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Influence of age on nicotinic cholinergic 
regulation of blood flow in rat’s olfactory bulb 
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Abstract 

The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic 
acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) 
the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes 
that mediate their responses, and (3) their activity in old rats. The activation of the α4β2-like subtype of nAChRs 
produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation. 
The nAChR activity producing neocortical vasodilation was similarly maintained in 2-year-old rats as in adult rats, 
but was clearly reduced in 3-year-old rats. In contrast, nAChR activity in the olfactory bulb was reduced already 
in 2-year-old rats. Thus, age-related impairment of α4β2-like nAChR function may occur earlier in the olfactory bulb 
than in the neocortex. Given the findings, the vasodilation induced by α4β2-like nAChR activation may be beneficial 
for neuroprotection in the neocortex and the olfactory bulb.
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Introduction
As background information for this review article, a brief 
history and scientific knowledge of basic and clinical 
research on the basal forebrain cholinergic system 
will be provided. In humans, the olfactory function 
starts declining after 65  years of age [1]. In addition to 
age-related impairment, olfactory decline is an early 
symptom of Alzheimer’s disease (AD) that appears before 
cognitive decline [2, 3]. The olfactory bulb, which is the 
first processing station of olfactory information in the 
brain, receives cholinergic basal forebrain input, as do 
the neocortex and hippocampus, which contribute to 

cognition and memory, respectively [4]. More specifically, 
magnocellular neurons in the basal forebrain provide 
widespread cholinergic innervation to the neocortex, 
hippocampus, and olfactory bulb. The bilateral horizontal 
and caudal portions of the cholinergic basal forebrain 
neurons, which are located in the substantia innominata 
(SI) and nucleus basalis of Meynert (NBM), project their 
axons to the neocortex. In turn, fibers of neurons located 
in the nucleus of the horizontal limb of the diagonal 
band of Broca (HDB) project to the olfactory bulb. The 
most rostral level of the cholinergic neurons of the basal 
forebrain, which is located in the medial septal nucleus 
(MS) and the nucleus of the vertical limb of the diagonal 
band of Broca (VDB), project mainly to the hippocampus 
[4, 5]. These cholinergic neurons of the basal forebrain 
undergo selective degeneration in patients with AD [6, 
7]. Moreover, individual variations in cholinergic cell 
loss, from moderate to severe, are correlated with the 
degree of cognitive deterioration in these patients [7]. 
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This indicates the importance of this cholinergic system 
for cognitive function. In vivo brain imaging studies have 
revealed a moderate structural decline in the gray matter 
volume of the basal forebrain cholinergic system during 
the adult life span, which worsens with advanced age [8]. 
A further decrease in the volume of the basal forebrain 
cholinergic system beyond the age effect alone were 
detected in early stages of AD [8, 9].

Presumed cholinergic terminations onto cerebral blood 
vessels from the magnocellular basal nucleus, in addition 
to interneuronal contacts, are evident in rodent studies 
that used the anterograde axonal-tracing technique [10]. 
The activation of cholinergic fibers originating in the 
NBM produces vasodilation, which leads to increases in 
regional blood flow in the neocortex in anesthetized rats 
[11–13]. Acetylcholine receptors consist of muscarinic 
and nicotinic receptors. The activation of not only 
muscarinic but also nicotinic receptors within the 
parenchyma of the neocortex is involved in the NBM 
cholinergic vasodilative system [11].

In the human neocortex, nicotinic acetylcholine 
receptors (nAChRs) exhibit a greater decline than do 
muscarinic acetylcholine receptors during the normal 
aging process as well as in patients with AD [14, 15]. 
Therefore, to understand the mechanisms of olfactory 
decline associated with cognitive decline in older adults 
and patients with AD, it is important to elucidate the 
regulation of regional blood flow mediated by the 
nicotinic cholinergic system in the neocortex and 
olfactory bulb, together with its aging process.

In this article, we focus on nAChRs, review results 
reported mainly by our research group using anesthetized 
rats and discuss on (1) nAChRs-mediated regulation of 
regional blood flow in the neocortex and the olfactory 
bulb, (2) nAChR subtype mediating their responses, and 
(3) their activity in old rats.

Nicotinic cholinergic regulation of regional blood 
flow in the neocortex
Nicotine injection
Nicotine, a nAChR agonist, has been demonstrated to 
increase regional cerebral blood flow when injected 
intravenously, especially in the neocortex, independent 
of mean arterial pressure [16–18]. In our investigation, 
we measured the blood flow in the frontal cortex by laser 
Doppler flowmetry in urethane-anesthetized artificially 
ventilated rats, before and after intravenous bolus 
injection of nicotine [18]. Nicotine at doses of 3–30 µg/
kg increased neocortical blood flow in a dose-dependent 
manner, without significant changes in mean arterial 
pressure. At 300  µg/kg, nicotine increased neocortical 
blood flow in parallel with a marked increase in arterial 
pressure. The rapid increase in neocortical blood flow 

after the injection of 300  µg/kg of nicotine appears to 
be due to a passive increase in neocortical blood flow in 
response to the increased arterial pressure. Accordingly, 
nicotine doses of 30  μg/kg or less increased the 
neocortical blood flow without affecting systemic blood 
pressure is due to active dilation of neocortical vessels. 
Nicotine at the same doses had a similar effect to the 
parietal cortex in our animals.

The finding mentioned above is in line with evidence 
that the activation of nAChRs is involved in vasodilation 
in the neocortex by excitation of intracranial cholinergic 
fibers originating in the NBM of the basal forebrain 
projecting to the neocortex [11–13, 19].

nAChR subtype
The increase in neocortical blood flow induced by 
intravenous injection of nicotine (30  μg/kg) is due 
to an activation of nAChRs in the brain; in fact, the 
response was not influenced by a nAChR antagonist 
(hexamethonium) which cannot transverse the blood–
brain barrier, but was abolished by a nAChR antagonist 
(mechamylamine) that can cross it [18]. Activations of 
nAChRs in both the NBM and the neocortex are possibly 
involved in the nicotine-induced neocortical vasodilation 
[17, 18]. Furthermore, nitric oxide is necessary for this 
nicotine-induced increase in neocortical blood flow [20].

Of the various subtypes of nAChRs, the α4β2 and α7 
subtypes are the most abundant and widespread in the 
mammalian brain, including the neocortex and NBM 
[21–23]. The increase in neocortical blood flow induced 
by nicotine was not influenced by methyllycaconitine, 
an α7-selective nAChR antagonist but was completely 
abolished by dihydro-β-erythroidine, an α4β2-preferring 
nAChR antagonist [24]. These results suggest that 
activation of α4β2-like nAChRs but not of α7 nAChRs 
in the NBM and the neocortex is responsible for the 
nicotine-induced neocortical vasodilation. However, 
although dihydro-β-erythroidine is often used as an 
α4β2-preferring nAChR antagonist [25, 26], we cannot 
exclude the possible contribution of other heterometric 
nAChRs, since dihydro-β-erythroidine can bind to 
heterometric neuronal nAChRs containing not only the 
α4β2 subtype but also the α4β4 [27], α3β2 [28], and α2β2 
[29] subtypes.

Aging
The above-mentioned experiments showing an increase 
in neocortical blood flow induced by intravenous 
injection of nicotine (30  µg/kg) were performed in 
adult rats aged 3–10  months. Then we moved on to 
older animals [18, 30, 31]. In rats 23–26  months old 
(approximately 2 years old), a bolus injection of 30 µg/kg 
of nicotine increased neocortical blood flow to a similar 
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extent as in the younger rats. A lower nicotine dose 
(3  µg/kg), however, was ineffective. In other words, the 
intensity of the response to nicotine remained unchanged 
in old rats, but the threshold became higher. In contrast, 
in 32–36  months old rats (approximately 3  years old), 
nicotine, at 3 or 30  µg/kg, had no significant effect on 
the neocortical blood flow (Fig. 1A). The decrease in the 
neocortical blood flow response in the very old animals 
is probably due to a decline in the number of nAChRs 
in the neocortex, as previously observed in both rodents 
and humans [14, 32].

Nicotinic cholinergic regulation of regional blood 
flow in the olfactory bulb
Nicotine injection
The effect of an intravenous bolus injection of nicotine 
on the blood flow in the olfactory bulb was investigated 
[33]. Nicotine at a dose of 30 µg/kg, increased neocortical 
blood flow [18], but did not increase blood flow in the 
olfactory bulb [33]. This result agrees with the fact that 
activation of the HDB in the basal forebrain, which is the 
main source of cholinergic input to the olfactory bulb [5, 
34, 35], increased extracellular acetylcholine release in 
the olfactory bulb but failed to affect the blood flow in 

the olfactory bulb [36]. Our results suggest a functional 
difference between the olfactory bulb and neocortex 
regarding cerebral blood flow regulation through 
cholinergic activation.

Multiple in vivo studies in rodents have described that 
natural olfactory stimulation increases regional blood 
flow in the olfactory bulb, in association with neuronal 
activities [37–40]. The vasodilation in the olfactory bulb 
induced by olfactory stimulation is due to neurovascular 
coupling mechanisms [41, 42].

Next, we investigated the effect of nAChR activation 
by nicotine injection on the blood flow response in 
the olfactory bulb induced by olfactory stimulation in 
urethane-anesthetized artificially ventilated rats [43]. 
Odor stimulation (5% amyl acetate, 30  s) produced an 
increase in olfactory bulb blood flow without changes 
in frontal cortical blood flow or mean arterial pressure. 
An intravenous injection of nicotine at a dose of 30 µg/
kg potentiated the odor-induced increased olfactory bulb 
blood flow, without changing the basal blood flow level.

The olfactory nerve transmits smell information from 
the olfactory epithelium to the olfactory bulb. Rodent 
studies indicated that the olfactory nerve increases its 
firing frequency depending on the odor concentration 

Fig. 1 Schematic diagram showing the aging effects of α4β2-like nAChR-mediated neocortical vasodilation (A) and potentiation of vasodilation 
in the olfactory bulb (B). A Neocortical vasodilation induced by intravenous bolus injection of nicotine at a dose of 30 μg/kg was schematically 
illustrated [18]. B Vasodilation of the olfactory bulb induced by olfactory nerve stimulation before (black line) and after (red line) intravenous 
injection of nicotine at a dose of 30 μg/kg was schematically illustrated [54]. nAChR nicotinic acetylcholine receptor
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[44–46]. By varying the stimulus frequencies of 
olfactory nerve electrical stimulation, we could quantify 
the strength of odor stimulation. Our experiments 
demonstrated that unilateral, electrical stimulation 
of olfactory nerve produced current (≥ 100  μA) and 
frequency-dependent (≥ 5  Hz) increases in blood 
flow in the olfactory bulb ipsilateral to the stimulus 
without changes in frontal cortical blood flow or 
mean arterial pressure [47]. Furthermore, we observed 
that an intravenous injection of nicotine (30  μg/kg) 
augmented the olfactory bulb blood flow response to 
nerve stimulation. Nicotine-induced potentiation of 
olfactory bulb blood flow responses occurred with 
olfactory nerve stimulation at 2 and 20  Hz but not at 
100  Hz [47]. This finding provides additional evidence 
that nAChR activation potentiates olfactory bulb blood 
flow responses to olfactory input, this potentiation 
occurs for intermediate or weak, but not strong, 
input. In a  Ca2+ imaging study in the mouse olfactory 
bulb, Bendahmane et  al. [48] indicated that electrical 
stimulation of the HDB leads to the activity-dependent 
modulation of glomerular odor responses, whereby 
weak-to-moderate responses are enhanced and strong 
responses are reduced. Thus, our results [47], almost 
agree with those of Bendahmane et al. [48].

nAChR subtype
The above-mentioned nicotine-induced potentiation 
of olfactory bulb blood flow response to odor was 
negated by dihydro-β-erythroidine, an α4β2-preferring 
nAChR antagonist [43]. Thus, our results suggest 
that the activation of α4β2-like neuronal nAChRs in 
the brain potentiates olfactory sensory processing 
in the olfactory bulb. However, a contribution of not 
only α4β2-like nAChRs [49] but also α2- [50] and 
β4-containing nAChRs [51] in the olfactory bulb should 
be considered, since dihydro-β-erythroidine can bind 
to heterometric neuronal nAChRs other than the α4β2 
subtype.

As described in “nAChR subtype” section, activation 
of α4β2-like nAChRs in the NBM and the neocortex is 
suggested to be responsible for the nicotine-induced 
neocortical vasodilation [18, 24]. The olfactory bulb 
receives cholinergic neural inputs originating in the 
HDB in the basal forebrain [5, 35]. Both in olfactory 
bulb and HDB cholinergic neurons, mRNA expression 
of both the α4 and β2 nAChR subunits has been 
identified in rats [21, 52, 53]. Thus, the nicotine-
induced potentiation of olfactory sensory processing in 
the olfactory bulb could be due to activation of α4β2-
like neuronal nAChRs in the olfactory bulb and/or in 
HDB cholinergic neurons.

Aging
The investigation of nicotine-induced potentiation of 
olfactory bulb blood flow responses induced by olfactory 
nerve stimulation in adult rats (4–8  months old) 
described above was then extended to animals of older 
age [54]. In old rats of 24–27  months (approximately 
2  years old), olfactory nerve stimulation produces 
vasodilation in the olfactory bulb. However, the nicotine-
induced potentiation of olfactory bulb vasodilation due 
to α4β2-like nAChR activation decreased considerably 
in old rats (Fig.  1B). In contrast, the olfactory bulb 
vasodilatory response to hypercapnic stimulation, 
indicating the vasodilatory ability of the olfactory bulb, 
was considerably greater than its response to olfactory 
nerve stimulation. Thus, we consider that with age, the 
olfactory bulb blood vessels maintain their vasodilatory 
ability but with lower reactivity to nicotine. This suggests 
a decline in α4β2-like nAChR function involving 
the nicotine-induced potentiation of olfactory bulb 
vasodilation in old rats.

In old rats of 24–27  months, electrical stimulation of 
unilateral olfactory nerve increased blood flow in the 
olfactory bulb ipsilateral to the stimulus without changes 
in mean arterial pressure [54]. The spatiotemporal 
blood flow response characteristics and the current and 
frequency dependence of prompt vasodilation of the 
olfactory bulb were identical to those observed in adult 
rats [47]. This is consistent with Kass et  al. [55], who 
described that the odor-evoked synaptic output from the 
olfactory sensory neurons to the olfactory bulb glomeruli 
is relatively stable in anesthetized mice of 6–24 months 
old.

Comparison of aging effects on the blood flow 
responses in the neocortex and the olfactory bulb
As described above, the α4β2-like nAChR-mediated 
vasodilation in the neocortex induced by nicotine 
injection is relatively well maintained in old rats (23–
26  months old) but markedly declines in very old rats 
(32–36  months old) [18, 24]. On the other hand, the 
α4β2-like nAChR-mediated potentiation of olfactory 
bulb vasodilation induced by nicotine injection is 
reduced in old rats (24–27 months old) [54]. Accordingly, 
we assume that the age-related impairment of α4β2-like 
nAChR function may affect the olfactory bulb earlier 
than the neocortex.

In rat brains, α4 and β2 mRNA levels decrease from 
7 to 29 months of age, further decreasing at 32 months. 
This tendency is relatively constant across in different 
areas of the brain including neocortex, although olfactory 
bub is not analyzed [56]. Similarly, in human neocortex, 
decreases in α4 and β2 mRNA levels as well as α4β2 
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nAChR availability have been reported with normal 
aging [57, 58] and AD [59]. The diminished olfactory 
bulb blood flow potentiation effects of nicotine in old 
rats as well as diminished nicotine-induced neocortical 
vasodilation in very old rats may be due to the decline in 
α4β2 nAChRs in the brain. Further studies comparing the 
aging effects on neocortex and olfactory bulb, regarding 
α4β2 nAChR availability, are needed.

Age-related impairment of the regulation of blood flow 
in the olfactory bulb and neocortex mediated by α4β2-
like nAChRs may not be comparable to the baseline 
regional cerebral blood flow, at least in rodents. This is 
because the baseline regional blood flow in the neocortex 
and olfactory bulb is not significantly different in 12-, 24-, 
and 34-month-old conscious rats when measured using 
the  [14C]-iodoantipyrine method [60]. Similarly, using 
microsphere methods, the baseline regional blood flow in 
the olfactory bulb has been shown to remain unchanged 
in 6- and 24-month-old conscious rats [61]. In contrast, 
in the human brain, resting (baseline) gray matter 
cerebral blood flow, including that in the frontal regions, 
is decreased between the ages of 40 and 100  years, as 
measured using the 133X inhalation method [62]. Similar 
age-related reductions in gray matter cerebral blood 
flow have been reported by studies that used positron 
emission tomography [63] and pseudocontinuous arterial 
spin labeling (pCASL) MRI [64].

Clinical significance
This review emphasized the crucial role of α4β2-like 
nAChRs in the brain in neocortical vasodilation and 
potentiation of olfactory bulb vasodilation in response 
to olfactory stimulation. A considerable decrease of 
these α4β2-like nAChR functions occur in older animals 
at around 2 years old in the olfactory bulb, and later at 
around 3  years old in the neocortex. The age-related 
impairment of nicotinic cholinergic regulation of 
cerebral blood flow in the neocortex and olfactory bulb 
may explain the deterioration of olfactory and cognitive 
function in older people [65, 66]. The earlier decline 
of nAChR function in the olfactory bulb than in the 
neocortex may explain why the olfactory dysfunction is 
the earliest symptoms of AD [2, 3]. Human studies have 
described the relationship between olfaction, cognitive 
function, regional cerebral blood flow, and the nicotinic 
cholinergic system. Pilot studies among community-
dwelling older adults have shown that older individuals 
with a higher olfactory identification threshold for 
rose odor exhibited a greater decline in cognitive 
function, particularly in attention and discrimination 
abilities [67, 68]. Attention and discrimination abilities 
are related to the basal forebrain cholinergic system 
[69, 70] and undergo early impairment related to AD 

[71, 72]. Cortical nAChRs, as assessed in  vivo using 
11C-nicotine binding in patients with mild AD, are 
robustly associated with attention cognitive function 
[73]. Moreover, the olfactory identification score was 
negatively correlated with regional cerebral blood flow 
in several brain areas including the bilateral frontal 
pole, in patients with mild cognitive impairment (MCI) 
and AD [74].

Since the α4β2-like nAChRs in the brain decline 
with age as well as in AD, activation of the nAChRs 
involved in cortical vasodilatation or potentiation of 
olfactory bulb vasodilation could be beneficial for older 
people and AD patients. To this end, administering 
nicotinic receptor agonists or physical therapies such 
as somatosensory stimulation and walking, known 
to activate basal forebrain cholinergic system in both 
adult and old rats [75–80], may have therapeutic values. 
Furthermore, the increased cerebral blood flow in the 
neocortex and olfactory bulb induced by α4β2-like 
nAChR activation could improve oxygen and glucose 
delivering to those brain areas, and those sufficient 
nourishments appear to be beneficial for neuronal 
protection and maintaining cognitive function and 
olfaction.
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