
antibody revealed that the density of nigro-striatal α-syn 
in MPTP mice was notably increased whereas the density 

of nigro-striatal α-syn was decreased after treadmill exer-
cise. We further analyzed the numbers of α-syn-positive 
cells (Fig.  2d, e). One-way ANOVA of α-syn-positive 
cells data indicated significant effects for the groups (SN, 
F(2,11) = 8.62, p < 0.01; STR, F(2,11) = 18.33, p < 0.001). 
MPTP mice with treadmill exercise had a significantly lower 
number of α-syn-positive cells than MPTP mice in the SN 
and STR, respectively.

Western blot and immunohistochemical analysis 
of tryosine hydroxylase in the substantia nigra 
of MPTP mice after treadmill exercise

To determine whether treadmill exercise increases the 
expression of tryosine hydroxylase (TH) protein as an 
enzyme converting into L-dopa in the dopaminergic system, 
we performed western blot followed by immunohistochemi-
cal analysis. One-way ANOVA of TH data indicated sig-
nificant effects for the groups (F(2,17) = 138.51, p < 0.001). 
As shown in Fig. 3a, MPTP mice that were subjected to 
treadmill exercise had a higher expression level of TH than 
MPTP mice in the SN. Moreover, we analyzed TH immu-
noreactivity at a higher magnification. As shown in Fig. 3c, 
immunostaining with a TH specific antibody revealed that 
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Fig. 1   Treadmill exercise ameliorates motor function deficits in 
MPTP mice. a Pre-rota-rod test; a significant difference between 
C57BL mice and MPTP mice on mean latency to fall before the inter-
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the density of TH in the SN region of MPTP mice was nota-
bly decreased whereas the density of TH was increased after 
treadmill exercise. We further analyzed the numbers of TH-
positive neurons (Fig. 3d). One-way ANOVA of TH-posi-
tive neurons data indicated significant effects for the groups 
(SN, F(2,11) = 23.38, p < 0.001). MPTP mice with treadmill 
exercise had a significantly higher number of TH-positive 
neurons than MPTP mice in the SN.

The effect of treadmill exercise 
on the mitophagy‑related molecules in substantia 
nigra of MPTP mice

We investigated whether or not the mitophagy-related 
factors are altered in MPTP mice and then additionally 
whether treadmill exercise induced a neuroprotective effect 
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stantia nigra (SN) for all groups of mice are presented. a, b α-Syn 
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enhanced expression was suppressed after treadmill exercise. d, e 
Number of α-syn-positive neurons in SN and STR region. Values are 
expressed to 100% for levels of C57BL mice. Six mice per C57BL 
mice and MPTP mice subgroups were assayed in triplicate in west-
ern blot analysis and four mice per C57BL mice and MPTP mice 
subgroups were assayed in triplicate in immunofluorescence assay. 
Scale bars: 100  μm. LSD post hoc test after ANOVA. Values are 
mean ± SEM. Saline control (CON), MPTP treatment with probene-
cid (MPTP), and MPTP treatment with probenecid plus treadmill 
exercise (MPTP-TE)
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by regulating the mitophagic flux. One-way ANOVA of 
mitochondrial PINK1 and parkin data indicated significant 
effects for the groups (PINK1, F(2,17) = 7.87, p < 0.01; 
parkin, F(2,17) = 5.63, p < 0.05). As shown in Fig. 4a, c, 
d, MPTP mice which were subjected to treadmill exercise 
had a lower level of SN mitochondrial PINK1 and parkin 
than MPTP mice. In addition, one-way ANOVA of p62 
expression level indicated significant effects for the groups 
(p62, F(2,17) = 10.38, p < 0.001). As shown in Fig. 4b, e, 
f, MPTP mice with treadmill exercise had a significantly 
lower level of mitochondrial p62 than MPTP mice in the 
SN.

The effect of treadmill exercise on the lysosomal 
degradation process in the substantia nigra of MPTP 
mice

We investigated whether or not lysosomal degradation-
related factors are altered in MPTP mice and then whether 
treadmill exercise would modulate the lysosomal degra-
dation process. One-way ANOVA of LAMP2 and cath-
epsin L data indicated significant effects for the groups 
(LAMP2, F(2,17) = 9.68, p < 0.01; cathepsin L, F(2,17) = 9.69, 
p < 0.01). As shown in Fig. 5a–c, MPTP mice with treadmill 
exercise had a significantly higher level of SN mitochondrial 
LAMP2 and cathepsin L than MPTP mice. As shown in 
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Fig. 5d–e, the LAMP2 (r = − 0.79, p < 0.001) and cathepsin 
L (r = − 0.87, p < 0.001) levels were both negatively cor-
related with α-synuclein protein expression.

Discussion

The dysfunction of mitophagy, which is a selective degrada-
tion of defective mitochondria for quality control, has been 
reported to be one of the pathological mechanisms contrib-
uting to the pathogenesis of PD [8, 9]. PE as a protective 
methodology to reverse the various pathological situations 
is known to exhibit neuroprotective effects, possibly via 
regulation of mitophagy signaling [13, 17]. However, the 
underlying mechanisms of the exercise-induced neuroprotec-
tive effect involved in the regulation of mitophagy-related 
molecules remain largely unknown in PD. The present 
study demonstrated that TE restored motor function and 
loss of dopaminergic neurons in the SN of MPTP-induced 
mouse model of PD, accompanying the down-regulation of 

aberrantly expressed α-syn. In addition, we found that TE 
may prevent the accumulation of dysfunctional mitochondria 
by ameliorating the lysosomal degradation (i.e., mitophagic 
clearance).

To clarify the effect of TE on the neurological and behav-
ioral deficits involved in PD, MPTP and probenecid was 
administered to mice, which is known to replicate the Par-
kinsonian syndrome in rodents and humans [18, 19]. In this 
study, the effects of TE on diverse pathological features 
of PD was evaluated by rota-rod test (retention time) and 
immunoblot analysis, and our data revealed that TE restored 
the behavioral deficit and expression of TH with suppression 
of α-syn expression in the SN. These results are in agree-
ment with previous reports [20, 21] and suggest that, as a 
result of exercise-induced decreased expression of α-syn, TE 
prevents neurotoxicity, mitigating the loss of dopaminergic 
neurons.

A number of studies has  reported that mitophagy is 
mediated by complex mechanisms through interaction with 
mitochondrial fusion, fission [22] and that the proteins 

Fig. 4   Expression level of 
PINK1/parkin-mediated 
mitophagy signaling proteins of 
SN in MPTP mice after tread-
mill exercise. Representative 
western blot showing mitochon-
drial PINK1 and parkin levels 
in the SN for all groups of mice 
are presented. a, c, d Mito-
chondrial PINK1 and parkin 
levels of SN were increased 
in MPTP mice compared with 
C57BL mice, and the levels 
of those proteins in the SN of 
MPTP mice were decreased 
after treadmill exercise. Tom20 
protein was probed as an 
internal control. Representa-
tive western blot showing p62, 
LC3-II/LC3-I ratio in the SN for 
all groups of mice is presented. 
b, e, f p62 and LC3-II/LC3-I 
ratio were increased in MPTP 
mice compared with C57BL 
mice, and the levels of those 
proteins in the SN of MPTP 
mice were decreased after 
treadmill exercise. β-actin was 
probed as an internal control. 
Six mice per C57BL mice and 
MPTP mice subgroups were 
assayed in triplicate in western 
blot analysis. LSD post hoc 
test after ANOVA. Values are 
mean ± SEM. Saline control 
(CON), MPTP treatment with 
probenecid (MPTP), and MPTP 
treatment with probenecid plus 
treadmill exercise (MPTP-TE)
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PTEN-induced kinase 1 (PINK1) and E3 ubiquitin ligase 
(parkin) play a fundamental role [23, 24]. In the pre-
sent study, our novel findings revealed that, as shown by 
increased PINK1, parkin, p62, LC3-II/I ratio and decreased 
lysosomal degradation-related molecules such as LAMP2 
and cathepsin L in the MPTP group, MPTP might cause 
the accumulation of impaired mitochondria, including 
mitophagosomes, which are spherical structures of mito-
chondria with double layer membranes, by interrupting the 
appropriate elimination of dysfunctional mitochondria in the 
SN. By contrast, TE resulted in down-regulation of PINK1, 
parkin and p62 protein expression with the improvement 
of molecules associated with the lysosomal degradation 
process. Consequently, our data suggest that the increase 
of mitophagy-related molecules in the MPTP group is not 
interpreted as an activation of excessive mitophagy signal-
ing but could be interpreted as the accumulation of impaired 
mitochondria compared with that of the control group (e.g., 
defects in lysosomal fusion with phagosome or catabolic 
function), and TE could ameliorate the mitophagic flux, 
possibly via an improvement of the lysosomal degradation 

process (i.e., maintenance of a healthier mitochondrial net-
work through appropriate elimination of impaired mitochon-
dria or mitophagosomes) [25–28].

There are many different interpretations of LC3 immuno-
blots that may exaggerate the effect of the autophagy-lysoso-
mal process; however, the conversion of LC3-I to LC3-II is 
widely used in many studies as an indicator of phagophore 
formation in autophagy and/or mitophagy [30, 31]. Although 
we could not exclude the differences in our experimental 
approach, our results regarding the LC3-ΙΙ/LC3-Ι expres-
sion ratio are in conflict with a previous study that reported 
an increase in LC3-ΙΙ expression induced by exercise [13, 
28]. Therefore, further investigations of these molecules in 
PD are needed.

Also, a limitation of our study is that we did not consider 
the effect of the skeletomuscular system affected by PE that 
could exhibit a neuroprotective effect in PD. It is well known 
that functional abnormalities of skeletal muscle as well as 
the nervous system exist in patients with PD, and mitochon-
drial dysfunction in muscle cells is one of the representative 
pathological features [31–34]. However, studies on skeletal 

Fig. 5   Expression of lysosomal 
degradation-related proteins 
of the SN in MPTP mice after 
treadmill exercise. Repre-
sentative western blot showing 
LAMP2 and cathepsin L levels 
in the SN for all groups of mice 
are presented. a–c LAMP2 and 
cathepsin L were decreased in 
MPTP mice compared with 
C57BL mice, and the levels 
of those proteins in the SN of 
MPTP mice were increased 
after treadmill exercise. β-actin 
was probed as an internal con-
trol. d, e Correlation analysis of 
LAMP2 and cathepsin L with 
α-syn, respectively. Six mice per 
group were assayed in triplicate 
in western blot analysis. LSD 
post hoc test after ANOVA. 
Values are mean ± SEM. Filled 
circle indicates the saline con-
trol group (CON, n = 6), filled 
square indicates the MPTP 
treatment with probenecid 
group (MPTP, n = 6), and filled 
triangle indicates the MPTP 
treatment with probenecid 
plus treadmill exercise group 
(MPTP-TE, n = 6)
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muscle in PD are very limited. Therefore, subsequent stud-
ies on the aforementioned points should be conducted, and 
it would be very meaningful to study the connection and 
effect between the response of skeletal muscle and func-
tional changes of the brain due to exercise adaptation in 
patients with PD.

In conclusion, our results, which require further confirma-
tion, demonstrated that TE in a neurotoxin-induced mouse 
model effectively prevented motor function deficit, loss of 
dopaminergic neurons and increased α-syn expression, and 
that the TE may additionally produce neuroprotective effects 
by improving the lysosomal degradation process, forestall-
ing the accumulation of impaired mitochondria in the SN. 
Taken together, regulating mitophagic clearance by exercise 
intervention may be one of the multi-faceted strategies of 
mitigating the progression of PD, with an improvement in 
pathological features.
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