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Abstract 

The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered 
in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling 
and in the induction of cell death. This series of review articles describes what is already known and what remains 
to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological 
roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, 
first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, 
ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation 
mechanisms of VSOR/VRAC. Since the pore size of VSOR/VRAC has now well been evaluated by electrophysiological 
and 3D-structural methods, the signal-releasing activity of VSOR/VRAC is here discussed by comparing the molecular 
sizes of these organic signals to the channel pore size. Swelling-independent activation mechanisms include a phys-
icochemical one caused by the reduction of intracellular ionic strength and a biochemical one caused by oxidation 
due to stimulation by receptor agonists or apoptosis inducers. Because some organic substances released via VSOR/
VRAC upon cell swelling can trigger or augment VSOR/VRAC activation in an autocrine fashion, swelling-dependent 
activation mechanisms are to be divided into two phases: the first phase induced by cell swelling per se and the sec-
ond phase caused by receptor stimulation by released organic signals.
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Introduction
Mammalian anion channels are known to be classified 
into six major groups: ligand-gated receptor-coupled, 
voltage-gated ClC-type, cyclic AMP/PKA-activated 
cystic fibrosis transmembrane conductance regulator 
(CFTR),  Ca2+-activated TMEM16/ANO, acid-activated 
ASOR/PAC, and swelling-activated anion channels (see 
Review [1]). The last one, called the volume-activated 
anion channel (VAAC), is involved in cell volume regu-
lation and consists of two types, the intermediate-con-
ductance outwardly rectifying anion channel, which 
was termed the volume-sensitive outwardly rectifying 
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anion channel (VSOR) or volume regulated anion chan-
nel (VRAC) (see Review [2]), and the large-conductance 
ohmic maxi-anion channel (Maxi-Cl) (see Review [3]).

The intermediate conductance one, here called the 
volume-sensitive outwardly rectifying/volume-regula-
tory anion channel (VSOR/VRAC), was first function-
ally found in 1988 independently by two groups ([4, 5]). 
Soon thereafter, its phenotypical properties were well-
characterized [6–8], but the molecular nature remained 
unknown for over a quarter of a century. In recent years, 
the pore-forming core component and the swelling-sens-
ing subcomponents of VSOR/VRAC were identified as 
LRRC8 members in 2014 [9, 10] and TRPM7 in 2021 [11], 
respectively, as summarized in the Part 1 article [12].

VSOR/VRAC is known to be activated not only by cell 
swelling but also by some other physicochemical and 
biochemical stimuli even in the absence of cell swelling. 
In addition, accumulating evidence showed that VSOR/
VRAC plays not only the volume-regulatory role but 
also other roles including mediation of organic signal 
release, induction of apoptotic, necrotic, and pyroptotic 
cell death, and acquirement of anti-cancer drug resist-
ance. Thus, here in this Part 2 article, from physiological 
and pathophysiological standpoints, I review how VSOR/
VRAC is involved in the cellular release of autocrine/
paracrine organic signals, and how it is activated, in a 
swelling-dependent and -independent manner, together 
with pointing out what remains to be elucidated in future 
studies. The VSOR/VRAC roles in cell death induction 
and acquisition of anti-cancer drug resistance will be 
reviewed in the next Part 3 article.

Mediation of release of organic substances 
and signals via VSOR/VRAC 
Since organic solutes produced within cells are intracel-
lularly accumulated, and their extracellular concentra-
tions are negligibly low under ordinal conditions, they 
are readily driven out of cells by such chemical potential 
(concentration) gradients when some diffusional chan-
nel-mediated routes are available. For the release of nega-
tively charged organic solutes, the intracellular negative 
potential is to be added to the driving force. For example 
for  ATP4−, the electrochemical potential gradient reaches 
the order of  1010 when the intracellular electrical poten-
tial is around − 60 mV [13].

After the establishment of VSOR/VRAC role in cell 
volume regulation, its mediation of the cellular release 
of small organic substances was found to be another 
important role of VSOR/VRAC in the early 1990s, as 
summarized by Strange et  al. [6, 14]. Thereafter, this 
VSOR/VRAC role was supported by the functional 
and structural evaluation of the pore size of VSOR/
VRAC. Recent studies have elucidated the physiological/

pathophysiological significance of VSOR/VRAC-medi-
ated release of organic substances as paracrine/autocrine 
signals.

Swelling‑activated release of intracellular organic solutes 
and the pore size of VSOR/VRAC 
Swelling-activated  Na+-independent (that is,  Na+-driven 
cotransport-independent) release of intracellular gluta-
mate, aspartate, and taurine from mammalian cells was, 
for the first time, observed in rat astrocytes in 1990 by 
Kimelberg et  al. [15]. In 1991, hypotonicity-induced, 
 Na+-independent taurine release was found to be sensi-
tive to a  Cl− channel blocker DIDS in rabbit lymphocytes 
[16]. Then, similar  Na+-independent release of glutamate, 
taurine, and glycine from canine kidney MDCK cells was 
shown to be linearly dependent on these concentrations 
in 1992 [17], suggesting the involvement of diffusional 
channel-mediated, but not saturable carrier/transporter-
mediated, transport which is activated by cell swelling. 
The swelling-activated, VSOR/VRAC-mediated currents 
conveyed by negatively charged organic substances were, 
in fact, recorded under voltage-clamp and bi-ionic con-
ditions for gluconate in human epithelial Intestine 407 
cells under the whole-cell configuration by Kubo and 
Okada [18] and for aspartate, glutamate, and taurine, 
which is a zwitter ion and electrically neutral at physi-
ological pH but becomes negatively charged at alkaline 
pH, in MDCK cells in single-channel recording modes 
by Banderali and Roy [19] also in 1992. These patch-
clamp studies evaluated their permeability coefficient: 
 Paspartate/PCl ~ 0.2 [17],  Pgluconate/PCl ~ 0.1 [18],  Pglutamate/
PCl ~ 0.2 [19], and  Ptaurine/PCl ~ 0.75 [19]. Because VSOR/
VRAC is a low-field anion channel, as described in the 
Part 1 article [12], it is reasonable that the sequence of 
these permeability coefficients (chloride > taurine > aspar-
tate ~ glutamate > gluconate) is in fairly good accordance 
with the sequence for their effective diameters listed in 
Table 1. Also, it must be noteworthy that all these organic 
substances have much smaller diameters [13, 14, 20] than 
a pore diameter of VSOR/VRAC (7–13  Å) functionally 
estimated by three different and unrelated techniques 
by Nilius and Droogmans [21], by Droogmans et al. [22], 
and by Ternovsky et al. [23] (Table 2A).

Taking the capability of VSOR/VRAC to serve as the 
pathway for the swelling-induced release of intracellu-
lar organic substances into consideration, this volume-
sensitive anion channel has sometimes been also called 
the volume-sensitive organic osmolyte and anion channel 
(VSOAC) [6, 14]. However, it must be noted that not only 
VSOR/VRAC but also Maxi-Cl and CFTR can provide 
the pathways for the release of organic solutes such as 
glutamate, ATP, and GSH, as pointed out in our previous 
article [1].
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In agreement with the fact that LRRC8A represents 
an indispensable core molecule of VSOR/VRAC [9, 10], 
LRRC8A was found to be a prerequisite to the hypoto-
nicity-induced release of organic osmolytes mediated by 
VSOR/VRAC. Gene knockout of LRRC8A abolished the 
release of taurine from HCT116 cells [10] and HEK293 
cells [24, 25], that of glutamate from HEK293 cells [25] 
and rat astrocytes [26], and that of aspartate, lysine, ser-
ine, GABA, and myo-inositol from HEK293 cells [25]. 
Gene knockout experiments also showed that LRRC8D 
is essential for swelling-induced taurine release from 
HEK293 cells [24]. LRRC8A/8D heteromers can trans-
port relatively large organic anions such as  glutamate− 
and  aspartate− as well as uncharged organic osmolytes, 
taurine, myo-inositol, and GABA, and even positively 
charged  lysine+ [25]. In contrast, LRRC8A/8C and 
LRRC8A/8E heteromers conduct  Cl− and  aspartate− but 
are much less permeable to GABA and myo-inositol [25]. 
Thus, it is concluded that LRRC8D makes VSOR/VRAC 
more permeable to larger organic anions and uncharged 
or cationic organic osmolytes. These results are in good 
agreement with the 3D structures analyzed by cryo-
electron microscopy (cryo-EM). The narrowest constric-
tion part (at the selectivity filter) of the pore of LRRC8D 
homohexamers (at F143) [27] is much larger than that of 

Table 1 Effective diameters of some inorganic and organic 
anions and osmolytes that potentially permeate VSOR/VRAC 
channels

a The unhydrated diameter was calculated as a geometric mean of three 
dimensions according to the formula:  (L1 ×  L2 ×  L3)1/3 where  L1,  L2, and  L3 are the 
length, width, and thickness, respectively, of the molecule

Anion/osmolyte Effective diameter 
(Å)a

References

Cl− 3.6 [20]

Glycine  (C2H5NO2) 4.2 [177]

NO3
− 4.3 [20]

Taurine  (C2H7NO3S) 5.3 [14]

HPO4
2− 5.5 [13]

Proline  (C5H9NO2) 5.6 [14]

Betaine  (C5H11NO2) 5.7 [14]

Myo-inositol  (C6H12O6) 6.1 [14]

Aspartate−  (C4H7NO4) 6.8 [13]

Glutamate−  (C5H9NO4) 6.9 [20]

Gluconate−  (C6H12O7) 7.0 [13]

UTP4−  (C9H15N2O15P3) 10.7 [13]

Glutathione−  (C10H17N3O6S) 10.8 [92]

ADP3−  (C10H15N5O10P2) 10.9 [13]

ATP4−  (C10H16N5O13P3) 11.5 [178]

Mg-ATP2− 12.0 [178]

cGAMP2−  (C20H24N10O13P2) 12.0 [179]

Table 2 Comparison between the VSOR/VRAC pore sizes estimated by electrophysiological and cryo-microscopical methods

A. Functional diameters of the pore estimated by three different approaches

B. Structural diameters of the narrowest constriction portion of the pore of multimeric LRRC8 channels determined by cryo-EM microscopy
a The values may have fluctuated depending on the experimental conditions especially employed ionic strength and lipid environments
b LRRC8C-8A(IL125) represents a chimera comprising LRRC8C and 25 amino acids unique to the first intracellular loop (IL1) of LRRC8A

A. Evaluation method Functional pore diameter (Å) References

Cut-off size of permeant organic anions 11 [21]

Cut-off size of basket-shaped permeant blockers 7.3–11.5 [22]

Non-electrolyte partitioning 12.6 [23]

B. LRRC8 multimer Structural pore diameter (Å)a References

LRRC8A homohexamer 2 [30]

″ 4 [31]

″ 5.8 [28]

″ 6.6 [32]

″ 7.6 [29]

LRRC8C homoheptamer 12 [33]

LRRC8C-8A(IL125)  homoheptamerb 9.4 [35]

LRRC8D homohexamer 11.5 [27]

 LRRC8A/8C heterohexamer 6.0 [33]

″ 4.2 [34]
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LRRC8A homohexamers (at R103) [28–32], LRRC8A/8C 
heterohexamers (at R103/L105) [33, 34], and LRRC8C-
8A(IL125) homoheptamers (at L105) [35] but is compa-
rable to that of LRRC8C homoheptamers (at L105) [33], 
as listed in Table 2B. How large the pores of LRRC8A/8D 
and LRRC8A/8E heteromers awaits cryo-EM studies in 
the immediate future.

VSOR/VRAC‑mediated transport of organic signaling 
molecules
In addition to volume-regulatory roles, VSOR/VRAC 
plays roles in the transmission of paracrine/autocrine 
signaling by transporting numbers of negatively charged 
organic substances, such as  glutamate–,  aspartate–, 
 ATP4–, glutathione  (GSH–),  itaconate2–, and 2′3′-cyclic-
GMP-AMP  (cGAMP2–). Moreover, glutamate and ATP 
released via VSOR/VRAC were shown to activate VSOR/
VRAC in a positive feedback fashion through stimulation 
of their receptors (Fig. 1).

VSOR/VRAC‑mediated glutamate release
Kimelberg et  al. [15] found that the swelling-induced 
release of glutamate, aspartate, and taurine from rat 

astrocytes in culture is sensitive to many known anion 
transport blockers. Also, Roy and Malo [17] observed 
that large losses of amino acids, such as glutamate, tau-
rine, and glycine, take place during cell volume regula-
tion upon a hypotonic challenge to canine MDCK cells 
through diffusional routes rather than transporters/car-
riers. Then, Banderali and Roy [19], for the first time, 
showed that an outwardly rectifying anion channel pro-
vides the diffusional pathway for the swelling-induced 
release of some intracellular organic substances includ-
ing glutamate. Since some of these organic substances are 
known to play signaling roles as excitatory amino acids 
between neurons and between glial and neuronal cells in 
the brain under physiological/pathological situations, the 
roles of VSOR/VRAC in glutamate release mainly from 
glial cells were thereafter studied.

Electrophysiological and pharmacological evidence 
was provided for the VSOR/VRAC role in glutamate 
release from mouse astrocytes induced by hypoosmotic 
and ischemic stress [36]. Accordingly, DCPIB, which is 
a relatively most VSOR/VRAC-specific blocker among 
available anion channel blockers (see Reviews [1, 12]), 
was shown to inhibit osmotic swelling-induced glu-
tamate release from rat primary astrocytes [37] and 
human retinal glial Müller MIO-M1 cells [38] as well as 
the hypotonicity-induced release of aspartate, which is 
a non-metabolized analog of glutamate, from rat astro-
cytes [37, 39]. However, DCPIB was unexpectedly found 
to inhibit not only glutamate release mediated by VSOR/
VRAC but also that mediated by connexin hemichannels 
as well as glutamate uptake via glutamate transporter 
GLT1 in rat glial cells [40].

Molecular evidence for VSOR/VRAC-mediated gluta-
mate/aspartate release from osmotically swollen astro-
cytes was recently provided by the effects of reduced 
expression of LRRC8A. First, siRNA-mediated LRRC8A 
knockdown brought about 70% and 90% inhibition of the 
release of glutamate and aspartate from rat astrocytes 
induced by a moderate hypotonic (70% osmolarity) chal-
lenge [41, 42] and by a severe hypotonic (30% osmolarity) 
challenge [42], respectively. Second, astrocyte-specific 
Lrrc8a knockout caused 93% and 70% inhibition of the 
release of glutamate and aspartate from swollen mouse 
astrocytes challenged by an intracellular hypertonic 
(135% osmolarity) solution [26] and an extracellularly 
hypotonic (70% osmolarity) solution [43], respectively. 
Third, aspartate release from primary rat astrocytes chal-
lenged by hypotonicity (70% osmolarity) was suppressed 
to ~ 60% and ~ 25% by double knockdown of Lrrc8c plus 
Lrrc8e and by that of Lrrc8c plus Lrrc8d, respectively 
[44]. However, it must be noted that swelling-induced 
glutamate release from astrocytes is mediated not only 
by VSOR/VRAC but also by Maxi-Cl channels [36], the 
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Fig. 1 Autocrine/paracrine signaling roles of glutamate and ATP 
released via VSOR/VRAC and Maxi-Cl upon cell swelling in VSOR/VRAC 
activation. First ((1): brown arrows), such released glutamate and ATP 
activate, in an autocrine fashion, VSOR/VRAC via stimulation of GPCRs 
(mGluR and P2YR) in a cell in response to osmotic swelling. Second 
((2): violet arrows), glutamate and ATP then activate, in a paracrine 
fashion, VSOR/VRAC via stimulation of GPCRs in another neighboring 
cell even in the absence of swelling. These glutamate and ATP 
may also trigger (black arrows), in a paracrine fashion, induction 
of inflammation in the surrounding cells/tissues from which BK 
and S1P are thereafter released. Third ((3): blue arrows), BK and S1P 
then activate VSOR/VRAC via stimulation of their receptors (B2R 
and S1PR1). (See text for details.)
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latter of which represents another type of VAACs [1]. 
That is why gene deletion of LRRC8 members failed to 
cause the complete abolition of swelling-induced glu-
tamate release from astrocytes. Since the core molecule 
of Maxi-Cl was recently identified as SLCO2A1 [45], we 
need hereafter to answer the question as to what degree 
VSOR/VRAC and Maxi-Cl contribute to glutamate 
release induced by cell swelling each other in the cell 
types in question under the given conditions.

Extracellular application of ATP was found to stimu-
late the release of aspartate [41, 46] and glutamate [46, 
47] from astrocytes by activating VSOR/VRAC through 
stimulation of purinergic P2Y receptors (P2YRs) [47, 48] 
under isotonic conditions. Extracellular ATP-induced 
aspartate release was shown to be, as a matter of course, 
inhibited by siRNA-mediated Lrrc8a knockdown in rat 
astrocytes [41]. Extracellular application of glutamate 
was also shown to induce VSOR/VRAC activation under 
isotonic conditions through activation of muscarinic glu-
tamate receptor (mGluR) in mouse astrocytes [49]. Thus, 
glutamate released via both types of VAACs contributes 
to the activation of VSOR/VRAC via mGluRs in the cell 
itself and in a nearby cell in autocrine and paracrine fash-
ions (Fig. 1: right side (1) and (2)), respectively. Since both 
glutamate and ATP are known to be released from swol-
len cells via both types of VAACs, Maxi-Cl and VSOR/
VRAC, hereafter we need to answer the question as to 
what extent swelling-induced glutamate release is caused 
by cell swelling per se and by glutamate and ATP second-
ary released in the particular cell types under the given 
conditions.

Exposure to extracellular bradykinin (BK), which is a 
proinflammatory nine-amino acid peptide, was shown 
to trigger VSOR/VRAC activation [50, 51] via bradykinin 
B2 receptor (B2R) and to stimulate glutamate release [50] 
without exhibiting cell swelling. BK is generated from 
kininogens by the action of kallikrein, represents an ini-
tial mediator of inflammation [52], and is known to be 
released from injured and inflammatory sites such as the 
central nervous system after brain trauma and stroke [53, 
54]. Since major excitatory neurotransmitter glutamate 
exerts as signaling and causal factors for inflammation 
coupled to some disorders in the central system [55] and 
in the peripheral system [56, 57], glutamate released via 
VSOR/VRAC and Maxi-Cl may be involved in the induc-
tion of cell/tissue inflammation (Fig.  1: right side, black 
arrow) and therefrom secondarily causes BK release 
thereby inducing B2R-mediated VSOR/VRAC activation 
(Fig. 1: right side (3)) followed by glutamate release, in a 
positive feedback manner, from the cells stimulated by 
BK.

Extracellular application of sphingosine-1-phosphate 
(S1P) was shown to activate VSOR/VRAC via S1P 

receptor 1 (S1PR1) under isotonic conditions in murine 
RAW 264.7 macrophages [58]. A pleiotropic lipid media-
tor S1P plays a significant role in inflammation [59, 60] 
and is known to be released from the inflamed cells 
[61–63]. Therefore, VSOR/VRAC may be activated by 
S1P released from inflammatory cells/tissues (Fig. 1: left 
side (3)), which were caused by exposure to glutamate 
released via VSOR/VRAC and Maxi-Cl (Fig. 1: right side, 
black arrow), thereby causing VSOR/VRAC activation 
in the cells stimulated by S1P and therefrom glutamate 
release in a positive feedback manner.

VSOR/VRAC‑mediated ATP release
ATP acts as a major messenger molecule for autocrine 
and paracrine signaling in the extracellular space [13, 64, 
65], whereas it serves as an energy source in the cyto-
sol. ATP is released not only by vesicular exocytosis but 
also by the transport via several non-vesicular pathways 
including anion channels [13]. In particular, large-con-
ductance Maxi-Cl anion channels have been shown to 
serve as a major pathway for swelling- and ischemia-
induced release of  ATP4– from many cell types such as 
astrocytes and cardiomyocytes [3]. Swelling-induced 
ATP release was suggested to be mediated also via 
VSOR/VRAC largely based on pharmacological evidence 
in bovine aortic endothelial cells [66], mouse DRG neu-
rons [67], and mouse RAW 264.7 macrophages [58]. In 
contrast, swelling-induced ATP release was not inhibited 
by a number of VSOR/VRAC blockers in bovine ocular 
ciliary epithelial cells [68], human epithelial Intestine 407 
cells [69], rat cardiomyocytes [70], and mouse astrocytes 
[71]. ATP release induced by mechanical stimulation 
was found to be sensitive to VSOR/VRAC blockers but 
insensitive to Lrrc8a knockdown in rat astrocytes [72]. In 
contrast, gene knockdown of LRRC8A was shown to sup-
press ATP release induced by hypoosmotic stimulation in 
HEK293 cells [73], HeLa cells [74], and mouse microglial 
BV-2 cells [74] and that induced by application of S1P in 
mouse microglial BV-2 cells [74, 75] and in human breast 
cancer MCF7 and MDA-MB-231 cells [76]. Collectively, 
it appears that VSOR/VRAC can mediate ATP release 
in many, but not all, cell types. Notably, the functional 
pore diameter of VSOR/VRAC (Table 2A) is very close to 
the effective diameter of  ATP4‒ and  MgATP2‒ (Table 1). 
Thus, the ATP conductivity of VSOR/VRAC pores may 
be prone to be affected by alterations in the surrounding 
microenvironment at the plasma membrane, especially in 
the lipid microenvironment. Also, the LRRC8 heteromer 
composition of VSOR/VRAC may affect its ATP conduc-
tivity, because ATP release was found to be provoked by 
hypotonic stimulation in Xenopus oocytes when LRRC8A 
was co-expressed with LRRC8E or LRRC8C but not with 
LRRC8B or LRRC8D [77]. In light to these observations, 
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we now need to examine to what degree each type of 
VAACs contributes to swelling-induced ATP release 
from the concerned cell types under the given conditions. 
Also, we hereafter need to answer the question as to what 
degree swelling-induced ATP release is induced by cell 
swelling per se and by glutamate and ATP secondary 
released upon cell swelling from the concerned cell types 
under the given conditions. Furthermore, from now on, 
we need to pay attention to what extent swelling-induced 
ATP release is affected by following two opposite auto-
crine actions in the particular cell types under the given 
conditions because extracellular ATP exerts two contra-
dictory effects, an open-channel blocking action [78–80] 
and receptor-mediated swelling-independent activating 
action [48].

ATP released via both types of VAACs provokes the 
activation of VSOR/VRAC via P2YRs in a cell itself and 
also in a nearby cell in autocrine and paracrine fashions 
(Fig. 1: left side (1) and (2)), respectively. From now on, we 
thus need to answer the question as to what extent swell-
ing-induced ATP release is caused by cell swelling per 
se and by ATP and glutamate secondary released in the 
particular cell types under the given conditions. VSOR/
VRAC must be activated by BK and S1P released from 
inflamed cells caused by exposure to extracellular ATP 
(Fig. 1: left side, black arrow), which is one of the danger-
associated molecular patterns (DAMPs) causing inflam-
mation in a variety of tissues [81–85], thereby bringing 
about further VSOR/VRAC activation in the cells stimu-
lated by BK and S1P (Fig. 1: right and left sides (3)) and 
therefrom ATP release in a positive feedback manner.

VSOR/VRAC‑mediated transport of other important 
negatively charged organic substances
VSOR/VRAC has been shown to serve as conductive 
pathways also for other negatively charged organic sub-
stances, such as GSH, methylene succinic acid or ita-
conic acid (itaconate), and cGAMP, that are known to be 
important signaling molecules involved in anti-oxidation, 
anti-inflammation, and anti-viral defense, respectively.

The most abundant antioxidant GSH is involved in 
essential cell processes including antioxidant defense, 
drug detoxification, cell metabolism, and proliferation 
[86–88]. The release of GSH is a prerequisite to apop-
tosis induction [89–91]. The first evidence for VSOR/
VRAC-mediated GSH release was reported in 2013 by 
Sabirov et  al. [92]. The molecular size of GSH (Table 1) 
is smaller than the functional pore diameter of VSOR/
VRAC (Table  2A). Hypotonicity-induced GSH release 
from rat thymocytes was largely abolished by a variety 
of VSOR/VRAC blockers including DCPIB. The VSOR/
VRAC permeability to GSH is significant with  PGSH/PCl 
of 0.10 for release from and 0.32 for entry to thymocytes. 

Subsequently, Friard et  al. [93] showed that swelling-
induced GSH release is sensitive not only to DCPIB but 
also to LRRC8A gene knockout in HEK293 cells and that 
the  PGSH/PCl values can be evaluated as 0.08 in HEK293 
cells and 0.11 in human kidney tubular epithelial HK2 
cells. Even under isotonic conditions, VSOR/VRAC was 
found to be activated by exposure to TGFβ1, which is a 
pleiotropic growth factor inducing the epithelial-to-mes-
enchymal transition (EMT), thereby releasing GSH in 
HK2 cells [93].

Itaconate, a Krebs cycle-derived metabolite, is pro-
duced upon stimulation of Toll-like receptor (TLR) in 
myeloid cells and is accumulated upon prolonged inflam-
matory situations. The intracellular itaconate accu-
mulation was shown to inhibit NLRP3 inflammasome 
activation [94–96]. The itaconate-induced inhibition of 
NLRP3 inflammasomes was observed to be greatly abol-
ished by myeloid LRRC8A gene knockout [97], suggesting 
that VSOR/VRAC activity is involved in NLRP3 inflam-
masome activation, presumably by mediating itaconate 
efflux. The size of this anti-inflammatory signal, itaco-
nate  (C5H6O4), should be smaller than those of glutamate 
 (C5H9NO4) and gluconate  (C6H12O7). In fact, the unhy-
drated diameter of itaconate was calculated to be 6.6  Å 
as a geometric mean of three dimensions by RZ Sabirov 
(personal communication). Thus, itaconate is expected to 
be VSOR/VRAC-permeable. Confirming this inference, 
Wu et  al. [97] showed that hypotonicity induces activa-
tion of whole-cell inward currents mediated by efflux of 
negatively charged itaconate filled in the pipette (intra-
cellular) solution in LPS-primed macrophages and esti-
mated the permeability coefficient of itaconate  (Pitaconate/
PCl) for VSOR/VRAC of around 0.2.

cGAMP is an immune-transmitting second messen-
ger produced by cyclic-AMP-GMP synthase (cGAS) 
in response to cytosolic double-stranded DNAs (dsD-
NAs) and is an agonist for its receptor, stimulator of 
interferon genes (STING). cGAMP thereby serves as 
an important messenger for the cGAS-cGAMP-STING 
pathway which represents an essential innate immune 
signaling cascade responsible for the sensing of aber-
rant cytosolic dsDNA and then plays roles of anti-
viral defense and anti-cancer immunity by eliciting 
interferons (IFNs) [98–100]. Since the size of cGAMP 
(Table 1) is a little smaller than the effective diameter 
of VSOR/VRAC pore (Table  2A) estimated by non-
electrolyte partitioning [23], VSOR/VRAC channels 
may mediate cGAMP transport under appropriate 
conditions. Consistently, the cGAMP uptake/import 
induced by extracellular application of cGAMP was 
found to be inhibited by DCPIB in HEK293 cells and 
primary human umbilical vein endothelial (HUVEC) 
cells [101], in mouse lung fibroblast (MLF) cells [102, 
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103], and in murine bone marrow-derived macrophage 
(BMDM) cells [103]. Also, extracellular cGAMP treat-
ment was found to activate the STING pathway due 
to VSOR/VRAC-mediated cGAMP import in human 
lymphoma U937, epithelial HEK293, and endothelial 
TIME cells incubated in a serum-free isotonic electro-
lyte solution containing glucose [101]. Gene knock-
out of LRRC8A suppressed the cGAMP import in 
HEK293, HUVEC, MLF, and BMDM cells [101–103] as 
well as in mouse  CD4+ T cells [104]. Osmotic swelling-
induced cGAMP export was electrophysiologically evi-
denced by the recording of inward currents conveyed 
by  cGAMP2–, in a manner sensitive to LRRC8A gene 
knockdown, in human epithelial HeLa and HCT116 
cells [101, 102]. Taken together, it is concluded that 
VSOR/VRAC is a cGAMP-transporting channel that 
can mediate bilateral transport of cGAMP. Support-
ing this conclusion, Zou et al. [102] demonstrated that 
cGAMP released via VSOR/VRAC channels from host 
cells infected with DNA viruses is transmitted to dis-
tant filter-separated bystander cells and then taken up 
via VSOR/VRAC channels, in a manner sensitive to 
LRRC8A gene knockout, by using a trans-well cham-
ber assay in mouse embryonic fibroblasts (MEFs). 
Thus, it is evident that VSOR/VRAC mediates bilat-
eral transport of cGAMP, especially in association with 
anti-viral defense immunity.

STING activation induced by extracellular cGAMP 
application was found to be suppressed by gene knock-
out not only of LRRC8A but also LRRC8C in U937 
and TIME cells [101]. Similarly, LRRC8C gene knock-
out was observed to inhibit STING activation induced 
by extracellular cGAMP in  CD4+ T cells [104]. Thus, 
VSOR/VRAC responsible for the cGAMP import is 
likely formed mainly with LRRC8A plus LRRC8C. In 
contrast, STING activation induced by extracellular 
cGAMP was suppressed by gene knockout of LRRC8A 
or LRRC8E in BMDM and MLF cells [102, 103]. Also, 
increased expression of interferon in response to infec-
tion with a DNA virus, HSV-1, was inhibited by gene 
knockout of LRRC8A or LRRC8E but not by triple 
knockout of LRRC8B, 8C, and 8D genes in MLF cells 
[102]. Thus, VSOR/VRAC channels formed mainly with 
LRRC8A plus LRRC8E and with LRRC8A plus LRRC8C 
play essential roles in anti-viral immunity [103] and in 
suppression of the cytotoxic T cell function [104, 105] 
by bilaterally transporting cGAMP presumably via the 
channels, respectively. However, further studies are 
required to precisely determine whether LRRC8 het-
eromer compositions of cGAMP-transporting VSOR/
VRAC vary depending on cell types or cell functions.

Activation mechanisms of VSOR/VRAC 
Activation of VSOR/VRAC was first found to be induced 
by cell swelling or volume expansion by Hazama and 
Okada [4] and Cahalan and Lewis [5] in 1988. Thereaf-
ter, even without visible cell swelling, VSOR/VRAC was 
shown to be activated by GTPγS by Doroshenko et  al. 
[106] in 1991 and by a reduction of intracellular ionic 
strength (Γin) by Cannon et al. [107] and Nilius et al. [108] 
in 1998. These findings suggest that there are not only a 
swelling-dependent physiological activation mechanism 
but also some other swelling-independent activation 
mechanisms including G-protein-linked biochemical 
events and Γin-related physicochemical events.

Swelling‑independent physicochemical activation 
of VSOR/VRAC 
In intact cell systems, VSOR/VRAC activation in the 
absence of cell swelling was shown to be induced by a 
large reduction (down to around 30 to 60%) in Γin [107–
110]. After the identification of LRRC8 members as the 
pore-forming core components [9, 10], similar low Γin-
induced channel activation was found in the cell-free 
reconstitution system formed with purified LRRC8A and 
LRRC8C, 8D, or 8E in lipid droplet bilayers [111]. How-
ever, it is noted that the properties of channels reconsti-
tuted in droplet bilayers are different from native VSOR/
VRAC, as follows. The reconstituted heteromeric LRRC8 
channels are not activated by inflation (volume increase) 
of droplets but activated by a reduction of Γin in a man-
ner independent of intracellular ATP and do not exhibit 
voltage-dependent inactivation kinetics. The homomeric 
LRRC8A channels reconstituted in liposomes were also 
found to be activated only in low Γin solutions [31]. The 
channel activity was observed even in the absence of ATP 
and in the presence of a high concentration of free  Mg2+ 
on the intracellular side, in contrast to the phenotypical 
properties of native VSOR/VRAC existing in living cells 
(see Table 1 in Part 1 article [12]). Since the reduction in 
Γin should increase the surface potential on the periph-
eral surface of highly charged domains of channel-form-
ing proteins, physicochemical/electrostatic repulsion or 
attraction would take place between any pairs of closely 
adjacent charged domains or proteins. Deneka et al. [28] 
suggested that the hydrophilic leucine-rich repeats (LRR) 
domains (LRRDs: see Fig.  2 in the Part 1 article [12]) 
are involved in the low Γin-induced activation of VSOR/
VRAC, because many basic (negatively charged) and 
acidic (positively charged) residues exist on the molecu-
lar surface of cytoplasmic LRRD. In association with 
the activation of LRRC8A channels, such physicochemi-
cal conformational changes in LRRDs were recently 
observed [112] by using five synthetic nanobodies called 
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sybodies (sbs): namely, LRRC8A channels expressed in 
Lrrc8-knockout  (LRRC8−/−) HEK293 cells were found to 
be activated by sb4 and sb5 but inhibited by sb1, sb2, and 
sb3, the former two sbs and latter three sbs of which were 
shown to bind to the concave inside and convex outside, 
respectively, of the horseshoe-shaped LRRDs by cryo-
EM. On the other hand, the involvement of unfolding 
of the N-terminal (NT) domain of LRRC8 in the VSOR/
VRAC activation induced by a large reduction (down to 
33%) in Γin was suggested by Liu et al. [32], mainly based 
on the molecular dynamics (MD) simulations of cryo-
EM structure of LRRC8A. Thus, it can be concluded 
that VSOR/VRAC is physicochemically activated by the 
reduction in Γin through the conformational change in 
LRRC8 proteins in a manner independent of cell swelling 
or membrane expansion (Fig. 2A). However, the question 
as to which domains of LRRC8 proteins are conforma-
tionally affected by the Γin reduction to activate VSOR/
VRAC remains to be precisely elucidated.

It must, however, be pointed out that this phys-
icochemical activation mechanism cannot principally 
account for the swelling-induced activation mechanism 
because such large extents of Γin reduction required for 
VSOR/VRAC activation are unlikely to occur under 

physiological conditions. Furthermore, cell swelling is 
known to activate VSOR/VRAC even under constant Γin 
conditions [113–116].

Swelling‑independent oxidation‑induced activation 
of VSOR/VRAC 
In 2004, hydrogen peroxide  (H2O2), one of the reac-
tive oxygen species (ROS), was found to activate VSOR/
VRAC currents under iso-osmotic conditions with-
out leading to cell swelling independently by Shimizu 
et al. [117] in HeLa cells, Varela et al. [118] in HCT and 
HeLa cells, and Browe and Baumgarten [119] in cardio-
myocytes. This fact was subsequently confirmed by many 
groups in a variety of cell types [50, 120–133].

Furthermore, Shimizu et  al. [117], for the first time, 
demonstrated that both a mitochondrion-mediated 
apoptosis inducer staurosporine (STS) and a death recep-
tor-mediated apoptosis inducer tumor necrosis factor-α 
(TNFα) rapidly activate VSOR/VRAC currents under 
isotonic conditions in association with significant pro-
duction of ROS in HeLa cells. Similarly, an ER stress-
mediated apoptosis inducer tunicamycin was later shown 
to increase ROS production and thereby activate VSOR/
VRAC currents in rabbit chondrocytes under isotonic 

Fig. 2 The activation mechanisms of VSOR/VRAC. A Swelling-independent activation physicochemically induced by the Γin reduction. B 
Swelling-independent activation biochemically induced by oxidation due to NOX-mediated ROS production in response to activation of GPCRs 
and death receptors. C First-phase swelling-induced ATP-dependent activation in association with swelling-triggered activation of TRPM7 which 
physically interacts with LRRC8A. Here, the ATP dependence is assumed to be granted by some ATP-bound ABC protein (here called ABCX) which 
is assumed to physically interact with VSOR/VRAC molecules, presumably at the convex outside of the LRRD of LRRC8A, but released therefrom 
upon osmotic swelling followed by an interaction with some cytoskeletal component. D Second-phase swelling-induced ROS-dependent 
activation due not only to NOX-mediated ROS production after GPCR stimulation induced by glutamate  (Glu−) and  ATP4− released as a result 
of first-phase activation of VSOR/VRAC but also to the elevation of cytosolic ROS level as a result of the loss of intracellular GSH caused by VSOR/
VRAC-mediated  GSH− release. (See text for details.)
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conditions [129]. On the other hand, Browe and Baum-
garten [119] showed that isotonic VSOR/VRAC activa-
tion is induced by angiotensin II via G protein-coupled 
receptor (GPCR) angiotensin receptor type 1  (AT1), the 
activation of which is known to induce ROS generation 
in rabbit ventricular myocytes [134]. GPCR-mediated 
isotonic VSOR/VRAC activation was also shown to be 
associated with increased ROS production through B2R 
activation in mouse astrocytes [50, 51], endothelin-1  ETA 
receptor activation in rabbit atrial and ventricular myo-
cytes [125], and S1PR1 activation in murine RAW 264.7 
macrophages [58]. However, the exact molecular mecha-
nism of GPCR-mediated VSOR/VRAC activation is still 
elusive.

A variety of other chemical stimuli have been shown 
to elicit ROS production thereby activating VSOR/
VRAC currents under isotonic conditions, including 
a glucan zymosan in rat microglia [123], HIV protease 
inhibitors in rabbit ventricular myocytes and LL1 cardio-
myocytes [125], a brief acid exposure in mouse nodose 
ganglia neurons [133], and sub-micromolar ouabain in 
cancer HT-29, KB, and HepG2 cells [135]. Zinc pyrith-
ione (ZPT), which is known to stimulate ROS production 
[136, 137], was also found to induce VSOR/VRAC activa-
tion in the absence of cell swelling in HEK293 cells [138].

It appears that NADPH oxidase (NOX), which gener-
ates superoxide and other downstream ROS, is involved 
in swelling-independent VSOR/VRAC activation, 
under normal Γin conditions, in light of the following 
observations. First, NOX1 was demonstrated to physi-
cally interact not only with LRRC8A [139] but also 
with LRRC8C and 8D [140]. Second, a NOX inhibitor 
DPI abolished VSOR/VRAC currents induced by STS 
[117] and β-integrin stretch [119]. Third, a cell-per-
meable NOX blocker gp9/de-tat was shown to inhibit 
EGF-induced VSOR/VRAC activation in cardiac myo-
cytes [141]. Fourth, an inhibitor of NOX assembling, 
4-(2-aminoethyl)-benzene sulfonyl fluoride (AEBSF), 
markedly suppressed VSOR/VRAC currents triggered 
by β-integrin stretch [119]. Since it is known that acti-
vation of NOX requires the phosphorylation of its 
subunit p47phox [142] by PKC [143], VSOR/VRAC 
activation may also be induced by other chemical ago-
nists for Gq-coupled receptors, for example, a P2YR 
agonist ATP [48, 144] and a mGluR agonist glutamate 
[49] in astrocytes through NOX-mediated ROS produc-
tion presumably triggered by a local intracellular  Ca2+ 
rise in the vicinity of  Ca2+-permeable cation channels, 
called  Ca2+ nanodomain [48, 49, 51]. Taken together, it 
is evident that VSOR/VRAC is biochemically activated 
by oxidation through NOX-mediated ROS production 
caused by activation of GPCRs and death receptors, as 
schematically depicted in Fig. 2B.

Then, the next question is how ROS activate VSOR/
VRAC. One possibility is that ROS directly oxidize 
LRRC8 members thereby inducing some conformational 
changes in LRRC8. Using Xenopus oocytes overexpressed 
with fluorescently tagged LRRC8 proteins, Pusch and 
his collaborators found that LRRC8A/8E heteromeric 
channels were dramatically activated by oxidation [145] 
through the disulfide bond formation between two 
cysteines, C424 of LRR1 and C448 of LRR2, in the intra-
cellular LRR regions of LRRC8E [146]. In contrast, they 
found that LRRC8A/8C and LRRC8A/8D heteromeric 
channels were rather inhibited by oxidant chloramine-T 
[145] and by the oxidation of the start methionine (M1) 
in LRRC8C [146]. In agreement with these observations, 
VSOR/VRAC currents were inhibited by oxidation in 
Jurkat T lymphocytes which exhibit a low expression of 
LRRC8E [145]. However, ROS were, in contrast, found 
to activate VSOR/VRAC currents in HeLa cells [117, 
118] and KB cells [135], both of which express LRRC8D 
mRNA at much higher levels (around 13.5 and 11.1 times, 
respectively) than that of LRRC8E mRNA [147], Thus, it 
seems likely that sensitivity of LRRC8 members to ROS is 
different from each other depending on cell types and/or 
experimental conditions. Another possibility is that ROS 
indirectly lead to the opening of the VSOR/VRAC pore 
via some second messengers because ROS are known 
to stimulate a variety of intracellular mediators includ-
ing several protein kinases and G-proteins [148], some 
of which have been suggested to regulate VSOR/VRAC 
activity (see Reviews [7, 8]). Intracellular ATP is expected 
to be essential for GPCR- and protein kinase-mediated 
VSOR/VRAC activation. However, it has yet to be deter-
mined how ROS activate VSOR/VRAC and whether 
intracellular ATP is required for ROS-induced VSOR/
VRAC activation.

As described in the preceding section, TGFβ1 can acti-
vate VSOR/VRAC under isotonic conditions [93]. Also, 
swelling-independent activation of VSOR/VRAC was 
recently found to be induced by stimulation not only with 
TNFα but also with another cytokine IL-1β and some 
other heat-labile serum protein, in an additive fashion, 
under isotonic conditions in a manner sensitive to gene 
knockout of LRRC8A or LRRC8E [103]. This activa-
tion was shown to be dependent on the plasmalemmal 
expression of cGAS which exhibits a physical interac-
tion with LRRC8A [103]. However, it is not known how 
TGFβ1 and IL-1β induce VSOR/VRAC activation as well 
as which heat-labile serum protein, other than TNFα and 
IL-1β, can activate VSOR/VRAC.

Swelling‑induced activation of VSOR/VRAC 
Osmotic swelling-induced VSOR/VRAC currents were 
reported to be only partially inhibited by NOX inhibitors; 
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that is, around 35% suppression by AEBSF in human 
neutrophils [149] and around 40% inhibition by DPI 
in mouse astrocytes [49]. Furthermore, swelling- and 
ROS-induced activation mechanisms were elucidated to 
be independent of each other, since hypotonicity- and 
chloramine-T-induced VSOR/VRAC currents observed 
in Xenopus oocytes overexpressed with LRRC8A and 8E 
were additive [145]. Thus, it appears that a major compo-
nent of swelling-induced VSOR/VRAC currents is inde-
pendent of ROS.

First‑phase ROS‑independent, cytosolic ATP‑dependent 
component of swelling‑induced activation
As summarized in the Part 1 article [12], TRPM7, which 
was shown to exert as a mechano-sensitive swelling-acti-
vated cation channel by Numata et al. [150, 151], serves 
as the swelling-sensing subcomponent of VSOR/VRAC 
not only by enhancing LRRC8A mRNA expression via 
steady-state  Ca2+ influx but also by exhibiting real-time 
functional coupling to VSOR/VRAC activity with show-
ing a physical interaction to LRRC8A protein [11]. It is 
likely that the TRPM7-mediated  Ca2+ influx is somehow 
implicated in the VSOR/VRAC activation caused by cell 
swelling or membrane expansion. Although a global rise 
of the intracellular free  Ca2+ concentration  ([Ca2+]i) is 
not required for swelling-induced VSOR/VRAC activa-
tion (see Review [7]), there remains a possibility of an 
involvement of localized  Ca2+ rise therein [49, 152]. In 
any case, it is evident that hypotonicity-induced VSOR/
VRAC is associated with conformational changes in 
pore-forming LRRC8 proteins, because this activa-
tion was observed to be coupled to the displacement of 
C-terminal LRRDs in HeLa cells and  LRRC8−/− HEK293 
cells transfected with fluorescence-labeled LRRC8A and 
LRRC8E by FRET studies [153].

Although cytosolic ATP dependence is one of the 
most important physiological properties of VSOR/
VRAC, its exact molecular mechanism is still missing, as 
pointed out in the previous review articles [7, 12]. Non-
hydrolytic requirement of intracellular ATP may sug-
gest that some ATP-binding protein plays an essential 
role in the mechanism of VSOR/VRAC activation. In 
agreement with this inference, so far, four members of 
the ATP-binding cassette (ABC) transporter superfam-
ily proteins, three of which are membrane-spanning and 
another is cytosolic proteins, have been reported to be 
involved in the regulation of VSOR/VRAC activity. The 
chronologically first one is P-glycoprotein (PGP), the 
MDR1 gene product, which was initially proposed as the 
molecular entity of VSOR/VRAC [154, 155]. Although 
its “PGP = VSOR/VRAC” hypothesis was later rejected 
[156], PGP was shown to upregulate the volume sen-
sitivity of VSOR/VRAC channel [157]. Second, CFTR 

which has a structural similarity to PGP and exerts as 
the cAMP/PKA-dependent  Cl− channel, was shown to 
downregulate VSOR/VRAC currents [158, 159] through 
the second nucleotide-binding domain (NBD2) [159]. 
The third one ABCF2, a cytosolic member of the ABC 
proteins, was shown to suppress VSOR/VRAC activity 
[160], as detailed below. The last one ABCG1, a choles-
terol-exporting ATPase, was shown to enhance hypoto-
nicity-induced ATP release mediated by VSOR/VRAC 
presumably through reduction of the cholesterol level 
within the plasma membrane [73]. Depletion of mem-
brane cholesterol content was shown to enhance VSOR/
VRAC activation induced by mild hypotonic stimula-
tion [161–163]. Subsequently, cholesterol depletion-
induced VSOR/VRAC activation was demonstrated to be 
mediated by F-actin [164], the expression of which was 
recently shown to be essential for VSOR/VRAC activity 
[165]. Since cholesterol depletion was reported to release 
several cytoskeletal proteins, such as actin, α-actinin, and 
ezrin from the cellular membrane fractions [166], there 
arises a possibility that an interaction between an ATP-
binding protein and a cytoskeletal component released 
in response to osmotic cell swelling is involved in the 
swelling-induced activation mechanism of VSOR/VRAC. 
Taken together, swelling-induced activation of VSOR/
VRAC is likely regulated by TRPM7 and some ABC pro-
teins, which may interact with LRRC8 members as well 
as some cytoskeletal components in the native cell sys-
tem, as schematically drawn in Fig. 2C.

Ando-Akatsuka et al. [160] found that an actin-binding 
and -crosslinking protein, α-actinin-4 (ACTN4), which 
is ubiquitously expressed in non-muscle cells [167] and 
participates in the cytoskeleton organization [168, 169], 
becomes associated with the plasma-membrane upon 
osmotic cell swelling. Next, by the protein overlay assays 
combined with proteomics approaches, a cytosolic mem-
ber of the ABC transporter protein superfamily, ABCF2, 
was identified as the binding partner of ACTN4, and 
then the physical interaction (binding in the broad sense) 
between ACTN4 and ABCF2 was found to be promi-
nently enhanced by hypotonic cell swelling. Furthermore, 
knockdown and overexpression of ABCF2 were shown to 
augment and suppress the VSOR/VRAC activity, respec-
tively. Therefore, it was concluded that swelling-induced 
activation of VSOR/VRAC is accomplished by the pro-
tein–protein interaction between ACTN4 and ABCF2, 
thereby preventing ABCF2 from inhibiting VSOR/VRAC 
activity. Thus, it is likely that the cytosolic ATP-binding 
protein ABCF2 represents an endogenous blocking sub-
component of VSOR/VRAC. ABCF2 may also grant 
non-hydrolytic ATP dependence and free  Mg2+ sensitiv-
ity to VSOR/VRAC, if only the form of ABCF2 bound 
to ATP, but not to Mg-ATP, can be released via VSOR/
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VRAC, thereby activating VSOR/VRAC upon osmotic 
swelling. Further investigations are warranted to prove 
this inference by testing the possibility that ABCF2 physi-
cally interacts with or directly binds to LRRC8 member 
proteins, especially to LRRDs which were shown to be 
required for swelling-induced VSOR/VRAC activation 
[170].

Second‑phase ROS‑dependent, GPCR‑mediated component 
of swelling‑induced activation
Hypotonic stimulation has been often found to bring 
about ROS production under certain conditions [118, 
128, 129, 133, 171, 172]. However, this fact does not 
necessarily imply a direct action of osmotic swelling. As 
described in the preceding section, osmotic cell swelling 
often induces VSOR/VRAC-mediated release of GSH, 
glutamate, and ATP depending on cell type. Therefore, 
osmotic swelling may indirectly result in a rise of intra-
cellular ROS level caused by GSH release mediated by 
VSOR/VRAC and by ROS production due to GPCR 
activation induced by glutamate and ATP. Consistently, 
hypotonicity-induced ROS production was shown to be 
mediated by NMDA receptors in rat astrocytes [173]. 
Thus, it is conceivable that swelling-induced VSOR/
VRAC activity is enhanced by GPCR-mediated ROS 
production and VSOR/VRAC-mediated  GSH− release 
in a manner of positive feedback control, as schemati-
cally depicted in Fig. 2D. However, it must be noted that 
this component is the secondary result of earlier ROS-
independent swelling-induced VSOR/VRAC activation 
(Fig. 2C).

Swelling-induced VSOR/VRAC activity was observed 
to be upregulated by an increase in intracellular cAMP 
through adenylate cyclase (AC)-coupled  Ca2+-sensing 
receptor, CaR, and arginine vasopressin type-2 receptor, 
V2R, both of which belong to the Gs-coupled receptor 
family, in response to elevation of extracellular  Ca2+ [174] 
and arginine vasopressin [175], respectively. Stimula-
tion of protein-tyrosine kinase (PTK)-coupled epidermal 
growth factor receptor, EGFR, was also shown to upregu-
late swelling-induced VSOR/VRAC activity [176]. The 
exact upregulating mechanisms of cAMP/AC- and PTK-
mediated signaling pathways remain elusive.

Conclusions and perspectives
The volume-sensitive outwardly rectifying/volume-reg-
ulatory anion channel (VSOR/VRAC) activated by cell 
swelling transports inorganic halide anions (mainly  Cl−), 
thereby regulating the cell volume after osmotic swelling. 
In addition, this channel was shown to serve as transport-
ing pathways for many organic substances, the sizes of 
which are smaller than the VSOR/VRAC pore size. These 
organic substances include major extracellular messenger 

molecules for autocrine/paracrine signaling such as glu-
tamate and ATP as well as anti-oxidant GSH, anti-inflam-
matory itaconate, and anti-viral defensing cGAMP. The 
activation mechanisms of VSOR/VRAC are classified 
into swelling-dependent and -independent ones. Reduc-
tion of intracellular ionic strength (Γin) physicochemi-
cally activates VSOR/VRAC due to the conformational 
changes in LRRC8 proteins in a manner independent of 
cell swelling. Also, VSOR/VRAC can be biochemically 
activated by oxidation even in the absence of cell swell-
ing, because LRRC8 proteins are physically interact-
ing with NOX which releases ROS, when some GPCRs 
and death receptors are activated. The mechanisms of 
swelling-induced activation are composed of two phases. 
The first phase is dependent on swelling-sensing TRPM7 
which exhibits a physical interaction with the LRRC8A 
molecule and on the nonhydrolytic existence of intracel-
lular free ATP. The second phase is dependent on GPCR 
activation triggered by glutamate and ATP which are 
released via VSOR/VRAC activated in the first phase and 
on the ROS production due to GPCR-mediated NOX 
activation and GSH release via VSOR/VRAC activated in 
the first phase. After the identification of the pore-form-
ing core components of VSOR/VRAC as LRRC8 mem-
bers, a large number of recent studies have elucidated the 
molecular processes of VSOR/VRAC-mediated release 
of organic substances and of VSOR/VRAC activation. 
However, still much remains unanswered, and many new 
questions have arisen, as pointed out in each section of 
this article and collectively listed in Supplementary Table 
as research subjects that remain to be studied in the near 
future.

Since VSOR/VRAC was recently demonstrated to be 
activated by inflammatory signals, BK and S1P, as well 
as by anti-inflammatory signals, itaconate and cGAMP, 
there arises a possibility that VSOR/VRAC activity plays 
some important and reciprocal roles in the inflammation 
processes. Further studies are warranted to investigate 
this possibility.
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