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Abstract Key substrates including glucose, amino acids,

and fatty acids play core roles in nutrient metabolism. In

this review, we describe phenomena observed when key

substrates are applied to cells. We focused on three

promising substrates: L-glucose derivatives, 5-aminole-

vulinic acid, and polyunsaturated fatty acid. Since they are

assumed to give a specific reaction when they are trans-

ported into cells or metabolized in cells, they are expected

to be applied in a clinical setting. We provide the latest

knowledge regarding their behaviors and effects on cells.

Keywords Spheroid � Bile duct � 5-Aminolevulinic acid �
Heme � Polyunsaturated fatty acid � Cell culture

Abbreviations

2-NBDG 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-

yl)amino]-2-deoxy-D-glucose

2-NBDLG 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-

yl)amino]-2-deoxy-L-glucose

2-TRLG 2-Amino-2-deoxy-L-glucose derivative

bearing either para or ortho isomer of

sulforhodamine 101 acid

DAPI 40,6-Diamidino-2-phenylindole

fLG Fluorescent l-glucose analogue

ALA 5-Aminolevulinic acid

PPIX Protoporphyrin IX

HO-1 Heme oxygenase-1

COX Cytochrome c oxygenase

ROS Reactive oxygen species

PEPCK Phosphoenolpyruvate carboxykinase

G6Pase Glucose 6-phosphatase

PUFA Polyunsaturated fatty acid

CTE Cardiac tissue equivalent

PPAR Peroxisome proliferator-activated receptor

SFA Saturated fatty acid

MUFA Monounsaturated fatty acid

aLA A-linolenic acid

LA Linoleic acid

EPA Eicosapentaenoic acid

AA Arachidonic acid

DHA Docosahexaenoic acid

PKA Protein kinase A

Introduction

It is well known that key substrates including glucose,

amino acids, and fatty acids play inherent physiological

roles in nutrient metabolism. There has also been growing

interest in their other physiological effects, one of which is

intercellular signaling.
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Therefore, in this review, we focus on cellular reactions

and behaviors that are not well known when key substrates

(glucose, amino acids, fatty acids, etc.) related to nutrient

metabolism are applied to cells (Fig. 1). Three substrates

focused on in this review, L-glucose derivatives,

5-aminolevulinic acid, and polyunsaturated fatty acid,

show a unique mode of transport into cells and exertion of

physiological actions unknown so far when metabolized

intracellularly, which are expected to be applied to a

clinical setting (Fig. 1). The latest knowledge regarding the

three promising substrates is discussed.

The main text consists of three chapters and an outline

of each chapter is given below.

In the first chapter, L-glucose derivatives are addressed.

L-glucose is a mirror image isomer of D-glucose, which is

an essential nutrient. L-glucose is rarely found in nature and

neither its transportation nor metabolism has been observed

in mammalian cells. However, one of the authors (K.Y.)

recently discovered that some kinds of cancer cell lines

show a specific uptake of fluorescence-labeled L-glucose.

The author discusses a hypothetical change in the glucose

transport system in cancer cells by using an L-glucose

derivative as a tracer.

In the next chapter, amino acids are described. 5-Ami-

nolevulinic acid (ALA), which is also synthesized in vivo,

is a precursor of heme. It has recently been clarified that

exogenous administration of 5-ALA induces various hith-

erto unknown biological effects. In this article, regarding

ALA as a new bioactive substance, two authors (H.A.,

Y.M.) describe the effects that have so far been reported

and discuss the possibility of application of ALA to treat-

ments of some metabolic diseases.

In the last chapter, the unknown bioactive effects of

fatty acids are described. Although it is recognized that

polyunsaturated fatty acid (PUFA) plays a significant role

in the adjustment of physiological functions of cells, details

are unknown. In this chapter, therefore, two authors (D.S.,

T.N.) describe the bioactive effects of PUFA on car-

diomyocytes and adipocytes and summarize the potential

benefit of PUFA with respect to functional control of

various cells including stem cells.

I. Visualizing cellular uptake of glucose using
fluorescently labeled glucose derivatives

Background

Glucose is a fundamental fuel for most living things. Of the

two stereoisomers of glucose, D-glucose, occurs widely in

nature, but its mirror image, isomer L-glucose, does not. In

mammals, cells are thought to utilize only D-glucose by

taking it up via glucose transporters such as GLUTs [1]. To

investigate D-glucose transport, radiolabeled D-glucose and

its non-metabolizable derivatives such as [14C] 2-deoxy-D-

glucose, [18F] fluoro-2-deoxy-D-glucose, and [14C] 3-O-

methyl-D-glucose have long been used [2]. These radiola-

beled tracers are effective for quantifying the average

uptake of D-glucose into a population of cells. However,

actual tissues contain cells with divergent uptake properties

both spatially and temporally, and a method for monitoring

uptake at the single cell level is needed.

We have shown that 2-[N-(7-nitrobenz-2-oxa-1,3-diaol-

4-yl)amino]-2-deoxy-D-glucose (2-NBDG), a fluorescent
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analogue of D-glucose [3], is taken up into single living

mammalian cells through GLUTs showing Km values

similar to those reported for D-glucose and the non-me-

tabolizable glucose analogue 3-O-methyl-D-glucose [4, 5].

So far, 2-NBDG has been used as a standard fluorescent D-

glucose derivative for monitoring D-glucose uptake into

single cells [6–9]. However, care should be taken in that

fluorescence intensity is an arbitrary measure and that the

uptake of 2-NBDG may vary for a short period. Quantifi-

cation therefore requires an accurate procedure [5]. Indeed,

precise evaluation of 2-NBDG uptake is a challenging

issue, particularly when applied to thick living tissues

consisting of cells showing heterogeneous activities and

degenerating states. To overcome the difficulties, we

developed 2-[N-(7-nitrobenz-2-oxa-1,3-diaol-4-yl)amino]-

2-deoxy-L-glucose (2-NBDLG), the first fluorescent L-glu-

cose analogue (fLG), as a control substrate for 2-NBDG

[10].

Although 2-NBDLG was not taken up into living

Escherichia coli cells (data not shown), specific uptake of

2-NBDLG occurred when applied to three-dimensionally

accumulating tumor cells showing nuclear heterogeneity, a

cytological feature indicative of a high grade of malig-

nancy in cancer diagnosis (Fig. 2) [11]. The effectiveness

of 2-NBDLG for visualizing cancerous tissue has also been

shown in a hamster model of bile duct cancer in vivo [12].

In the following sections, we discuss unique features of

fLGs for investigating changes in glucose uptake properties

of tumor cells.

2-NBDLG uptake occurs specifically into three-

dimensionally accumulating tumor cells showing

nuclear heterogeneity

A brief administration of 2-NBDG (D-form isomer) into

mouse insulinoma MIN6 cells [13] resulted in an increase

in cellular fluorescence when administered in early culture

stages up to several days in vitro, whereas no detectable, or

a negligible, increase in fluorescence was detected when

2-NBDLG (L-form isomer) was administered at the same

culture stage [11]. At 10–15 days in vitro, however,

remarkable uptake of 2-NBDLG occurred in tightly

packed, three-dimensional spheroids (Fig. 2a) [11]. Inter-

estingly, in an example depicted, only upper spheroids took

up 2-NBDLG. To obtain more information, we applied

40,6-diamidino-2-phenylindole (DAPI), a nuclear marker,

to living spheroids. Optical sectioning at different depths

demonstrated that the spheroids that took up 2-NBDLG

consisted of cells with remarkable nuclear heterogeneity,

an important cytological feature of cancerous cells with a

high grade of malignancy (Fig. 2b, c) [11].

Three-dimensional tumor spheroids can provide valu-

able information on complex physiological and patho-

physiological processes in vitro [14]. Quantitative analyses

further demonstrated that 2-NBDLG uptake persisted in the

presence of cytochalasin B, a potent GLUT inhibitor [11].

This is in contrast to the fact that cytochalasin B caused

marked inhibition of the uptake of 2-NBDG (D-glucose

derivative) in the same culture plate. There was no

Fig. 2 Confocal microscopic images showing specific uptake of the

fluorescent L-glucose derivative 2-NBDLG into mouse insulinoma

MIN6 cells, which formed three-dimensional spheroids consisting of

cells with nuclear heterogeneity. a Differential interference contrast

image of MIN6 cells forming thick spheroids merged with 2-NBDLG

fluorescence. Cells in the upper spheroid (a) exhibited strong

2-NBDLG fluorescence. b A single optical section of a nuclear

image visualized by 40,6-diamidino-2-phenylindole (DAPI) in a

livecell condition. Cells in the upper spheroid (a) exhibited strong

nuclear heterogeneity in morphology, whereas cells with evenly

arranged small nuclei were seen in the lower one (b). c Merged image

of (b) and 2-NBDLG fluorescence (a). Note that small cells bearing

small nuclei (asterisk) also took up 2-NBDLG in the upper spheroid.

Images were reproduced with permission from Sasaki A et al. [11]
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significant change in the uptake in an Na?-free condition,

suggesting that SGLTs, sodium-dependent glucose trans-

porters, are not involved in the uptake. Interestingly,

phloretin, an aglycon of apple polyphenol phlorizin, abol-

ished the uptake of 2-NBDLG [1, 15]. Phloretin is a broad-

spectrum inhibitor against membrane transport including

that mediated by GLUTs and water channels [11].

To further characterize the specificity of 2-NBDLG

uptake, we used 2-TRLG, a Texas Red-bearing, mem-

brane-impermeable L-glucose analogue emitting red fluo-

rescence [16]. 2-TRLG is useful for identifying non-

specific uptake of 2-NBDLG into dying cells due to, for

example, loss of membrane integrity in a condition of high

sensitivity [16]. The combined use of 2-NBDLG and

2-TRLG showed that specific uptake of 2-NBDLG, an L-

glucose derivative, started to occur in cultured tumor cells

at a certain stage around 10 days in vitro [11].

Taken together with other data, those findings described

above suggest that uptake of the L-glucose derivative (2-

NBDLG) occurs specifically in tumor cells in a certain

advanced stage by a phloretin-inhibitable, non-transporter-

mediated, yet unidentified mechanism. Some studies have

shown insulin secretion from multicellular MIN6 spheroids

[17, 18]. Hence, such a metabolic property of spheroid-

forming insulinoma cells may also be of interest with

regard to discrimination of malignant insulinoma.

In vivo imaging of bile duct cancer by fLGs

We next explored if the uptake of 2-NBDLG can be used in

in vivo imaging using animal models. Bile duct cancer, or

cholangiocarcinoma, is often a fatal cancer. Complete

resection is currently the only potential curative treatment,

especially for extrahepatic cholangiocarcinoma [19].

However, preoperative diagnoses provide only poor infor-

mation on the surgical margin because the anomaly often

spreads superficially along the longitudinal axis of the bile

duct, making a diagnostic decision difficult. Positron

emission tomography (PET) with a radiolabeled D-glucose

derivative (FDG) provides only low spatial resolution

images ([5 mm). In addition, discrimination of cancer and

inflammation is often difficult.

Using a hamster model of bile duct cancer, we found

that fLGs visualized extrahepatic cholangiocarcinoma

in vivo when applied topically into the bile duct. Charac-

teristic fLG fluorescence consisting of bright spots and dark

clumps was correlated well with the area later diagnosed as

carcinoma in situ or invasive adenocarcinoma [12]. Control

animals showed no such fluorescence pattern.

Bacterial reverse mutation tests and extended single-

oral-dose toxicity studies have been successfully com-

pleted for 2-NBDLG and 2-TRLG according to Good

Laboratory Practice regulations. As such, the fLGs are

promising candidates as in vivo contrast agents for

detecting cancer by visualization of changes in the uptake

activity of glucose derivatives, while minimizing toxicity.

Clinical studies are currently underway in our laboratory to

evaluate the effectiveness of fLGs for cancer diagnosis.

Concluding remarks

Fluorescent derivatives of L-glucose are unique tools for

understanding changes in glucose transport of cells at the

single cell level. Further study is needed for elucidating

molecular mechanisms of the uptake and intracellular fate

of L-glucose derivatives in tumor cells.

II. 5-Aminolevulinic acid: foe or friend to cellular
metabolism?

Background

Aminolevulinic acid (5-aminolevulinic acid, ALA) is a

precursor of heme synthetic metabolism. ALA has been

widely used for visualization of malignant tissue by pho-

todynamic diagnosis since it was reported in the 1980s that

protoporphyrin IX (PPIX), which is an intermediate

metabolite and a fluorescent substance, was accumulated in

cancer cells by administering ALA [20].

The effect of exogenous administration of ALA on

normal organs and tissues is not clear. However, recent

studies have shown that ALA administration affects not

only heme metabolic pathways but also other pathways.

Therefore, in this review, we describe the effect of

exogenous administration of ALA on the heme metabolic

pathway and also the effects of ALA administration on

other biological metabolisms (energy metabolism, glucose

metabolism, etc.), and we finally discuss what kind of

biological reaction occurs in vivo.

Events induced by exogenously administered ALA

Exogenous administration of ALA, either oral administra-

tion or intravenous injection, results in the production of

PPIX through heme metabolism, and, as stated above, the

content of PPIX in cancer cells increases [21]. It has been

reported that the accumulation of PPIX in cells depends on

the intracellular iron concentration, cell cycle [22, 23],

amount of mitochondria [24], and degree of differentiation

of the cells [25]. It appears, however, that there is little

accumulation of PPIX in normal cells compared to its

accumulation in cancer cells [26]. The reason appears to be

that ferrochelatase, an enzyme that catalyzes the terminal

step of heme synthesis, namely the insertion of ferrous iron

into PPIX, is highly activated in normal cells. As a result,
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in normal cells, heme synthesis is probably enhanced by

administering ALA [27]. As the heme synthesis advances,

the content of free heme increases. It is therefore expected

that the production of heme oxygenase-1 (HO-1), an

enzyme that catalyzes the degradation of extra heme, is

enhanced because the mechanism by which heme produc-

tion is adjusted is in operation [28]. In fact, many studies

have suggested that HO-1 is activated by ALA adminis-

tration [29]. On the other hand, heme degradation by

enzymes other than HO-1 has been shown in an in vitro

study, but heme degradation by non-HO-1 pathways

in vivo has not yet been confirmed [30]. In addition, while

ALAS1 (ALA synthase) controls the amount of heme

synthesis, the content of heme has the possibility of

increasing [31] because the function of ALAS1 is bypassed

by ALA administration.

For the above reasons, exogenous ALA administration

to normal cells probably induces an increase in heme

content, resulting in increased HO-1 activity.

Biological effects of ALA administration

Influence on energy metabolism

Exogenous ALA administration possibly enhances aerobic

energy metabolism.

Ogura et al. [32] reported that ALA activates cyto-

chrome c oxygenase (COX) in mitochondria, resulting in

an increase in ATP. They speculated that there is a strong

interaction between COX activation and heme content in

cells. In addition, exogenous administration of ALA is

likely to enhance energy metabolism via the upregulated

TCA cycle by the usage of surplus succinyl-CoA [33],

which would be used as a precursor for the synthesis of

ALA if exogenous ALA is not administered.

On the other hand, there is the possibility that ALA

administration damages cells. It was reported that ALA

makes mitochondria swell [34], but the swelling is con-

trolled by catalase and thiols, and thus reactive oxygen

species (ROS) are more likely to be relevant [35]. In

addition, ALA seems to induce DNA injuries [36]. It has

also been shown that enzyme activities within mitochon-

dria were deactivated in the muscle or liver of a rat

administered ALA and that the superoxide dismutase

(SOD) system was also degraded, possibly being related to

mitochondrial membrane potential [37]. It was also

reported that ALA administration facilitates fatigability

[38].

Influence on glucose metabolism

Hara et al. reported that administration of ALA for 6 weeks

reduces plasma glucose levels in rats without affecting

plasma insulin levels and induces HO-1 expression in white

adipose tissue and the liver. Thus, they speculated that the

induced expression of HO-1 might be related to the glu-

cose-lowering effect of ALA [39]. As described above, an

increase in HO-1 suggests an increase in heme. Heme in

the liver promotes complex formation of nuclear receptor

subfamily 1 (Rev-Erba) with its cosuppressor nuclear

receptor co-repressor 1 (NCOR). The complex inhibits the

transcription of gluconeogenic enzymes, PEPCK and

G6Pase, resulting in a decrease in hepatic glucose pro-

duction [31]. In other words, autonomous adjustment of

glucose production in the liver may be forcibly canceled by

ALA administration. On the other hand, glucose metabo-

lism may be enhanced by the effect of ALA on adipocytes

through a decrease in the amount of adipose tissue or a

decrease in mitochondria within adipocytes [40].

On the basis of these findings, recent investigations have

demonstrated that ALA administration would be a novel

approach to prevent and treat diabetes mellitus [41]. The

heme pathway of diabetic hepatocytes is more susceptible

to porphyrinogenic factors [42]. In addition, the content of

d-ALA dehydrogenase is decreased in diabetic patients

[43]. These findings suggest that ALA contributes to the

control of blood glucose level.

Difference in the effects of ALA depending on the route

of administration

Routes of ALA administration should be considered. In

studies showing enhancement of energy metabolism or

glucose metabolism, ALA was orally administered in most

cases. On the other hand, in studies that showed degrada-

tion of metabolic activation or expression of ROS, intra-

venous injection or intraperitoneal administration of ALA

was used. The blood concentration of ALA that has been

orally administered is estimated to be less than one tenth of

that in the case of intravenous or intraperitoneal adminis-

tration, and thus the difference depending on the admin-

istration route may have an influence on the effects of

ALA.

Future prospects

There are various reports other than those described above

on the biological effects of exogenous administration of

ALA. Activation of heme synthesis has been suggested to

be involved in the acceleration of hair growth in mouse

skin [44]. Since it has been reported that an increase of

HO-1 promotes wound healing [45], the heme synthesis

metabolic system probably has an influence on cellular

metabolism.

Furthermore, some recent studies have shown

enhancement of the effects of hyperthermia or radiotherapy
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against cancers [46, 47] and the effectiveness for treatment

of malaria [48].

As mentioned above, ALA induces an increase in ATP

(beneficial effect) or induces mitochondrial dysfunction

(adverse effect), suggesting that the amount of ALA-in-

duced ROS production in mitochondria [35] determines the

biological effect. As for ROS homeostatic pathways,

mammal cells use global differentiation programs that

provide either long-lasting oxidant-protective responses or

cell death as clearance mechanisms for oxidatively dam-

aged cells [49].

Heme is a core substance of hemoglobin, myoglobin,

cytochrome, and catalase, and administration of ALA, a

precursor of heme, is also expected to have a great influ-

ence on the synthesis of these substances. Thus, it is

expected that new effects on associated biological func-

tions will be reported in the future.

III. Beneficial effects of polyunsaturated fatty acids
on cell culture

Background

In vitro cell culture using immortalized cell lines or pri-

mary cells or subcultured cells is one of the most useful

methods to clarify various cellular functions. However, the

results obtained from those cell lines are sometimes dif-

ferent from the results obtained from primary cultured

cells. For instance, polyunsaturated fatty acid (PUFA),

which is known as an essential fatty acid and is not syn-

thesized in mammalians, induces cellular stress to dose-

dependently decrease the viability of immortalized cardiac

cells, H9c2 cells, whereas that is not the case for primary

cultured cardiomyocytes derived from newborn rats [50].

Hence, primary culture might be one of the important

methods for understanding cellular functions.

Primary cultured cells have sometimes been used even

in clinical therapies. Injection of myoblasts or bone marrow

cells has been tried for the treatment of ischemic heart

failure; however, the efficacy of the therapy is limited [51].

Although cardiac tissue equivalent (CTE), e.g., recon-

structed cardiac tissues with collagen gel, is expected to

salvage severely damaged myocardium, its twitch stress

(&2 kPa) was markedly smaller than that of the myo-

cardium in vivo ([20 kPa) [52]. That is, CTE cannot

generate sufficient contractile force to pump blood.

We previously reported that one of the causes of the

difference between in vivo and in vitro cells may be

insufficient intercellular connection, i.e., expression of a

serum response factor (c-fos serum response element-

binding transcription factor) that is involved in the pro-

cesses of differentiation and hypertrophy and expression of

MLC-2v, N-cadherin and connexin43, constituting the

ventricle and intercalated disk, were lower in cultured

cardiomyocytes than in the neonatal myocardium [53, 54].

Furthermore, we have focused on the difference in

energy metabolism between mature and immature car-

diomyocytes. Whereas cardiomyocytes in vivo utilize fatty

acid as a main energy source [55], a conventional culture

medium only contains aqueous materials such as glucose,

amino acids, and minerals. Therefore, cultured cardiomy-

ocytes are forced to use aqueous materials rather than lipids

for an energy source. The fact that glucose supply and

consumption in the fetal or newborn (immature) myo-

cardium are greater than those in juveniles or adults

[56, 57] suggests that cultured cardiomyocytes are too

immature to acquire sufficient contraction ability.

Effects of polyunsaturated fatty acids on cultured

cells

As mentioned above, hydrophobic components such as

fatty acids have not generally been considered in a culture

medium. In addition to the role of fatty acids as an energy

source, polyunsaturated fatty acids (PUFAs) have bioac-

tivities and are considered to be crucial ligands of peroxi-

some proliferator-activated receptors (e.g., PPARa and b/
d) in the regulation of lipid oxidation and storage [58, 59].

Therefore, unlike in the case of saturated fatty acids (SFAs)

and monounsaturated fatty acids (MUFAs), which cells can

synthesize by themselves, PUFAs might have to be sup-

plied from the outside.

Based on the concept described above, we compared 24

fatty acids (seven SFAs, seven MUFAs, four n-3 PUFAs,

and six n-6 PUFAs shown in Table 1) in cultured car-

diomyocytes, originally harvested from fetal rats, to those

in the neonatal rat myocardium, and we found that contents

of PUFAs in the cultured cardiomyocytes were generally

higher than those in neonatal tissue, suggesting that the low

twitch stress of CTE may be attributed in part to the low

contents of PUFAs [60].

Considering the results, we performed primary culture

of rat cardiomyocytes for 14 days in Dulbecco’s modified

Eagle’s medium/Ham’s F-12 nutrient mixture with sup-

plementation of n-3 (a-linolenic [aLA, C18:3n-3]) or n-6
(linoleic [LA, C18:2n-6]) PUFA, bound to bovine serum

albumin. The supplementation of 20 lM LA or 10 lM
aLA increased their contents to levels close to those in the

neonatal myocardium. The n-3 or n-6 PUFA supplemen-

tation also led to an increase in the contents of eicos-

apentaenoic acid (EPA, C20:5n-3) and arachidonic acid

(AA, C20:4n-6), respectively, which are longer-chain fatty

acids probably elongated from aLA or LA, although these

contents were still lower than those in the neonatal tissue

[61]. These results suggest that supplemented LA and aLA
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were successfully incorporated into cells and that a part of

them was converted into EPA or AA via elongation and/or

desaturation processes. Regarding the elongation of

PUFAs, Leroy et al. reported for the first time the possi-

bility in cultured cardiomyocytes [62], while Matsuzaka

et al. reported that a low mRNA expression level of fatty

acyl-CoA elongase was involved in elongation of some

SFAs (lauric [C12:0], mylistic [C14:0], palmitic [C16:0],

and stearic [C18:0] acids) and MUFAs (palmitoleic

[C16:1n-7] and oleic [C18:1n-9] acids) in mammalian

heart [63].

Recently, we have tested supplementation of longer-

chain AA or docosahexaenoic acid (DHA, C22:6n-3). The

AA supplementation increased not only the content of AA

but also that of docosatetraenoic acid (C22:4n-6) probably

elongated from AA, and the DHA supplementation

increased the DHA content as well as EPA content.

In addition to the changes in fatty acid contents, sup-

plementation of PUFAs increased contractile performance

severalfold in comparison to non-treated cells (unpublished

data). Although the mechanisms of the elevation in con-

tractile performance have not been clarified, it is reason-

able to assume that the elevation is attributed in part to

cAMP function. Intracellular protein kinase A (PKA)

activated by cAMP induces phosphorylation of proteins

involved in myocardial Ca2? regulation [64–66], and EPA

activates PKA in rat ventricular muscle [67]. Luiken et al.

demonstrated that a cAMP-elevating agent increased fatty

acid uptake in isolated cardiomyocytes [68]. Therefore,

PUFAs may enhance their own uptake and improve con-

tractile function via elevation of cAMP in cardiomyocytes.

In clinical studies and studies using human cardiomy-

ocytes, it has been shown that EPA- and DHA-rich fish oil

supplementation induces their uptake into myocardial

phospholipids and reduces cardiac mortality [69, 70].

The results described above suggest that PUFAs have

important roles in the primary culture of other cells as well,

probably including stem cells. For example, primary cul-

tured adipocytes are known to become fibroblast-like cells

(dedifferentiated fat cells) and then potentially differentiate

into mesenchymal stem cells [71], indicating the difficulty

in stable primary culture of adipocytes. Regarding the

effects of PUFAs in adipocytes, some PUFAs can be

ligands of PPARc, which is dominantly expressed in adi-

pocytes [72]. PPARc is known as an essential factor for

differentiation of adipocytes. Several studies have also

suggested that not only a PPARc agonist but also EPA and

DHA induce ‘‘browning’’ of adipocytes (conversion of

white adipocyte into brown adipocyte) in vivo and in vitro

[73–75]. Therefore, PUFAs could enable artificial control

of adipocyte function in culture. We have just commenced

preliminary experiments based on this concept.

Conclusions

It is thought that supplementation of PUFAs may be

essential in the culture of various cells except for immor-

talized cell lines. The supplementation potentially has

various beneficial effects on biological functions such as

glucose and/or lipid metabolism, differentiation, and

maturity of cultured cells. Further studies are needed to

optimize the amount and combination of supplementary

fatty acids for enhancing or maintaining cellular function.

Conclusion looking over the three substrate topics
and perspective about future advances of key
substrate research

The aim of conventional research on a key substrate was

elucidation of the physiological behavior in its metabolic

(synthesis, degradation) pathways or an understanding of

pathological states caused by the impairment or failure in

its pathways. In other words, a key substrate was treated as

‘‘a constituent element’’ of the pathway in most studies.

Table 1 Fatty acids determined

General name Carbon number and

position of double bond

Lauric acid C12:0

Myristic acid C14:0

Myristoleic acid C14:1n-5

Palamitic acid C16:0

Palmitoleic acid C16:1n-7

Stearic acid C18:0

Oleic acid C18:1n-9

Linoleic acid C18:2n-6

c-Linolenic acid C18:3n-6

a-Linolenic acid C18:3n-3

Arachidic acid C20:0

Eicosenoic acid C20:1n-9

Eicosadienoic acid C20:2n-6

Dihomo-c-linolenic acid C20:3n-6

Arachidonic acid C20:4n-6

5-8-11 Eicosatrienoic acid C20:3n-9

Behenic acid C22:0

Eicosapentaenoic acid C20:5n-3

Erucic acid C22:1n-9

Docosatetraenoic acid C22:4n-6

Lignoceric acid C24:0

Docosapentaenoic acid C22:5n-3

Nervonic acid C24:1n-9

Docosahexaenoic acid C22:6n-3
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However, the approach in studies introduced in this review

was to consider a key substrate as an active substance and

to observe the reactions elicited in cells when it is

administered. Namely, the research method resembles that

of pharmacology. Although such a research method is not

new, it may lead to information that has not been obtained

so far and it may be used in parallel with a diversity of

research technology.
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