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Abstract
The recent development of computer technology has made it possible to simulate the hemodynamics of congenital heart dis-
eases on a desktop computer. However, multi-scale modeling of the cardiovascular system based on computed tomographic 
and magnetic resonance images still requires long simulation times. The lumped parameter model is potentially beneficial 
for real-time bedside simulation of congenital heart diseases. In this review, we introduce the basics of the lumped param-
eter model (time-varying elastance chamber model combined with modified Windkessel vasculature model) and illustrate 
its usage in hemodynamic simulation of congenital heart diseases using examples such as hypoplastic left heart syndrome 
and Fontan circulation. We also discuss the advantages of the lumped parameter model and the problems for clinical use.

Keywords  Lumped parameter model · Time-varying elastance · Windkessel model · Congenital heart diseases · 
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Introduction

Hemodynamic management of patients with congenital heart 
diseases remains a challenge for pediatric cardiologists and 
pediatric cardiac surgeons, and the number of specialists 
for pediatric hemodynamic management is limited. Recent 
development of computer technology has allowed simu-
lations of hemodynamics of congenital heart diseases on 
desktop computers. The performance of a recent desktop 
computer has already reached a sufficient stage to perform 
some kind of real-time simulation.

There are two different approaches to simulating car-
diovascular systems of congenital heart diseases. One 
approach is multi-scale computational fluid dynamics 
(CFD) modeling, which is often combined with lumped 
parameter models [1]. Modern imaging technologies such 

as three-dimensional computed tomography (CT) and mag-
netic resonance imaging (MRI) provide specific anatomical 
information of complex heart anomalies [2]. Hemodynamic 
simulation based on these anatomical data will be helpful for 
surgical decision making [3]. However, because large-scale 
computations are required to use these data, execution of the 
simulation process is too long to meet the requirement of 
real-time clinical applications [4]. Another approach is the 
simulation with a lumped parameter model, which can be 
performed even on a small bedside computer [5]. Although 
this type of hemodynamic simulation does not include 
specific anatomical information, the greatest advantage of 
this approach is that real-time simulation can be performed 
while acquiring clinical data from patients. This approach 
is likely to be more helpful for perioperative hemodynamic 
management.

In this review, we introduce computational modeling of 
congenital heart diseases using the lumped parameter model 
and discuss its usefulness and issues in clinical use. *	 Shuji Shimizu 
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Lumped parameter model

The lumped parameter model of the cardiovascular sys-
tem consists of two components; a time-varying elastance 
chamber component and a (modified) Windkessel vascular 
component. The time-varying chamber component describes 
instantaneous ventricular and atrial pressure–volume rela-
tions. The Windkessel vascular component describes hemo-
dynamics in arterial and venous trees. The combination of 
these two components enables us to simulate the cardio-
vascular system; the left and right heart, and systemic and 
pulmonary circulations.

Time‑varying elastance chamber component

In the lumped parameter model of cardiovascular system, 
each chamber (ventricle or atrium) is represented by a time-
varying elastance model [6]. The basis of time-varying 
elastance chamber model has been reported by Suga et al. 
[7].

The chamber pressure at time (t) after onset of contraction 
is approximated as:

where t is the time after onset of contraction, P(t) and V(t) 
are instantaneous chamber pressure and volume, respec-
tively, and V0 is the volume axis intercept of the end-systolic 
pressure–volume relationship (ESPVR). E(t) is an instan-
taneous elastance of the chamber, which is independent of 
the loading conditions. At end-systole (tes), E(t) reaches 

(1)P(t) ≅ E(t)[V(t) − V0],

a maximal value (Ees), which is the slope of the ESPVR. 
Hence, ESPVR is described as:

where Pes and Ves are end-systolic pressure and volume, 
respectively. In contrast with ESPVR, end-diastolic pres-
sure–volume relationship (EDPVR) is often represented by 
an exponential curve:

where Ped and Ved are end-diastolic pressure and volume, 
respectively. A and B are constants. The parameter B is 
called as a stiffness constant.

Instantaneous chamber pressure is described by the sum of 
Ped and the developed pressure (difference between Pes and 
Ped) scaled by normalized elastance curve [e(t)]:

Parameters Ees, V0, A, and B are different among the four 
chambers (left and right ventricles and atria).

Elastance curve

In the real world, elastance curve (E(t)) looks like a skewed 
sine curve [8]. However, in computational simulation, the 
skewed sine curve is often replaced by a simple sine (or 
cosine) curve (Fig. 1a) [9, 10]:

(2)Pes(t) = Ees[Ves(t) − V0],

(3)Ped(t) = A{exp[B(Ved(t) − V0)] − 1},

(4)P(t) = [Pes(V(t)) − Ped(V(t))]e(t) + Ped(V(t)).

(5)
e(t) = 0.5[1 − cos(𝜋t∕Tes)] (0 ≤ t < 2Tes)

e(t) = 0 (2Tes ≤ t < T),

Fig. 1   Simulated normalized 
elastance curves (Tes = 175 ms). 
a A sine curve. b A sine curve 
combined with exponential 
curve. Time constant of relaxa-
tion (τ) is 25 ms for the solid 
line and 100 ms for the dotted 
line. An increase in τ prolongs 
the tail
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where t is the time from the start of systole, Tes is the dura-
tion of systole, and T is the duration of cardiac cycle.

A sine curve combined with an exponential curve is also 
used as a normalized elastance curve (Fig. 1b) [11]:

where τ is the time constant of relaxation. An increase in τ 
prolongs the tail of the normalized elastance curve (Fig. 1b, 
dotted line). Because e(t) is discontinuous from the end of 
one cardiac cycle to the beginning of the next, this may 
cause an error in the simulation result.

Windkessel vascular components

In the lumped parameter model of cardiovascular system, 
vasculatures are simulated as Windkessel vasculature mod-
els. There are three major vasculature models: two-, three-, 
and four-element Windkessel models [12]. The two-ele-
ment Windkessel model consists of a resistor and a capaci-
tor (Fig. 2a). The resistor represents vascular resistance 
and the capacitor represents vascular volume capacitance. 
In the three-element Windkessel model, another resistor 
corresponding to characteristic impedance (Rc) is serially 
added to the two-element Windkessel resistor and capacitor 
(Fig. 2b). In the four-element Windkessel model, an inductor 
is added to the three-element Windkessel model (Fig. 2c). 
There are several variations in the position of the inductor 
in the four-element Windkessel model [13].

When we consider the input impedance, the two-element 
Windkessel model is less accurate than the three- and four-
element Windkessel models especially in the high-frequency 

(6)
e(t) = 0.5[1 + sin(𝜋t∕Tes − 𝜋∕2)] (0 < t < 3Tes∕2)

e(t) = 0.5 exp[(3Tes∕2 − t)∕𝜏] (3Tes∕2 ≤ t),

range corresponding to the characteristic impedance. 
Since aortic and/or pulmonary characteristic impedances 
in patients with congenital anomaly dramatically change 
between before and after the surgical treatment, three- or 
four-element Windkessel model may be suitable for hemo-
dynamic simulation of congenital heart diseases.

At each resistance (R), a linear relation between pressure 
drop (ΔP) and flow (Q) applies, according to the Ohm’s law:

At each capacitance (C), the relation between pressure 
(P) and volume (V), and the change in volume [dV(t)/dt] 
calculated by the difference between total inflow (∑Qinflow) 
and total outflow (∑Qoutflow) are as follows:

At each inductance (L), the relation between pressure 
drop ( ΔP ) and change in flow [dQ(t)/dt] is as shown below:

Valves

Each valve (aortic, pulmonary, mitral, or tricuspid valve) 
is often represented as an ideal diode connected serially to 
a small resistor [14]. Several papers also used a diode con-
nected with a non-linear resistance as a valve model [15], 
as described below:

Valve regurgitation is often simulated by introducing a 
second diode in the opposite direction with a small resistor 
[14].

Electrical analogs of cardiovascular systems

Using the framework of the time-varying elastance chamber 
model combined with the modified three-element Windkes-
sel vasculature model, cardiovascular systems are described 
in terms of electrical analogs. Figure 3 shows the electri-
cal analogs of the cardiovascular systems of a normal heart 
(Fig. 3a), Fontan circulation (total cavopulmonary connec-
tion, Fig. 3b), atrial septal defect (ASD, Fig. 3c), and ven-
tricular septal defect (VSD, Fig. 3d).

In these electrical analogs, no non-linear components are 
used. However, non-linear components may sometimes be 
useful for hemodynamic simulation of congenital heart dis-
eases as discussed below.

(7)ΔP = Q ⋅ R.

(8)P =
V

C
,

(9)
dV(t)

dt
=
∑

Qinflow(t) −
∑

Qoutflow(t).

(10)ΔP = L
dQ(t)

dt
.

(11)ΔP = k ⋅ Q(t)2.

R C R C

RC

ba

R C

RC
c

L

Fig. 2   Windkessel vasculature models. a Two-element model; b 
Three-element model; c Four-element model. R resistance, C capaci-
tance, Rc characteristic impedance, L inductance
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Non‑linear components

In cardiovascular simulations of normal subjects and sim-
ple congenital heart diseases such as ASD and VSD, use 
of non-linear components may be unnecessary. However, 
hemodynamic simulation of some congenital heart dis-
eases may require the use of non-linear components for 
modeling because shunt and stenosis behave non-linearly 
in clinical settings. To simulate these non-linear com-
ponents, the Bernoulli’s principle for the total hydraulic 
energy of an ideal fluid is important [16]. The general form 
of the Bernoulli’s equation is;

where P is pressure, v is blood velocity, ρ is blood density, 
g is acceleration of gravity, and h is height. The term ρgh 
can be neglected in many cases of hemodynamic simulation 
because the height difference across a shunt or stenosis is 
small. Addition of this equation in modeling may improve 
the accuracy of hemodynamic simulation of congenital heart 
diseases.

(12)P +
1

2
�v2 + �gh = constant,

However, to simulate the fluid dynamics in non-linear 
components more accurately, multi-scale CFD modeling and 
solution of the Navier–Stokes equations are needed [17]. 
Because the numerical method (for example, the finite ele-
ment method) is necessary to solve Navier–Stokes equations, 
the simulation may take time and is therefore unfavorable 
for bedside simulation. On the other hand, the Navier–Stokes 
equation may be required when we want to couple a struc-
tural model with a fluid dynamics model. As an example, in 
the case of the aortic arch reconstruction of the Norwood 
procedure, which accompanies structural changes in the aor-
tic arch, we may not be able to predict postoperative hemo-
dynamics from a preoperative lumped model. In such a case, 
a multi-scale CFD model with the Navier–Stokes equation 
would provide more accurate prediction of postoperative 
hemodynamics.

Solution of simultaneous equations

To simulate hemodynamics, solution of simultaneous 
equations (Eqs. 2, 3, 4, one of Eqs. 5 and 6, Eqs. 7, 8, 9, 
10, Eqs. 11 and/or 12 where necessary) with given initial 
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Fig. 3   Electrical analogs of cardiovascular systems of a normal heart, 
b Fontan circulation, c patient with atrial septal defect (ASD), and d 
patient with ventricular septal defect (VSD). LA left atrium, LV left 
ventricle, RA right atrium, RV right ventricle, SA single atrium, SV 
single ventricle, MV mitral valve, TV tricuspid valve, AV aortic valve, 
PV pulmonary valve, AVV atrioventricular valve. RCS, RAS, and RVS 
denote systemic characteristic impedance, arterial resistance, and 

venous resistance, respectively. RCP, RAP, and RVP denote pulmonary 
characteristic impedance, arterial resistance, and venous resistance, 
respectively. CAS and CVS denote pulmonary arterial and venous 
capacitances, respectively. CAP and CVP denote pulmonary  arterial 
and venous capacitances, respectively. RASD and RVSD denote the 
resistances across ASD and VSD, respectively
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parameters is necessary. The required initial parameters 
of chamber components are Ees, V0, A and B for each 
chamber, Tes, and a delay between atrial and ventricu-
lar systole, which can be calculated from heart rate [18]. 
Initial parameters of vascular components are Rc, R, L, 
and C for each of the four vasculatures: systemic arte-
rial, systemic venous, pulmonary arterial, and pulmonary 
venous vasculatures. In addition, the initial stressed blood 
volume, which is the sum of the initial volumes of all 
chambers and capacitors, is necessary. If non-linear com-
ponents are used, these initial parameters are also needed 
to start the solution.

The simplest method to solve simultaneous equations 
is the Euler method, which is the first-order numerical 
procedure for solving differential equations with given 
initial values. When the first derivative of y(t) (dy/dt) is 
described as a function of time (t) and y(t),

where t0 is the time of start and y0 is the value of y at t0. The 
time after n steps (tn) is described using the step size (h):

For the Euler method, one step from tn to tn+1 is defined 
as:

Although this method is easy for programming, the 
accuracy is relatively low.

Local truncation error for the Euler method is 
proportional to h2, while that for the fourth-order 
Runge–Kutta method is h5. Therefore, fourth or higher 
order Runge–Kutta method may be favorable for the 
solution of simultaneous equations including non-linear 
components. Commercial software such as MATLAB/
Simulink (The MathWorks, Inc. MA, USA) may be use-
ful for solution using the high-order methods.

Hemodynamic simulation of congenital 
heart diseases

In this section, we introduce several examples of lumped 
parameter models used to simulate hemodynamics of 
congenital heart diseases such as hypoplastic left heart 
syndrome and Fontan circulation.

dy

dt
= f (t, y(t)),

y(t0) = y0,

tn = t0 + nh.

(13)
yn+1 = yn + hf (tn, yn)

tn+1 = tn + h.

Modeling of hypoplastic left heart syndrome

Since hypoplastic left heart syndrome is one of the most 
serious congenital heart anomalies, many researchers are 
interested in hemodynamic simulation of hypoplastic left 
heart syndrome. Hemodynamic simulations of the Norwood 
procedure, a stage I palliation for hypoplastic left heart syn-
drome, are widely performed because the mortality of the 
procedure remains high (approximately 16%) even in 2017 
[19] and hemodynamic assessments using computational 
models may improve its clinical outcome.

Migliavacca et al. [18] modeled the cardiovascular system 
after the original Norwood procedure with the modified Bla-
lock–Taussig (BT) shunt, using a lumped parameter model 
combined with a non-linear BT shunt model. They examined 
the effects of shunt size, vascular resistances, and heart rate 
on the hemodynamics and oxygenation after the original 
Norwood procedure. Their simulation demonstrates that (1) 
larger shunts divert an increased proportion of cardiac out-
put to the lungs, away from systemic perfusion, resulting in 
poorer O2 delivery, (2) systemic vascular resistance exerts 
greater effect on hemodynamics than pulmonary vascular 
resistance, and (3) systemic arterial oxygenation is mini-
mally influenced by heart rate changes.

In the Sano modification of the Norwood procedure, 
the BT shunt is replaced by a right ventricle-to-pulmonary 
artery shunt [20]. The Sano modification was also simu-
lated using a lumped parameter model [21]. The electrical 
analog and simulated pressures of the Sano modification are 
shown in Fig. 4. In this simulation, the Sano modification, 
even using a non-valved conduit, is preferable to the origi-
nal Norwood procedure from the viewpoint of ventricular 
energetics.

Researchers also have an interest in another type of stage 
I palliation; bilateral pulmonary artery (PA) bandings com-
bined with ductal stenting (the so-called hybrid procedure). 
Young et al. [22] developed a lumped parameter model of 
the hybrid procedure and examined the effects of diameters 
of PA bandings and ductal stent on ventricular workload. 
In their model, larger PA banding diameter or a small stent 
diameter below 7 mm substantially increases ventricle work-
load and reduces systemic perfusion. Simulations were also 
used to compare the hybrid procedure and the Norwood pro-
cedures from the viewpoint of ventricular energetics [23]. 
Mechanical efficiency of the hybrid procedure is equivalent 
to that of the original Norwood procedure, but inferior to 
that of the Sano modification.

Modeling of Fontan circulation

Fontan operation is a surgical goal for patients with single 
ventricle physiology [24]. Although heart failure after the 
Fontan operation requires heart transplantation or ventricular 
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assist device (VAD) implantation, VAD implantation in Fon-
tan patients remains a challenging issue in clinical settings 
[25]. Therefore, several researchers have investigated the 
effects of VAD on failing Fontan circulation [26–28]. Fur-
thermore, reduced exercise capacity in Fontan patients is 
also a clinical interest, although the mechanism is not fully 
understood. Therefore, researchers also focus on exercise 
physiology in Fontan patients [29, 30].

Di Molfetta et al. [26] investigated the effects of cavopul-
monary assistance (right-sided VAD) on the Fontan circula-
tion using a lumped parameter model. They also examined 
the effects of combined use of continuous flow and pulsatile 
VAD on the Fontan circulation, and reported that left-sided 
continuous flow VAD concurrent with right-sided pulsatile 
VAD maximizes the hemodynamic benefits [27].

The effects of partial cavopulmonary assistance have also 
been examined using a lumped parameter model combined 
with a non-linear VAD model [28]. Partial cavopulmonary 
assistance from the inferior vena cava (IVC) to the pulmo-
nary artery maintains cardiac index at lower IVC pressure 
but increases the superior vena cava pressure substantially, 
when compared with total cavopulmonary assistance from 
inferior and superior vena cavae to pulmonary artery.

Kung et al. [29] developed a closed loop lumped param-
eter model for simulation of exercise physiology in Fontan 
patients. Their model successfully reproduced the average 
exercise response of a cohort of typical Fontan patients. 
Based on the simulation results using a lumped parameter 

computational model, Koeken et al. [30] reported that exer-
cise capacity in Fontan patients is limited due to an increase 
of central venous pressure and the incapability to further 
reduce systemic resistance, consequently restricting sys-
temic flow.

Modeling of other congenital heart diseases

Effectiveness of the one and a half ventricle repair for hypo-
plastic right ventricle remains controversial in clinical set-
tings. Several criteria of patient selection are based on ana-
tomical factors such as Z score of the tricuspid valve and 
the right ventricular volume [31], but there are no accurate 
criteria based on physiological factors. A simulation study 
using a lumped parameter model reveals that the right ven-
tricular stiffness constant (B) may predict the effectiveness 
of one and a half ventricular repair in improving postopera-
tive hemodynamics [32].

The tetralogy of Fallot is one of the most common con-
genital heart anomalies, and is characterized by a ventricu-
lar septal defect, pulmonary stenosis, an overriding aorta 
and right ventricular hypertrophy. Kilner et al. [33] used a 
lumped parameter model to examine the factors influencing 
pulmonary regurgitation after repair of tetralogy of Fallot. 
They reported that pulmonary regurgitation was exacerbated 
by increased pulmonary artery compliance and by elevated 
pulmonary arteriolar resistance.
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Advantages of hemodynamic simulation 
using the lumped parameter model

The major advantage of the lumped parameter model is 
that it requires shorter execution time even using a desk-
top computer. Although recent development of computer 
technology have enabled us to simulate hemodynamics of 
congenital heart diseases on desktop computers, simula-
tion using a multi-scale CFD model is still time-consum-
ing, and could take several days to complete [4]. In con-
trast to the multi-scale CFD model, the lumped parameter 
model may allow real-time simulation. This means that the 
lumped parameter model can be used to simulate patients’ 
specific hemodynamics at the bedside under real-time data 
acquisition from the patients. Broomé et al. [34] reported 
the possibility of building a clinically relevant real-time 
computer simulation model of the normal adult cardio-
vascular system. Although several problems of applying 
a real-time computer simulation model to complex con-
genital anomalies remain to be solved, the usefulness of 
lumped parameter model in supporting clinical decision-
making has been advocated [35].

Problems of hemodynamic simulation using 
the lumped parameter model

The lumped parameter model has the potential of simulat-
ing patient-specific hemodynamics at the bedside. How-
ever, there are several problems in clinical application. 
One of the most critical problems for bedside simulation is 
how to identify patient-specific (initial) parameters such as 
end-systolic elastance, resistances, inductances and com-
pliances in clinical settings.

To identify systolic and diastolic chamber properties 
such as end-systolic elastance (Ees) and the stiffness con-
stant (B), simultaneous monitoring of chamber pressure 
and volume is necessary. However, simultaneous measure-
ment of chamber pressure and volume in clinical settings 
may be difficult even in adult patients without congenital 
heart anomaly. On the other hand, the recent development 
of imaging technologies such as knowledge-based recon-
struction of three-dimensional echocardiographic images 
with MRI images may allow monitoring of chamber vol-
ume [36]. Combined with pressure data in the catheter 
laboratory, these volume data may be used in the estima-
tion of chamber properties.

The three-element Windkessel parameters can be esti-
mated in a time-domain and/or a frequency-domain man-
ner from vascular pressure and flow waveforms [37, 38]. 
Furthermore, the method of beat-to-beat estimation of 

peripheral resistance (R) and arterial compliance (C) dur-
ing transient conditions has been reported [39]. A tech-
nique to estimate the four-element Windkessel parameters 
for transient and steady beats has also been developed 
[40]. However, in contrast to the three-element Windkes-
sel model, it may be difficult to identify the four-element 
Windkessel parameters, especially the inductances (L) 
[41]. Segers et al. reported that the four-element Windkes-
sel model yielded the best quality of fit, but model param-
eters reached physically impossible values for L in about 
12% of all cases [42]. Although an iterated unscented 
Kalman filter algorithm may improve estimation accu-
racy of four-element Windkessel parameters [43], further 
investigations are necessary to identify L with sufficient 
accuracy in every patients.

The direct estimation of venous capacitances and resist-
ances is difficult in clinical settings as well as animal experi-
ments. Therefore, several assumption of these values may 
be required at the start of the simulation and an algorithm 
to tune these values to physiologically proper values may 
be necessary.

In addition, estimation of all the parameters may take 
much time and may be invasive for patients with congenital 
heart diseases. Therefore, an algorithm that automatically 
estimates lumped parameters would be beneficial for clinical 
application of lumped parameter models. Schiavazzi et al. 
[44] attempted to develop a framework for automated tun-
ing of lumped model parameters to match clinical data of 
patients after the Norwood procedure.

Instantaneous autonomic outflow at the estimation may 
affect lumped model parameters. Therefore, the results of 
hemodynamic simulation may depend on baseline auto-
nomic nervous activities. In addition, global impairment of 
cardiac autonomic nervous activity is reported in patients 
after the operation of congenital heart diseases [45, 46]. 
How to incorporate the influence of autonomic nervous 
activities into the model remains an important matter. Fur-
thermore, in children, body growth may also affect lumped 
model parameters. Therefore, re-identification of the param-
eters is necessary along with body growth. However, the 
model of cardiovascular system itself may be reusable.

Conclusions

The lumped parameter model is potentially beneficial for 
hemodynamic simulation of congenital heart diseases at 
the bedside because it allows real-time simulation. How-
ever, how to obtain patients’ specific parameters remains a 
large obstacle for bedside simulation. Bedside simulation of 
congenital heart diseases can be realized if the problem of 
parameter identification can be solved.
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