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Abstract 

Many hormones act on the hypothalamus to control hunger and satiety through various pathways closely associated 
with several factors. When food is present in the gastro intestinal (GI) tract, enteroendocrine cells (EECs) emit satiety 
signals such as cholecystokinin (CCK), glucagon like peptide-1 (GLP-1) and peptide YY (PYY), which can then com-
municate with the vagus nerve to control food intake. More specifically, satiety has been shown to be particularly 
affected by the GLP-1 hormone and its receptor agonists that have lately been acknowledged as a promising way 
to reduce weight. In addition, there is increasing evidence that normal flora is also involved in the peripheral, central, 
and reward system that impact satiety. Moreover, neurologic pathways control satiety through neurotransmitters. 
In this review, we discuss the different roles of each of the GLP-1 hormone and its agonist, gut microbiomes, as well 
as neurotransmitters and their interconnected relation in the regulation of body’s satiety homeostasis.
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Introduction
Hormones involved in satiety
The hypothalamus is a brain structure that plays a major 
part in the complex neural network that controls the 
homeostatic regulation of energy balance [1]. It is the 
center for all hormones involved in the satiety mecha-
nism regulation. Of these hormones are peripheral ano-
rexigenic hormones that improve satiety such as glucagon 
like peptide -1 (GLP-1), peptide YY (PYY), insulin, chol-
ecystokinin (CCK) and leptin. Even ghrelin, which is 
a hormone that stimulates hunger, acts on hypothala-
mus [2]. It is known that central Pro-opiomelanocortin 
(POMC) and cocaine–amphetamine-regulated tran-
script-containing (CART) neurons in the hypothalamus 

increase satiety, while neurons carrying neuropeptide 
Y (NPY) and agouti-related peptide (AgRP) trigger the 
desire to eat [3]. The hypothalamus also transmits signals 
to the mesolimbic rewards circuit, which is crucial for 
addiction, impulsive behavior, and food reward [4]. Sign-
aling of the peripheral hormones mentioned earlier have 
been even connected to impulsivity [5] and addiction [6]. 
This emphasizes further the role of physiological and/or 
psychological factors in eating disorders [7].

Microbiota role in metabolism
Over the last decade, there has been an increasing inter-
est in the role of the gut microbiota in the physiology of 
both health and disease [8]. These multitudes of intes-
tinal inhabitants collaborate with the host in a crucial 
evolutionary relationship to preserve homeostasis [9]. 
A growing body of evidence demonstrates that the gut 
microbiota has a substantial impact on the bidirectional 
connection between the GI tract and the brain, known 
as the microbiota–gut–brain axis [10]. Particularly, it is 
becoming more recognized that the host’s microbiome 
affects how efficiently it uses its own energy, which can 
lead to metabolic and eating disorders [11]. For instance, 
changing gut microbiota composition has been linked to 
anorexia nervosa [12] and obesity [13].
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Neuroscience in relation to satiety
The arcuate nucleus of the hypothalamus is the region 
that seems to be most crucial in the integration of signals 
about energy flux. It gets signals related to immediate 
satisfaction (satiety related to the early stages of diges-
tion, particularly in the stomach and initial parts of the 
digestive system) that interact with signals derived from 
adiposity. POMC, a precursor for a number of peptides 
like α-melanocyte stimulating hormone (α-MSH), endor-
phins, and adrenocorticotropic hormone (ACTH), is 
expressed by melanocortin system neurons in the arcu-
ate nucleus [14]. Melanocortin 4 receptor (MC4R), 
the main receptor for α -MSH, is found in the arcuate 
nucleus as well as various other parts of the brain [15]. 
When α-MSH or an agonist binds to the MC4R, catabolic 
pathways are triggered, resulting in hypophagia, thermo-
genesis, and weight loss [16], whereas MC4R antagonists 
cause weight gain and hyperphagia [17].

Body
Hormones and satiety‑GLP‑1
GLP‑1 and satiety
GLP-1 is an incretin hormone made by the L cells of the 
intestine. GLP-1 receptors are abundant in the arcuate 
nucleus as well as the hypothalamus which contains pro-
jections to the hunger centers [18, 19]. By its peripheral 
and central activities, GLP-1 decreases calorie intake, 
boosts feelings of satiety, and encourages weight loss 
[20]. It was shown that food intake is inhibited by acute 
intracerebroventricular GLP-1 injection, and food intake 
is increased—even in satiated rats—by antagonists to the 
GLP-1 receptor [21]. The strong evidence that the para-
ventricular nucleus is the principal site for brain-derived 
GLP-1 satiety comes from the direct delivery of GLP-1 
into this region of the brain. GLP-1 exerts its effects 
by acting directly on the paraventricular nucleus. Yet, 
because POMC neurons express GLP-1 receptors, GLP-1 
also has anorexigenic actions in the arcuate nucleus [22]. 
Neuronal circuits are activated, and food intake declines 
as satiety signals like CCK and GLP-1 are created dur-
ing food ingestion, signaling the conclusion of the meal. 
Finally, GLP-1 injections into the body over an extended 
period of time decrease weight gain and promote weight 
loss [23]. This is also supported by the observation that 
obese people have lower GLP-1 levels than lean people 
[24].

GLP‑1 agonist effect on microbiota
The GLP-1 receptor agonist liraglutide has lately been 
acknowledged as a promising anti-obesity medica-
tion in obese and/or diabetic people [25]. The litera-
ture demonstrated that alterations in gut microbiota 

also significantly impacted satiety, lipid metabolism, 
and ectopic fat deposition, through the effect of GLP-
1or its agonists. For instance, liraglutide, may thereby 
prevent weight gain via modifying the composition 
of the gut’s microbial population [26]. More specifi-
cally, a previous study showed that liraglutide can, in 
fact, alter the makeup of the gut microbiota by boost-
ing the lean-related profile, which is consistent with 
its ability to reduce body weight in mice with strepto-
zotocin-induced transient hyperglycemia [27]. Simi-
larly, liraglutide was found to reduce weight gain in 
both diabetic and nondiabetic obese patients by alter-
ing the composition of the gut flora [28]. According to 
another study, liraglutide causes gut microbial struc-
tural alterations in diet-induced obese (DIO) mice, with 
the distribution of Proteobacteria and Verrucomicrobia 
phylotypes changing the most, while Firmicutes remain 
relatively unaffected [29]. The reduction in Proteobacte-
ria lead to a drop in total body mass and the adiposity 
index, which were indicators of decreased food intake 
and feeding effectiveness [29]. Since Verrucomicrobia 
support the human gut’s glucose balance, its reduction 
will disrupt glucose homeostasis and therefore satiety 
[30]. Interestingly, it has been suggested that Firmi-
cutes, a phylum that produces a significant amount of 
short chain fatty acids (SCFAs), particularly butyrate, 
may contribute to host obesity by enabling weight gain 
mechanism such as increase nutrition processing and 
energy extraction [31]. This can explain why GLP-1 
does not stimulate Firmicutes as they both have oppo-
site outcomes. Moreover, the abundance of Akkerman-
sia muciniphila, a species known to degrade mucin and 
produce SCFAs, was found to be positively correlated 
with indicators of gut inflammation and  significantly 
associated with body weight loss when its proportion 
increase due to liraglutide administration [32]. Another 
study suggested that the changes in the microbiome 
may be related to the GLP-1 and receptor signaling’s 
convergent physiologic effects on calorie intake, glu-
cose metabolism, and lipid management [33].

Microbiota in relationship to satiety
Microbiome and peripheral satiety mechanism
The story of the interaction between the gut microbiome 
and the neural circuits to the brain starts when food is 
ingested where CCK, GLP-1 and PYY are secreted by 
enteroendocrine cells (EECs) in order to send satiety sig-
nals via the vagus nerve in the purpose to control food 
intake [34]. There are many studies that reveal a “gut–
brain” communication which is modulated by the gastro-
intestinal (GI) bacterial composition as we will mention 
in the following:
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Microbiota and CCK
A person’s gut microbiota may modify the expression and 
release of GI satiety peptides, which in turn may impact 
how much they eat. This idea was demonstrated in 
rodents. For instance, studies show that when compared 
to typical mice of the same weight, germ-free (GF) mice 
(that lack microbiota) exhibit reduced intestine expres-
sion of the CCK peptide [35]. Although the role of food 
receptors in the increased caloric intake seen in GF mice 
is unknown, it is suggested that the activation of nutri-
ent responsive receptors triggers the release of satiety 
peptides from the intestinal tract, including CCK [36]. 
This indicates that these receptors play a role through 
the regulation of satiety peptides availability. For exam-
ple, in cases of fructose malabsorption, there are higher 
relative abundances of Actinobacteria, Bacteroidetes, 
and Lactobacillaceae (especially Lactobacillus johnso-
nii). This indicates that fructose malabsorption induces 
CCK expression into the intestine by changing micro-
biota composition and metabolism. These adjustments 
are followed by a large rise in the number of CCK-posi-
tive enteroendocrine cells (EECs), proving that fructose 
malabsorption-induced changes in CCK release require 
the microbiota [37]. Moreover, increased CCK release is 
seen in the murine EEC line STC-1 when specific fatty 
acid metabolites generated by colonized lactic acid bac-
teria are applied [38]. All these data suggest that the rela-
tion between CCK and microbiota is thought to be due to 
microbial-derived products like lipopolysaccharide (LPS) 
and metabolites such SCFA [39] which act on enteroen-
docrine cells to release CCK.

Microbiota and GLP‑1
The impact of the microbiome on gut satiety peptides 
extends beyond CCK. GLP-1 is secreted from intestinal 
L-cells and reduces appetite through a vagal-mediated 
mechanism [40]. It was found that intestinal bacteria fer-
ment the prebiotic fiber beta-glucan to generate propion-
ate, one of the important SCFAs [41]. Evidence suggests 
that a healthy microbiome’s production of SCFAs affects 
the release of GLP-1. In a study conducted by Tolhurst 
and his colleagues, the free fatty acid receptor (FFAR 2), a 
nutrient-sensing G-protein coupled receptor, is activated 
when SCFAs—acetate, propionate, and butyrate—are 
applied to mouse colonic cell cultures. The activation of 

(FFAR 2) receptor resulted in an increase in GLP-1 pro-
duction. Hence, the interaction of bacterial metabolites 
like propionate with intestinal L-cells can directly control 
GLP-1 production [42]. Moreover, according to recent 
research, acute inulin-propionate ester supplementation 
elevated plasma GLP-1 and PYY levels. It was linked to 
lower food consumption at meals after supplementation 
in humans. This demonstrates the immediate impact of 
propionate on meal consumption [43], and shows how 
microbial product help in physiologic control of satiety 
hormonal release. Also, it is interesting to note that prebi-
otic supplementation increases colon mass in mice when 
compared to non-supplemented controls [44], which can 
be partially attributed to an increase in the number of 
secretory cells [45]. Another way that the microbiota may 
affect GLP-1 release is through metabolites. For example, 
levels of acyl-glycerols in the gut are restored in obese 
mice when Akkermansia muciniphila is administered as 
a probiotic [46] as mentioned in Table  1. Acylglycerols, 
which are byproducts of fat digestion, activate a G-pro-
tein-coupled receptor, which in turn prompts L cells to 
release gut peptides including GLP-1 [47].

Microbiota and central satiety mechanism: satiety 
and neurological inflammation
As mentioned above, the hypothalamus is home to 
important anorexigenic and orexigenic neuronal popula-
tions that control hunger and energy expenditure. Lep-
tin in particular can alter the expression and release of 
neuropeptides in the hypothalamus to control energy 
homeostasis.

The hypothalamus and the nucleus of tractus solitar-
ius (NTS) have been related to inflammation which lead 
to loss of function as a result of bacterial inflammatory 
agents generated by the obese-type microbiome [48]. 
Leptin sensitivity in neurons is compromised by inflam-
mation and cytokine signaling [49]. Particularly, leptin 
can alter the expression and release of neuropeptides in 
the hypothalamus to control energy homeostasis. Thus, 
affecting leptin sensitivity can disturb energy homeosta-
sis in the hypothalamus. In diet-induced obesity (DIO) 
mice, taking a probiotic supplement containing Lac-
tobacillus rhamnosus, Lactobacillus acidophilus, and 
Bifidobacterium bifidum reduces body weight and food 
intake. It also normalizes and restores leptin-induced 

Table 1  Main mechanisms by which microbiota affect satiety control

Lactobacillus rhamnosus, Lactobacillus acidophilus, Bifidobacterium 
bifidum

Decrease food intake and hypothalamic inflammation [50]

Akkermansia muciniphila Enhance gut peptide release though increasing acyl-glycerols in the gut [46]

Gram-negative bacteria Produce LPS which can reduce hypothalamic inflammation and body weight [52]

Proteus mirabilis Decrease vagal afferent neuron (VAN) survival [53]
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phosphorylated signal transducer and activator of tran-
scription 3 (pSTAT3) expression (Table 1) [50]. Lactoba-
cillus rhamnosus supplementation alone has resulted in 
identical preservation of leptin signaling, proving that 
hypothalamic leptin signaling is affected by the presence 
of specific bacteria [51].

On the other hand, a study In diet-induced obesity 
(DIO) mice, taking a probiotic supplement containing 
Lactobacillus rhamnosus, Lactobacillus acidophilus, and 
Bifidobacterium bifidum reduces body weight and food 
intake. It also normalizes and restores leptin-induced 
pSTAT3 expression [50]. Lactobacillus rhamnosus sup-
plementation alone has resulted in identical preservation 
of leptin signaling, proving that hypothalamic leptin sign-
aling is affected by the presence of specific bacteria [51].

In brief, the microbiome plays an important role in 
controlling central satiety metabolism and this role is 
mediated by the release of different cytokines.

Microbiota and reward system
In addition to the role of neurologic inflammation as 
central mechanism, brain reward system can also alter 
satiety.

Food accessibility, social and environmental cues, and 
flavor are a few examples of external influences that 
might interfere with the body’s natural intake control 
[40]. The dorsal striatum’s dopamine (DA) levels are suf-
ficiently raised by optogenetic activation of vagal affer-
ent neurons (VANs) that innervate the upper GI tract to 
promote reward-related behaviors such self-stimulation, 
location preference, and flavor conditioning [34].

Antibiotic-free and germ-free mice show changes in 
dopaminergic reward pathways [54]. Contrary to conven-
tional mice, GF mice had greater desire for even low con-
centrations of intralipid [35]. GF mice showed enhanced 
DA turnover in the striatum and reduced expression of 
D1 receptor mRNA in the striatum and nucleus accum-
bens (NAc) [55], two areas implicated in food-seeking 
behavior [56]. This shows that in situations where dopa-
mine is high, people tend to have higher desire to eat. 
Antimicrobial therapy elevated L-3,4-dihydroxyphenyla-
lanine (L-DOPA) in young mice’s amygdala and lowered 
DA turnover in rats’ amygdala and striatum, indicating 
that the microbiome regulates DA neurochemistry [57]. 
Adolescent rats with periodic daily access to the high 
fat/high sucrose (HFHS) diet have higher total energy 
expenditure and changed monoamine gene expression 
in the hippocampus and prefrontal cortex. One of the 
changes observed is related to the monoamine oxidase 
A  (MAO-A) that is an enzyme involved in  removing 
the neurotransmitters norepinephrine, serotonin and 
dopamine from the brain. These changes are correlated 

with bacterial distribution and abundance. In particular, 
MAO-A expression in the hippocampus is linked to sev-
eral other bacterial genus including unspecified Bifido-
bacteriales, Bifidobacteriaceae, and an unspecified genus 
of the Lachnospiraceae family. In contrast, MAO-A 
expression in the prefrontal cortex is positively linked to 
an unspecified genus of the Lachnospiraceae family [58].

Food preferences could be influenced by micro-
biota exposed to particular conditions. For instance, 
mice under social stress show increased preference for 
sucrose, and this preference is eliminated by SCFA sup-
plementation, suggesting that the microbiota controls 
stress-induced sucrose preference through the synthe-
sis of SCFA [59].

Also, artificial sweeteners with low or no calories are 
another topic of concern in terms of how they affect 
intake and satisfaction. This is because it has been 
shown that some sweeteners, like stevia, are digested 
by gut flora [60]. Although the consumption of artifi-
cial sweeteners does not appear to trigger compensa-
tory overeating in humans in short-term or long-term 
trials, it has been shown to modify reward circuits in 
both rodents and humans [61]. For instance, tyrosine 
hydroxylase and dopamine transporter (DAT) mRNA 
expression in the NAc is reduced in rats exposed to a 
chronic low dosage of the stevia glycoside rebaudio-
side A (RebA), which can be reversed by supplementing 
with the prebiotic oligo-fructose [62]. These find-
ings imply that the metabolism of artificial sweeteners 
by bacteria may change reward signaling and that the 
rewarding qualities of food might override the basic 
satiety signals produced by homeostatic regions [63].

In conclusion, the presence of microbiota leads to the 
activation of the reward system which thus increases 
food desire, whereas their absence can depress reward 
system and reduce food desire.

Neuroscience in relation to satiety
Many studies have shown that the homeostatic regula-
tor of food intake interacts with the dopamine reward 
system leading to a boosting effect on food intake. This 
interaction is based on the involvement of the dopa-
mine reward system in the behavior of food seeking 
[64]. For instance, it has been shown that ghrelin stimu-
lates ventral tegmental area (VTA) dopamine neurons 
whereas leptin and insulin inhibit them [65]. Accord-
ing to research by Hommel et  al., leptin receptors are 
expressed on VTA dopamine neurons and inhibit their 
activity. Food intake was observed to decrease when 
leptin was administered to the VTA, but it increased 
when leptin receptors were knocked down in the VTA, 
along with activity levels and hedonic feeding [66].



Page 5 of 7Barakat et al. The Journal of Physiological Sciences           (2024) 74:11 	

Neurotransmitter effect on satiety
In the parabrachial nucleus, a region located in the pons, 
the neurotransmitter gamma amino benzoic acid (GABA) 
produced by NPY and AgRP neurons, maintains energy 
balance [67]. The dorsal raphe nucleus (DRN) contains 
a population of heat-activated GABAergic neurons that 
control energy expenditure via altering motility and ther-
mogenesis [68]. The increase in motility and thermogen-
esis lead to increased desire to eat and replenish energy 
sources. Its significance in obesity is clear from the fact 
that eliminating the vesicular transporter for GABA in 
AgRP neurons causes resistance to obesity brought on 
by a high-fat diet, regardless of changes in food intake 
[69]. Serotonin receptor, which is found in certain arcu-
ate POMC neurons, is another neurotransmitter that 
controls how much food is consumed and how much 
energy is expended [70]. Independently of changes in 
energy expenditure, these POMC serotonin receptors 
are engaged in controlling energy homeostasis through 
changes in eating behavior [71] as shown in Table  2. 
Through the MC4R sympathetic preganglionic neurons, 
POMC neurons that project to the spinal cord are also 
engaged in maintaining homeostasis of energy by pro-
moting adaptive thermogenesis in brown adipose tissue 
[72]. As a result of energy expenditure, the desire to eat 
will also expand. Moreover, due to its role in maintain-
ing energy homeostasis, oxytocin, a centrally acting neu-
rotransmitter and hormone, is receiving more attention 
as a potential anti-obesity target [73]. Obesity was shown 
to be a characteristic of mice lacking either oxytocin or 
oxytocin receptors [74]. Also, in diet-induced obesity and 
genetically obese mouse models, long-term peripheral or 
central administration of oxytocin causes an inhibition 
of food intake, an increase in energy expenditure, and 
weight loss as seen in Table 2 [75].

Conclusion
The gut microbiota, which is the term for the whole 
microbial community inhabiting the digestive system, has 
been shown in several studies to be influenced by GLP-
1. By encouraging the development of specific advanta-
geous bacteria in the gut, GLP-1 may make it easier to 
produce satiety related microbial products. On the other 
hand, GLP-1 shortage or resistance may cause dysbiosis, 

or an imbalance of harmful and helpful microbes, which 
can exacerbate metabolic diseases like obesity and insulin 
resistance.

In conclusion, each of the hormonal, microbial and 
neurotransmitters are important for controlling satiety 
and glucose metabolism. Moreover, ongoing research 
on the connection between GLP-1 and microbiota 
could yield new insights and treatments for metabolic 
disorders.
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