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Role of the central nervous system in cell 
non‑autonomous signaling mechanisms 
of aging and longevity in mammals
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Abstract 

Multiple organs orchestrate the maintenance of proper physiological function in organisms throughout their life-
times. Recent studies have uncovered that aging and longevity are regulated by cell non-autonomous signaling 
mechanisms in several organisms. In the brain, particularly in the hypothalamus, aging and longevity are regulated 
by such cell non-autonomous signaling mechanisms. Several hypothalamic neurons have been identified as regula-
tors of mammalian longevity, and manipulating them promotes lifespan extension or shortens the lifespan in rodent 
models. The hypothalamic structure and function are evolutionally highly conserved across species. Thus, elucidation 
of hypothalamic function during the aging process will shed some light on the mechanisms of aging and longevity 
and, thereby benefiting to human health.

Keywords  Cell non-autonomous, Aging, Longevity, Hypothalamus, Sleep, Cross-species comparison

Background
Many studies have shown that longevity is regulated 
through cell non-autonomous signaling mechanisms by 
pathways originating in central nervous system neurons 
[1, 2]. These signaling pathways, which affect peripheral 
tissues, can significantly influence organismal health and 
longevity. Enhancement or suppression of these signal-
ing pathways in central nervous system neurons leads 
to functional changes within the neurons (cell autono-
mous process) and transmits signals to the periphery to 
modulate its functions (cell non-autonomous process). 
For instance, in the nematode worm Caenorhabditis 
elegans, ASI amphid chemosensory neurons are impor-
tant to maintain proper metabolic status, and possibly 

longevity. Ablation of ASI neurons completely suppresses 
the effect of lifespan extension induced by dietary restric-
tion, suggesting that ASI neurons are required for the 
longevity effect of dietary restriction [3] through highly 
conserved molecules such as SKN-1 (Nrf2 homolog) 
and DAF-7 (transforming growth factor β homolog) [4]. 
SKN-1B is specifically expressed in ASI neurons. Neu-
ronal SKN-1B, whose expression increases under dietary 
restriction, is required for one dietary restriction condi-
tion to promote lifespan extension [3, 5]. DAF-7 is also 
primarily expressed in ASI neurons. Genetic ablation 
of the ASI neurons prevents odorant-induced UPRER 
activation, depending on DAF-7 signaling, and leads to 
extended lifespan and enhanced clearance of toxic pro-
teins [6]. Other signaling pathways in neurons are also 
reported in the regulation of nematode longevity includ-
ing hypoxia-inducible factor-1 [7, 8], heat shock response 
proteins-1 [9], AMP-activated protein kinase (AMPK) 
and target of rapamycin (TOR) [10–12]. In the fly Dros-
ophila melanogaster, neuronal activation of AMPK or 
Atg1, an autophagy-specific protein kinase, induces 
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autophagy in the brain to slow aging and improves vari-
ous parameters of healthspan [13]. Drosophila insulin-
like peptides are implicated in mediating the inter-tissue 
responses between the nervous system and the intestines 
[13]. Furthermore, modifying mitochondrial function 
in neurons that influence aging and fly longevity also 
affects cells through cell non-autonomous mechanisms 
[14]. A recent study demonstrated that the overexpres-
sion of hedgehog signaling, which is present in the glial 
cells of an adult fly, rescues proteostasis defects and the 
reduced lifespan in the glia of hedgehog mutant flies [15]. 
In mammals, increasing evidence highlights the role of 
the brain in the regulation of aging and longevity through 
cell non-autonomous signaling mechanisms. Specifically, 
the hypothalamus stands out as     one of the most active 
regions involved in these signaling processes related to 
aging and longevity. [2, 16]. In this review, we summarize 
the multiple signaling pathways in the hypothalamus that 
convey signals from the brain to peripheral organs and 
modulate aging and mammalian longevity. We describe 
how the structure and function of the hypothalamus 
are conserved across species and how these aspects are 
altered with age. Finally, we discuss some future perspec-
tives on aging research that focus on the hypothalamus.

The hypothalamus in rodents
In mammals, multiple longevity studies have been dem-
onstrated lifespan extension or shortening with brain-
specific manipulation of genes/signaling pathways [2, 16] 
(Fig. 1). The hypothalamus maintains a homeostatic bal-
ance between physiological functions and behaviors by 
integrating large amounts of humoral and neural infor-
mation and communicating proper instructions to down-
stream brain regions.

An important role of the hypothalamus is humoral 
secretion that is potentially linked to longevity control. 
Ames dwarf mice and Snell dwarf mice, which are defi-
cient in growth hormone (GH), prolactin, and thyroid 
stimulating hormone, live  up to 40–60% longer  than 
control mice [17, 18]. Brain-specific insulin-like growth 
factor-1 (Igf-1) receptor-knockout mice and brain-specific 
insulin receptor substrate 2-knockout mice also extend 
their lifespan [19, 20], indicating that inhibition of GH 
and insulin/IGF-1 signaling pathways within the brain 
increases life expectancy. Additionally, GH-releasing 
hormone (Ghrh) receptor-mutant mice live longer than 
controls [21]. The GHRH is mainly secreted from neu-
ronal populations within the arcuate nucleus (Arc) and 
then stimulates GH secretion from the anterior pituitary. 
Therefore, GHRH-secreting neurons in the Arc might 
have a critical role in promoting the effects of GH/IGF-1 
signaling pathway in longevity.

Suppression of age-associated cellular changes in the 
hypothalamus affects health and longevity. With age, 
IKKβ/NF-κB is activated in the hypothalamus [22] and 
the level of adult neurogenesis in the hippocampus and 
hypothalamus significantly declines [23]. Mice with sup-
pression of NF-κB signaling pathway specifically in the 
mediobasal hypothalamus (MBH) by expression of IκB-
α show lifespan extension [22]. Activation of NF-κB 
signaling in the MBH decreases gonadotropin-releasing 
hormone (GnRH) transcription, and an intracerebroven-
tricular injection of GnRH ameliorates age-associated 
phenomena (e.g., muscle strength, dermal thickness, 
hippocampal neurogenesis, and cognitive function). In 
addition, multiple endocrine neoplasia type 1 (Menin) 
is associated with p65 and inhibits NF-κB transactiva-
tion as well as neuroinflammation. The overexpression of 
Menin in the ventromedial hypothalamus (VMH) of aged 
mice extends lifespan, improves learning and memory, 
and ameliorates aging biomarkers; whereas, inhibiting 
Menin in the VMH of middle-aged mice induces prema-
ture aging and accelerated cognitive decline [24]. These 
results suggest that neuroinflammation in the hypo-
thalamus affects systemic aging and cognitive function. 
MBH-specific depletion of hypothalamic neural stem 
cells displays age-associated physiological changes and 
shortened lifespan [23]. Notably, the implantation of 
hypothalamic neural stem cells, expressing dominant-
negative IκB-α that helps the survival of hypothalamic 
neural stem cells, into the MBH promotes lifespan exten-
sion. The levels of exosomal microRNAs in the cerebro-
spinal fluid significantly decline with age, revealing that 
hypothalamic neural stem cells control age-associated 
pathophysiology regulated by hypothalamic microRNAs 
[23]. Cellular senescence, defined by increases in p15, 
p16ink4a, senescence associated-β-galactosidase stain-
ing and DNA damage, occurs in neural stem cells/neural 
progenitor cells both in vitro and in vivo [2]. Such aged 
neural stem cells/ neural progenitor cells can be rejuve-
nated to induce functional neurogenesis [25], proposing a 
way to treat age-associated neurological diseases.

Evidence suggests that manipulating longevity-regu-
lating genes specific to the hypothalamus, such as sirtuin 
and mammalian TOR (mTOR) signaling, impacts longev-
ity. This highlights the critical role of the hypothalamus 
in regulating aging and lifespan. Brain-specific Sirt1-
overexpressing transgenic (BRASTO) mice show lifespan 
extension in both males and females [26]. Remarkably, 
the aging phenomenon is ameliorated by the overexpres-
sion of Sirt1 in the dorsomedial hypothalamus (DMH) 
[26]. Thus, maintaining Sirt1 signaling in the DMH might 
be crucial to delay the aging process and to extend our 
health and longevity. Supporting this idea, DMH-specific 
PR-domain containing protein 13 (Prdm13)-knockdown 
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mice shorten the lifespan [27]. Prdm13 is a downstream 
gene of Sirt1 in the hypothalamus [28]. Intriguingly, DR 
suppresses age-associated sleep fragmentation in wild-
type mice, but not DMH-specific Prdm13-knockdown 
mice, revealing that a deficiency of Prdm13 in the DMH 
is sufficient to lose the effect of diet restriction in age-
associated sleep alterations. Therefore, Sirt1/Prdm13 
signaling in the DMH might regulate aging and longevity 

through sleep control. Furthermore, in the DMH, the 
chemogenetic activation of protein phosphatase 1 regu-
latory subunit 17 (Ppp1r17) ameliorates age-associated 
dysfunction in the white adipose tissue (WAT), increases 
physical activity, and extends lifespan. These findings 
suggest the importance of the inter-tissue communica-
tion between the hypothalamus and WAT in mammalian 
longevity control [29]. Although whether Sirt1 affects 

Fig. 1  Hypothalamic neurons promote aging and longevity in rodent models. A Anatomical localization of the hypothalamus in the mouse 
brain. Three reference points are shown at Bregma + 0.26, − 0.58, and − 1.70 mm in B. B Multiple hypothalamic neurons have been reported 
to be involved in the regulation of aging and longevity, including temperature sensitive neurons in the preoptic area of the hypothalamus (POA); 
Sirt1 + Nkx2-1 +, Sirt1 + Nkx2-1 + Prdm13 +, and Sirt1 + Nkx2-1 + Ppp1r17 + neurons in the dorsomedial hypothalamus (DMH); GnRH and Npy 
neurons in the arcuate nucleus (Arc); hypothalamic neural stem cells/ neural progenitor cells (htNSCs/NPSs) in the mediobasal hypothalamus (MBH); 
and Menin + SF-1 + neurons in the ventromedial hypothalamus (VMH). PVN: paraventricular nucleus; LH: lateral hypothalamus; SCN: suprachiasmatic 
nucleus
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the function of Ppp1r17 still needs elucidation, it is con-
ceivable that Ppp1r17+ DMH neurons can manipulate 
aging and longevity in mammals. Mice lacking hypotha-
lamic mTORC2 signaling, due to the knockout of Rictor, 
show adverse effects in glucose metabolism and a short-
ened lifespan. In addition, hypothalamic-specific Rictor-
knockout mice show low physical activity and increased 
susceptibility to diet-induced obesity through hyperpha-
gia [30]. Only chronic administration of rapamycin inhib-
its mTORC2 in some cell lines or tissues [31]; therefore, 
specific inhibition of mTORC1 might significantly reduce 
the side effects of rapamycin in brain function.

Longevity studies in mice indicate a potential link 
between sleep control, thermoregulation, and longevity. 
The hypothalamus has a central role in the regulation of 
sleep. Sleep deficiency can be linked to many health prob-
lems including obesity, diabetes, cardiovascular disease, 
cognitive impairments, mental deficits, and potentially 
affects lifespan. In fact, young DMH-specific Prdm13-
knockdown mice exhibited sleep alterations (e.g., sleep 
fragmentation, excessive sleepiness during sleep depriva-
tion), which are similar with aged mice, and shorten their 
lifespan [27]. Given that restoration of Prdm13 in the 
DMH ameliorates age-associated sleep fragmentation, it 
would be  intriguing to investigate whether this restora-
tion also has an impact on longevity. The hypothalamus 
also acts as a control center of thermoregulation. Brain-
specific uncoupling protein 2 (Ucp2)-overexpressing 
transgenic mice exhibited a lowered core body tempera-
ture by elevating the temperature within the hypothala-
mus, and extends lifespan [32]. Recent study indicates 
that, under laboratory conditions, lifespan was influenced 
by the level of body temperature, but not metabolic rate 
in both sexes in mice and hamsters [33]. In addition to 
low body temperature, proper adaptation of body tem-
perature to environmental stimuli might be important to 
improve our health and longevity [34]. If this hypothesis 
holds true, Ucp2 transgenic mice might greatly response 
and adjust their body temperature under low-nutrient 
conditions or other circumstances.

Hypothalamic function in rodents and humans
Experiments using rodents are useful for studying the 
changes in brain function with age and diseases in 
humans; however, cross-species comparison is chal-
lenging due to discrepancies in anatomical definition 
and the obvious difference in brain size [35, 36]. Topo-
logically, the hypothalamus is a known-multinucleated 
structure that is highly conserved across species [37–39], 
presumably due to its important role in animal physiol-
ogy. In terms of hypothalamic neurons, single-cell tran-
scriptomic data from the hypothalamus suggest extensive 
conservation of neuronal subtypes, despite certain 

differences in species-enriched gene expression between 
mice and humans [40] or between mice and macaques 
[41]. Furthermore, new methods for aligning measures 
of brain-wide gene expression in the mouse and human 
brains have improved the resolution of cross-species cor-
respondences [42]. Together, elucidation of age-associ-
ated changes in hypothalamic function in rodent models 
will provide an insight into human aging and longevity.

Functional connectivity (FC) refers to the synchroni-
zation and/or correlation in the levels of brain activity 
between distinct regions of the brain. This connectiv-
ity is often assessed using functional MRI (fMRI) stud-
ies, which measure the spontaneous blood oxygen 
level-dependent signal. Based on structural MRI, spe-
cific regions of interest can be defined as a seed [43] that 
allows to measure the regional FC. An entire brain func-
tional network is further estimated by fMRI. The human 
brain functional network alters in several physiological 
dysfunctions including mild cognitive impairment [44], 
neurodegenerative diseases (for example, Alzheimer’s 
disease [45, 46], Parkinson’s disease [47], Huntington’s 
disease [48]), schizophrenia [49], depression [50] and 
insomnia [51], suggesting that the determination of 
regional FC is useful for the diagnostics of brain func-
tion. Some FCs are highly conserved across species (for 
example, visual and somatomotor networks), while some 
regions appear to be unique and unassigned [36, 52].

Functional and structural network involving 
the hypothalamus and its alterations with age
As individuals age, the functional network of entire 
human brain, which is well-segregated and specialized in 
young individuals, undergoes deterioration (for example, 
decreased FC within functional networks and increased 
FC between functional networks). Such age-related 
changes are pronounced across multiple brain networks, 
with particular attention given to the default mode net-
work in previous studies [53–57]. In rodent studies, an 
age-related decline in FC within networks is consistent 
with that in human studies; however, age-related changes 
in connectivity between networks are not fully eluci-
dated. So far, a few studies have demonstrated age-related 
changes in seed-based FC of the hypothalamus in mice 
and humans. In mice, the FC of the hypothalamus with 
the prelimbic cingulate and hippocampus significantly 
increases from 2.5 to 8.5 months of age.    In contrast, 
the connectivity with the globus pallidus and prelimbic 
cingulate decreases from 8.5 to 12.5 months of age, cre-
ating a distinct   inverse U-shaped curve) [58]. Further, 
evaluation of FC of the hypothalamus in rodents aged at 
12.5 months and older would be valuable. Notably, a sim-
ilar inverse U-shaped curve is also reported in humans 
[59]. In humans, no study has shown distinct age-related 
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changes in seed-based FC of the hypothalamus [60]. 
However, a reduction in FC between the hypothalamus 
and temporal gyrus is observed in patients with Alzhei-
mer’s disease accompanied by depression [61]. Intrigu-
ingly, female rats have a stronger hypothalamic-related 
connectivity than males, suggesting a sexual dimorphism 
of hypothalamic FC [27].

Structural connections have been investigated for the 
hypothalamus and its changes with diseases and aging 
using a diffusion MRI-based technique, called diffusion 
tensor tractography, in humans and using neurotrac-
ing studies in rodents. The diffusion tensor tractogra-
phy can non-invasively depict the trajectory of a neural 
fiber tract [62], and provides information about anatomi-
cal connections between distant brain areas and the 
course, interruption, or integrity of neural pathways 
[63]. Aging causes a decrease in the structural connec-
tivity density and the total number of fiber tracts in the 
brain [56]. Moreover, patients with mild traumatic brain 
injury (MTBI) show disrupted structural connections 
within the hypothalamus, and reduced FC between the 
hypothalamus and the medial prefrontal, inferior poste-
rior parietal, or cingulate regions [64]. MTBI can cause 
injury to hypothalamic cell bodies that may result in 
substantial neuropeptide dysregulation with associated 
clinical symptoms, including motivated behavior, sleep/
wake cycles, and arousal. Thus, addressing whether sleep 
disturbance significantly affects FC changes within the 
hypothalamus, and whether it is impacted by age would 
be valuable. Mouse structural connectivity in the hypo-
thalamus revealed by neurotracing studies can be found 
in the Allen Mouse Brain Connectivity Atlas [65]. Projec-
tions from the lateral hypothalamus to the zona incerta, 
reticular nucleus of the thalamus and perifornical nucleus 
are commonly reported in multiple studies. Rodent stud-
ies have reported fiber injury with age in the thalamus 
and cortex, but not in the hypothalamus [66].

Conclusion
In mammals, certain neurons in the hypothalamic nuclei 
play a crucial role in regulating physiology against aging 
and prolong lifespan. To further elucidate hypothalamic 
mechanisms of aging and longevity via cell non-autono-
mous pathway, future studies can address the following 
issues: (1) whether the identified hypothalamic neurons 
interact with each other in regulating of mammalian lon-
gevity; (2) whether there is a key connection between 
the hypothalamus and the external/internal regions of 
the brain; and (3) whether the FC between hypothalamic 
nuclei changes with age. This is challenging to address 
due to the resolution limit of MRI; however, other tech-
niques might be feasible to address this question.
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