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Abstract During capacitation, motility of mammalian

spermatozoon is changed from a state of ‘‘activation’’ to

‘‘hyperactivation.’’ Recently, it has been suggested that

some hormones present in the oviduct are involved in the

regulation of this hyperactivation in vitro. Progesterone,

melatonin, and serotonin enhance hyperactivation through

specific membrane receptors, and 17b-estradiol suppresses

this enhancement by progesterone and melatonin via a

membrane estrogen receptor. Moreover, c-aminobutyric

acid suppresses progesterone-enhanced hyperactivation

through the c-aminobutyric acid receptor. These hormones

dose-dependently affect hyperactivation. Although the

complete signaling pathway is not clear, progesterone

activates phospholipase C and protein kinases and enhan-

ces tyrosine phosphorylation. Moreover, tyrosine phos-

phorylation is suppressed by 17b-estradiol. This regulation

of spermatozoal hyperactivation by steroids is also dis-

rupted by diethylstilbestrol. The in vitro experiments

reviewed here suggest that mammalian spermatozoa are

able to respond to effects of oviductal hormones. We

therefore assume that the enhancement of spermatozoal

hyperactivation is also regulated by oviductal hormones

in vivo.
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Introduction

In the oviduct, mammalian spermatozoa fertilize the

oocyte. Before fertilization, however, spermatozoa must

be capacitated [1–4]. Capacitation is a qualitative change

in the spermatozoa that is needed for fertilization of the

oocyte. Capacitated spermatozoa exhibit two reactions

associated with capacitation. One is an acrosome reaction

that occurs at the head of a spermatozoon. This reaction is

a specialized exocytosis that is required for penetration of

the zona pellucida (ZP) and for binding to the oocyte [1,

2, 4, 5]. The other is hyperactivation that occurs at the

flagellum. Hyperactivation induces a specialized flagellar

movement that creates the driving force for swimming in

the oviduct and for penetrating the ZP [1–4]. Moreover, it

has been shown that the ability of spermatozoon to be

hyperactivated correlates with the success of in vitro

fertilization [6].

By use of a specific culture medium, capacitation is

also made to occur in vitro. During in vitro capacitation,

spermatozoa show motility change, such as from ‘‘acti-

vation’’ to ‘‘hyperactivation.’’ Just after swim up in a

specific culture medium, spermatozoa are activated

(movies 1, 3, and 5). In many animals, activated sper-

matozoa show a small bend amplitude in flagellar

movement and swim linearly. After incubation for some

hours (for example, 3–4 h in hamster and mouse sper-

matozoa and 4–5 h in rat spermatozoa), most spermatozoa

show hyperactivated motility (movies 2, 4, and 6).

However, the movement pattern of hyperactivated sper-

matozoon basically depends on animals [1]. In hamster
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and mouse (movies 2 and 4), hyperactivated spermatozoa

show a large amplitude and a large asymmetric beating

pattern in flagellar movement. Sometimes, their sperma-

tozoa writhe and swim in the form of eight characters. In

rat spermatozoa (movie 6), many hyperactivated sperma-

tozoa show the large amplitude of head, the arched

movement of middle peace of flagellum, and the decrease

of progressive movement although identification of their

movement pattern is difficult.

During spermatozoal capacitation, hyperactivation

occurs spontaneously and time-dependently [1–3, 7–9].

The first stimulation for capacitation/hyperactivation is the

removal of cholesterol from a spermatozoal plasma mem-

brane by albumin [10–13]. The next step is Ca2? influx and

cAMP production stimulated by HCO3
-. Stimulation by

Ca2? and HCO3
- activates certain protein kinases and

phosphorylates proteins [14–19]. Additionally, the sup-

pression of protein phosphatases induces hyperactivation

and protein phosphorylation [20]. Tyrosine phosphoryla-

tion is well known as a capacitation-associated intracellular

signal [14, 15, 19]. The most popular tyrosine phosphory-

lation molecule is an 80-kDa protein, which was identified

as an A-kinase anchoring protein (AKAP) [21]. These

stimulations and signal transductions are associated with

regulation of capacitation, and induce the acrosome reac-

tion and hyperactivation.

After the 1980s, it has been reported that several

molecules that are found from the oviductal and follicular

fluids affect spermatozoal acrosome reaction and hyper-

activation [11–13, 22–39]. Progesterone and serotonin are

well-known classical effectors of the acrosome reaction

[22, 40]. Recently, it has been suggested that proges-

terone, melatonin, and serotonin act as inducers or

enhancers of the acrosome reaction and hyperactivation

[11–13, 29–31, 33], and that 17b-estradiol acts as a

suppressor for these processes [32, 34]. Moreover, it has

been reported that c-aminobutyric acid (GABA) acts as an

inducer of the acrosome reaction and hyperactivation in

humans, rams, and rats [35–38], although it acts as a

suppressor of hyperactivation in hamsters [39]. In the

present article, we review effects of the above molecules

on hyperactivation.

Non-genomic regulation of hyperactivation
by progesterone

Progesterone was found to be an inducer of the acrosome

reaction in human follicular fluid [22]. Additionally, in

hamsters, 20 ng/ml of progesterone increased ZP penetra-

tion and enhanced hyperactivation [11, 25]. In hamsters,

moreover, the concentration of progesterone was

4.2–7.4 lg/ml in the follicular fluid, and was

44.04–175.06 ng/ml in the oviductal fluid [41]. Therefore,

it seems that the progesterone present in the follicular fluid

induces the acrosome reaction and that the progesterone

present in the oviductal fluid increases ZP penetration and

enhances hyperactivation. Although progesterone regulates

cell functions through genomic signals in somatic cells, it

regulates the acrosome reaction, ZP penetration, and

hyperactivation through non-genomic regulation in mam-

malian spermatozoa [23, 24, 30, 42]. In human spermato-

zoa, progesterone stimulates an influx of Ca2? associated

with CatSper activation, tyrosine phosphorylation, chloride

efflux, and cAMP increase, and subsequently induces the

acrosome reaction and hyperactivation [24, 30, 42–45]. In

hamster spermatozoa, progesterone enhances hyperactiva-

tion together with tyrosine phosphorylation [11]. Although

the traditional genomic progesterone receptor (PR) does

not exist in spermatozoa, a novel non-genomic PR exists at

the plasma membrane of spermatozoa [23, 24, 27, 28, 42].

Moreover, it has been suggested that progesterone binds to

the acrosome region where PR are localized in human and

hamster spermatozoa [11, 46]. Downstream of the sper-

matozoal PR, phospholipase C (PLC) [47] and/or protein

kinase A (PKA) [48] are involved in the progesterone-

induced acrosome reaction in mouse and human sperma-

tozoa. In hamster spermatozoa, PLC, PKA, and protein

kinase C (PKC) are involved in the progesterone-enhanced

hyperactivation downstream of the PR [11, 49].

It is well known that tyrosine phosphorylation sites,

including AKAP, are associated with the regulation of

spermatozoal capacitation/hyperactivation [1, 2, 14, 15,

19]. In several cases [11, 20], tyrosine phosphorylation is

enhanced when spermatozoal hyperactivation is induced by

molecules present in the oviduct. Although it is not clear

which kinases cause tyrosine phosphorylation of sperma-

tozoal proteins, it has been reported that tyrosine phos-

phorylation is regulated through Ca2? signals associated

with an inositol 1,4,5-tris–phosphate (IP3) receptor-gated

Ca2? store located at the base of the flagellum and

calmodulin-dependent protein kinase [7, 9, 16, 17, 50].

Moreover, it has also been reported that tyrosine phos-

phorylation is regulated through cAMP-PKA signals [1, 14,

15, 19]. Because PLC, IP3 receptor, PKA, and PKC are

involved in enhancement of hyperactivation in hamster

spermatozoa [11, 49], it seems that progesterone enhances

spermatozoal hyperactivation through binding to PR and

activation of PLC. This binding results in the production of

IP3 and diacylglycerol, release of intracellular Ca2? from

an IP3 receptor-gated Ca2? store, activation of PKC, acti-

vation of adenylate cyclase, production of cAMP, activa-

tion of PKA, and enhancement of tyrosine phosphorylation

(Fig. 1).
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Suppression of progesterone-enhanced
hyperactivation by 17b-estradiol

In human spermatozoa, it has been reported that 17b-

estradiol suppresses the progesterone-induced acrosome

reaction through non-genomic regulation associated with

membrane estrogen receptor (ER) [24, 29–31]. Although

the detailed suppressive mechanism of 17b-estradiol is not

clear, differences in Ca2? influx due to progesterone and

17b-estradiol are considered important [29, 31]. The pro-

gesterone spike follows that of Ca2? in spermatozoa,

whereas 17b-estradiol gradually increases the intracellular

Ca2? concentration in spermatozoa [29, 31].

In hamster spermatozoa [32, 51], 17b-estradiol has been

shown to suppress progesterone-enhanced hyperactivation

through ER-inhibiting tyrosine phosphorylation (Fig. 1).

Because the ER is present in the plasma membrane at the

head of hamster spermatozoa [32], it seems that 17b-

estradiol suppresses progesterone-enhanced hyperactiva-

tion through non-genomic regulation (Fig. 1). Suppression

of progesterone-enhanced hyperactivation by 17b-estradiol

occurs in a dose-dependent manner [32, 51]. The effect of

20 ng/ml of progesterone is suppressed by [20 pg/ml of

17b-estradiol. It seems that spermatozoal hyperactivation

is regulated by the balance of progesterone and 17b-

estradiol concentrations. Because the concentrations of

progesterone and 17b-estradiol vary during the female

estrous cycle [4], it seems that mammalian spermatozoa (at

least hamster spermatozoa) are hyperactivated in response

to progesterone and 17b-estradiol changes in the oviduct

[8, 32, 51].

Disruption of the effects of steroids
on hyperactivation by diethylstilbestrol (DES)

Diethylstilbestrol (DES) is an endocrine-disrupting chem-

ical that affects some reproductive systems [52, 53].

Although it had not previously been known whether DES

affects gametic function, a recent study [51] has suggested

that DES affects the non-genomic regulation of hyperac-

tivation by progesterone and 17b-estradiol. The effect of

DES alone on progesterone-enhanced hyperactivation is

very weak [51]. However, when spermatozoa are exposed

to DES together with 17b-estradiol, DES suppresses pro-

gesterone-enhanced hyperactivation by accelerating the

effect of 17b-estradiol [51]. Specifically, 20 pg/ml of 17b-

estradiol with 20 pg/ml of DES was found to significantly

suppress enhancement of hyperactivation by 20 ng/ml of

progesterone, while 20 pg/ml of 17b-estradiol alone did

not significantly suppress enhancement by 20 ng/ml of

progesterone [51]. It seems that the effects of DES

described above disrupt hyperactivation of hamster sper-

matozoa through non-genomic regulation associated with

progesterone and 17b-estradiol.

Interaction between steroids and other molecules

Melatonin is an enhancer of spermatozoal hyperactivation

[12, 33]. In hamsters, it has been shown that melatonin

enhances spermatozoal hyperactivation via melatonin

receptor type 1 [12]. In rams and humans, it has been

shown that melatonin increases some spermatozoal
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functions (e.g., motility, capacitation, fertility rate,

antioxidant enzyme activity) through decreasing nitric

oxide (NO) [33, 54–57]. Although low concentrations of

NO induce capacitation through a mitogen-activated pro-

tein kinase cascade [58–63], high concentrations of NO

suppress spermatozoal functions [59, 61]. Generally,

melatonin indirectly suppresses the reproductive system

(e.g., steroidogenesis and spermatogenesis) through the

central nervous system in seasonal breeding animals [4, 62,

63]. In contrast, melatonin directly affects spermatozoal

functions of seasonal breeding animals and human [12, 33,

54–57]. Moreover, a very recent study [34] has shown that

17b-estradiol suppresses melatonin-enhanced hyperactiva-

tion in hamster spermatozoa. The effect of melatonin and

17b-estradiol interaction on hyperactivation of hamster

spermatozoa is direct, although the mechanisms behind this

interaction are not at all clear.

Serotonin is also an enhancer of hyperactivation of

hamster spermatozoa [13]. Low concentrations of serotonin

enhance spermatozoal hyperactivation through the 5-HT2

receptor, whereas high concentrations of serotonin enhance

hyperactivation through the 5-HT4 receptor. Serotonin also

induces the acrosome reaction through the 5-HT2 and

5-HT4 receptors in hamster spermatozoa [40]. Generally,

5-HT2 receptor and 5-HT4 receptors activate PLC-Ca2?

signaling and adenylate cyclase-cAMP signaling, respec-

tively [64, 65]. Although serotonin signals are similar to

progesterone signals, it is not clear whether estradiol sup-

presses serotonin-enhanced hyperactivation as it does in

the case of progesterone.

GABA induces the acrosome reaction and hyperactiva-

tion through GABA receptors in human, ram, and rat sper-

matozoa [35–38]. In several cases, the GABAA receptor has

been shown to be involved in inducing the acrosome reaction

and hyperactivation [37, 38]. Although the GABAB receptor

also exists in rat spermatozoa and is localized in the sperm

head [66–68], it is unclear whether the GABAB receptor is

involved in spermatozoal functions. Interestingly, several

studies have reported that progesterone induces the acro-

some reaction and hyperactivation through the GABAA

receptor in human, ram, and rat spermatozoa [35–38],

although many studies have reported that progesterone

induces and enhances the acrosome reaction and hyperacti-

vation through PR instead [11, 22–24, 26–28, 46, 48]. In

contrast, in hamster spermatozoa, GABA suppresses pro-

gesterone-enhanced hyperactivation through the GABAA

receptor [39]. Because the concentration of GABA in the

oviduct is more than 2.5-fold that in the brain [69] and the

concentration of GABA changes in the female genital tract

through the estrous cycle [70], it is likely that GABA is

involved in the regulation of capacitation in a similar manner

to 17b-estradiol, including regulation of the acrosome

reaction and hyperactivation. However, the detailed

mechanisms behind GABA actions in spermatozoal capac-

itation are not yet clarified. Additionally, effects of GABA

and GABAA receptor on spermatozoal functions confuse.

Conclusions

Rodent spermatozoa begin to be capacitated after moving

into the oviduct. Other many mammalian (including

human) spermatozoa present in the oviduct are capacitated.

Capacitation-related events (acrosome reaction and

hyperactivation), which occurred in a specialized culture

medium in vitro, are regulated by molecules present in the

oviduct, including progesterone, 17b-estradiol, melatonin,

serotonin, and GABA. These molecules induce the acro-

some reaction and hyperactivation of mammalian sper-

matozoa in a dose-dependent manner.

In vitro effects of these molecules on the acrosome

reaction and hyperactivation should be confirmed as

in vivo effects by in vivo experiments, although observa-

tions of effects of the molecules on spermatozoal acrosome

reaction and hyperactivation in vivo are very difficult. At

least, previous in vitro experiments suggested that mam-

malian spermatozoa were able to respond to effects of the

molecules. Therefore, we consider that mammalian sper-

matozoa have abilities to respond to influences of the

molecules in vivo. Because the concentrations of the

molecules present in the oviduct vary during the estrous

cycle [4], it seems that mammalian spermatozoa are acro-

some-reacted and hyperactivated in response to the

changing environment of the oviduct such as the changing

concentration of the oviductal molecules [8, 11, 24, 25, 29–

32, 51]. Moreover, it seems that regulation of hyperacti-

vation by molecules present in the oviduct, especially

progesterone and 17b-estradiol, is unstable because this

regulation is easily disrupted by DES accelerating the

effect of 17b-estradiol [11, 25, 32, 51].

After beginning to swim, mammalian spermatozoa

spontaneously are capacitated in the oviduct in order to be

hyperactivated and finally acrosome-reacted. Based on the

in vitro experiments reviewed here, we consider that the

enhancement of spermatozoal hyperactivation is regulated

through ligand-dependent mechanisms associated with

oviductal molecules during capacitation. Moreover, we

assume that its regulatory mechanisms are associated with

changes in the oviduct environment because changes of

concentration of oviductal molecules are involved in

estrous cycle.
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54. Casao A, Mendoza N, Pérez-Pé R, Grasa P, Abecia J-A, Forcada
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