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Abstract The optokinetic reflex (OKR) is useful to

monitor the function of the visual and motor nervous sys-

tems. However, OKR measurement is not open to all

because dedicated commercial equipment or detailed

instructions for building in-house equipment is rarely

offered. Here we describe the design of an easy-to-install/

use yet reliable OKR measuring system including a com-

puter program to visually locate the pupil and a mathe-

matical procedure to estimate the pupil azimuth from the

location data. The pupil locating program was created on a

low-cost machine vision development platform, whose

graphical user interface allows one to compose and operate

the program without programming expertise. Our system

located mouse pupils at a high success rate (*90 %),

estimated their azimuth precisely (*94 %), and detected

changes in OKR gain due to the pharmacological modu-

lation of the cerebellar flocculi. The system would promote

behavioral assessment in physiology, pharmacology, and

genetics.
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Abbreviations

OKR Optokinetic reflex

VBAI Vision Builder for Automated Inspection

Introduction

The optokinetic reflex (OKR) is an ocular motion which is

induced by the drift of the entire visual scene across the

retina and serves to stabilize the image on the retina.

Typically, an animal is exposed to an oscillating visual

pattern and the stimulus-eye movement fidelity is evalu-

ated. Such a measure efficiently quantifies the activities of

the retina, accessory optic system, inferior olive, cerebel-

lum, and vestibular and oculomotor nuclei [1–5]. OKR can

be measured without ad-hoc training. Also, the basic

characteristics of OKR have been documented for the

mouse, a standard laboratory animal (e.g., [6, 7]). There-

fore, OKR measurement is expected as a quick and infor-

mative assessment of the neural function of mutant and

experimentally manipulated animals [8].

Furthermore, the fidelity increases after a long-term

exposure(s) to an oscillating pattern (OKR adaptation). The

analysis of OKR adaptation in mutant or experimentally

manipulated mice is a powerful approach to dissecting

mechanisms underlying memory formation in the cerebel-

lar flocculus and its related brain regions (e.g., [3, 9–11]).

Despite an increasing demand for OKR measurement in

small laboratory animals, there is rarely offered dedicated

measurement equipment. Researchers have to build their

own equipment by adapting a commercial general-purpose
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eye tracker (e.g., [8, 9, 12]) or the custom equipment used

in the previous studies (e.g., [6, 7, 13, 14]). However, it is

difficult for non-engineer/computer expert researchers to

do so because detailed instructions have not been

published.

Here we describe the design of an easy-to-install/use yet

reliable OKR measuring system open to all researchers. We

employed machine vision, a technology used for the quality

inspection of factory products, to visually locate the pupil.

The computer program to execute this image processing

was created on Vision Builder for Automated Inspection

(VBAI) (National Instruments, TX, USA). VBAI is a

machine vision-dedicated programming platform, which is

much easier to manipulate than the general industrial

software developing platform LabVIEW (National Instru-

ments) whose image acquisition functionality was

employed in the previously reported measurement systems

[9, 14]. The cost for installing VBAI is much less expen-

sive than LabVIEW with the machine vision-related add-

ons. In the configuration mode of VBAI, one may adjust

and execute the individual image processing functions like

an interpreted programming language. The consequence of

each adjustment can be checked instantaneously by view-

ing the output image of the corresponding function. These

features allow intuitive and speedy optimization of the

settings of the eye tracker for the examined animal. We

provide the source file of the pupil locating program (VBAI

diagram and its parameter settings) in Fig. 2 and supple-

mentary material.

In addition, we describe a mathematical procedure to

estimate the pupil azimuth and a sample software imple-

mentation of this procedure (supplementary material,

http://niteut.eng.u-toyama.ac.jp/Lab_NIT/Downloads.html)

and show the performance tests of our measurement

system.

Materials and methods

The detailed procedures are given in supplementary

material. The animal experiments presented in this work

were approved by the University of Toyama’s committee

on animal experiments (G-2010 ENG-16) and performed in

accordance with the ethical standards laid down in the 1964

Declaration of Helsinki and the Guiding Principles for the

Care and Use of Animals in the Field of Physiological

Sciences. Briefly, 1 day before the measurement, a mouse

was habituated to the eye tracker (Fig. 1) for *1 h and

then dark-reared for 24 h.

One hour before the measurement, saline with or with-

out lidocaine HCl, a local anesthetic (5 % w/v) was

injected bilaterally into the cerebellar flocculi (500 nl per

each side). Immediately before the measurement, the

mouse was mounted on a special stereotaxic apparatus and

then exposed to continuous sinusoidal oscillations of black

and white stripes (Fig. 1). The infrared images of the left
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Fig. 1 Eye tracker. a Wiring of the devices. b Special stereotaxic apparatus. Black thick line, rubber lining. c Positioning of the camera. See

supplementary material for details

Fig. 2 Pupil recognition and azimuth estimation. a–c Online image

processor which locates the pupil center. The overall state diagram

(a) and image processing functions comprising the ‘‘Wait’’ (b) and

‘‘Inspect’’ (c) states. Screen dumps, the output images of the

corresponding functions. Note that the images appear to be com-

pressed along the y-axis because one out of two sets of interlaced scan

lines were omitted from the image frame. d–f Off-line data analysis.

The pupil rotation orbit was reconstructed, minimizing the influence

of translation, re-targeting, mydriasis, and myosis and then the

relative pupil azimuth (a) was determined. See ‘‘Results and

discussion’’ and supplementary material for details

c
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eye were captured using a charge-coupled device camera

and processed using an ‘‘online image processor’’ software

created on VBAI (version 3.6), which recognized a dark

object with a certain area as the pupil and located its center

by ellipse fitting (Fig. 2a–c).

After the measurement, the pupil orbit was recon-

structed for every screen oscillation (Fig. 2d–f). The orbit

center often moved spontaneously (translation, Fig. 2d).

The eye sometimes turned in the opposite direction of the

screen when the mouse switched its target from a certain

group of stripes to another (re-targeting, Fig. 2e). To

reduce this noise, we edited out abrupt pupil leaps from the

reconstructed orbit. Moreover, mydriasis and myosis

resulted in inner or outer shift of the pupil (Fig. 2f). The

pupil orbit center was located by fitting a circle to the data

without the indication of such a shift. Finally, relative pupil

azimuth in every image frame (Fig. 2f) was determined,

taking the pupil orbit center as the reference.

Results and discussion

Installation and operation

In the configuration mode of VBAI, we could compose

the online image processor by graphically wiring the

icons of the states and steps (built-in functions) without

writing a lengthy code (Fig. 2a–c). We could also opti-

mize the settings for the individual mouse by repeating

the cycles of adjusting the parameters and checking the

output image of the individual steps (Fig. 2c, supple-

mentary material). Such an intuitive interface may allow

non-computer expert researchers to build and operate the

eye tracker.

Moreover, the stimulus screen drum was smoothly

rotated by the stepping motor and belt pulley with a sinu-

soidal change in its relative azimuth (Fig. 4a, ‘‘Screen’’).

Basic performances

Tests with a model eye demonstrated that our system could

monitor 18� rotations of the pupil with high precision

(slope of the line fitted to the actual pupil azimuth-esti-

mated pupil azimuth plot was 1.06), high linearity (R2,

0.998), and high reproducibility (SDs, 0.034–0.356�)

(Fig. 3a, b). Mice are reported to show initial OKR gains of

0.3–0.6 and a gain increases of 0.1–0.2 in response to a

long-term exposure to 2–20� pattern oscillations (e.g., [3, 7,

11]; i.e., the typical amplitude of eye movement ranges

0.6–16�. Our system has enough range and resolution to

evaluate OKR in mice.

Furthermore, the slope of the actual-estimated pupil

azimuth plot unchanged even with translations (0.94)

(Fig. 3b), indicating the robustness of our system against

translation.

Practical performances

When applied to C57BL/6 mice, our eye tracker recog-

nized the pupil without the indications of failure in

89.8 ± 5.8 (mean ± SD) and 87.6 ± 15.7 % of the image

frames at the initial and last 10 min periods of a 1 h ses-

sion, respectively (n = 16). If pupil recognition failed too

frequently due to incorrect settings of the online image

processor, we could rerun the online image processor on

the backup video with the readjusted settings. Because of

these fail-proof features, our system is thought to be suit-

able for rarely obtainable preparations such as mutant mice

that are difficult to breed.

In the control mice (n = 8), our system could detect an

increase in OKR gain (i.e., OKR adaptation) that was not

seen in the lidocaine-injecected mice (n = 6) (Fig. 4a).

There was a significant difference in the time-course of

OKR gain between the control and lidocaine-injected mice

(p = 0.043, F = 2.46, time 9 drug condition interaction,

repeated measures ANOVA; Fig. 4b). In the control mice,

the OKR gains at the first and last 10 min periods of a 1-h

session were 0.618 ± 0.035 (mean ± SEM) and 0.714 ±

0.027, respectively. Similar time-courses and extents of

OKR adaptation were reported in the previous studies

[3, 11], indicating data compatibility between our and other

measurement systems. In the lidocaine-injected mice, the
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Fig. 3 Basic performances. a and b Accuracy assessment using a

model eye rotating at a speed of 8.18�/s in the absence or presence of

translations made by moving the model eye by *1 mm in random

directions once every three screen oscillations. a Sample time-courses

of the estimated pupil azimuth. b The relation of the actual to

estimated pupil azimuth. The mean lines are flanked by the ±SD lines

(n = 5 for each condition)
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OKR gains at the first and last 10 min periods were

0.506 ± 0.036 and 0.516 ± 0.045, respectively. The

overall OKR gains throughout the whole session also sig-

nificantly differed between the control and lidocaine-

injected mice (p = 0.0015, F = 16.73, multivariate

ANOVA; Fig. 4c). The grand mean OKR gains over the

whole session was 0.681 ± 0.027 for the control mice and

0.499 ± 0.037 for the lidocaine-injected mice. The cere-

bellar flocculus is thought to be responsible for formation

of OKR adaptation-related memory [1, 3, 9–11]. The effect

of lidocaine might reflect interference with memory for-

mation. This result suggests that our system can evaluate

the in vivo consequence of the functional modulation of the

neural tissues.

Our measurement system was easy-to-install/use yet

could evaluate normal and pharmacologically modulated

OKRs in mice (see Additional discussion in supplementary

material for details). Our system would promote behavioral

examinations of mutant and experimentally manipulated

small laboratory animals in physiological, pharmacologi-

cal, and genetic studies.
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Fig. 4 Practical performances. a–c OKRs of the lidocaine-injected

and control mice (n = 6 and 8, respectively). a Sample time-courses

of the estimated pupil azimuth of single animals. Upper traces,

responses to single screen oscillation obtained in the first and last

10 min periods of a 1 h measurement session. Lower traces, averages

of each 10 min period of a 1 h measurement session. Screen,

measured relative screen drum azimuth. b Average OKR gains of

each 10 min period. Dot and error bars, mean ± SEM. Asterisk,

p = 0.043 for time 9 drug condition interaction compared with the

control, repeated measures ANOVA. c Grand mean OKR gains over

the whole session. The values are calculated by averaging the data of

all the 10 min periods. Double Asterisk, p = 0.0015 compared with

the control, multivariate ANOVA
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