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Abstract 

We reviewed fundamental studies on muscular pain, encompassing the characteristics of primary afferent fibers 
and neurons, spinal and thalamic projections, several muscular pain models, and possible neurochemical mechanisms 
of muscle pain. Most parts of this review were based on data obtained from animal experiments, and some researches 
on humans were also introduced. We focused on delayed-onset muscle soreness (DOMS) induced by lengthening 
contractions (LC), suitable for studying myofascial pain syndromes. The muscular mechanical withdrawal threshold 
(MMWT) decreased 1–3 days after LC in rats. Changing the speed and range of stretching showed that muscle injury 
seldom occurred, except in extreme conditions, and that DOMS occurred in parameters without muscle damage. 
The B2 bradykinin receptor—nerve growth factor (NGF) route and COX-2—glial cell line-derived neurotrophic factor 
(GDNF) route were involved in the development of DOMS. The interactions between these routes occurred at two 
levels. A repeated-bout effect was observed in MMWT and NGF upregulation, and this study showed that adaptation 
possibly occurred before B2 bradykinin receptor activation. We have also briefly discussed the prevention and treat-
ment of DOMS.

Keywords Delayed onset muscle soreness, Lengthening contraction, Nerve growth factor, Glial cell line-derived 
neurotrophic factor, Mechanical hyperalgesia, Muscle pain

Introduction
The muscle is the largest organ in the body, occupying 
40% or more of the body weight, and is always exposed 
to wear and tear during daily activities; however, pain 
or tenderness from this tissue has not been shed much 
light on by physicians and orthopedists. Since no one 

dies from muscle pain, since many researchers believe 
that the pain mechanism for superficial tissue (skin) and 
deep tissue, including muscles, must be the same, and 
since muscle pain has been handled mainly and effec-
tively by traditional medicine (acupuncture, massage, and 
herbal medicine), its mechanism has not been studied 
thoroughly. Since the 1980s, pain mechanisms have been 
intensively studied and brought new discoveries, mainly 
on cutaneous pain, and many people are suffering from 
deep pain such as chronic low back pain, myofascial pain 
syndromes, and delayed-onset muscle soreness (DOMS), 
medical/physiology textbooks still devote only minimal 
pages to neurochemical mechanisms of pain and almost 
no pages to muscle pain.

The characteristics of muscle pain are: (1) diffuse ach-
ing, (2) often referring to a distant somatic area [1], and 

*Correspondence:
Kazue Mizumura
kazuemizu00861@gmail.com
1 Nagoya University, Nagoya 464-8601, Japan
2 Department of Physiology, Nihon University School of Dentistry, 1-8-13 
Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
3 Department of Physical Therapy, Faculty of Rehabilitation, Niigata 
University of Health and Welfare, Niigata 950-3198, Japan
4 Institute for Human Movement and Medical Sciences (IHMMS), Niigata 
University of Health and Welfare, Niigata 950-3198, Japan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12576-023-00896-y&domain=pdf
http://orcid.org/0000-0002-5554-0659


Page 2 of 24Mizumura and Taguchi  The Journal of Physiological Sciences            (2024) 74:4 

(3) often accompanied by changes in muscle hardness [2, 
3]. Related to these characteristics, nociceptive inputs 
from the muscle (1) have stronger influences on spinal 
neurons than cutaneous inputs [4], (2) are under the 
stronger influence of the descending inhibitory system 
[5], and (3) nerve injury has a stronger influence on mus-
cular afferents [6, 7].

These characteristics differentiate muscle pain from 
cutaneous pain. Thus, muscle pain must be studied 
independently.

Historical overview of basic studies on muscle pain
Sensory afferents responsible for conveying noxious 
signals from the muscle to the spinal cord were initially 
identified by Paintal in 1960 [8]. These afferents were 
found to respond to muscle pressure and were transmit-
ted via Aδ- (Group III) fibers. The prevailing belief has 
been that muscle pain primarily conveyed through group 
III (Aδ) and group IV (C) fibers [9]. However, an alter-
native perspective was proposed by Weerakkody et  al. 
suggesting that the sensation of muscle soreness follow-
ing exercise is attributed not to nociceptors but rather to 
large fiber mechanoreceptors (muscle spindles and ten-
don afferents) [10]. Neonatally capsaicin-treated rats, in 
which C-fibers were destroyed, showed no decrease in the 
muscular mechanical withdrawal threshold (MMWT) 
(corresponding to muscular mechanical hyperalgesia 
in humans) after lengthening contraction (LC), show-
ing that C-fibers, not thick A-fibers, are responsible for 
DOMS [11]. Vibrations that efficiently excite muscle 
spindles do not induce pain [12], but rather reduce acute 
and chronic muscle pain [13]. We found many draw-
backs in Weerakkody’s reports and did not refer to them 
further.

Muscle afferents that respond to algesic substances 
and are transmitted by C- (Group IV) fibers have been 
reported by Mense and Schmidt [14]. Kumazawa and 
Mizumura [15] reported polymodal receptors that 
respond to all forms of algesic stimulation, that is, 
mechanical stimulation, heat and algesic substances, and 
with both Aδ- and C-fibers. Sensitization to heat has 
also been observed, similar to cutaneous afferents [15]. 
The existence of thin-fiber afferents that are insensitive 
to mechanical stimulation, but become sensitive after 
the induction of inflammation or repetitive stimulation 
(mechanically insensitive nociceptors), has been reported 
in the knee joint [16] and skin [17]. Similar receptors 
have been reported in muscles in an abstract form [18].

The size and segmental distribution of muscle primary 
afferent neurons (dorsal root ganglion (DRG) neurons) 
are quite different from cutaneous neurons [19]. The 
size distribution of the skin-innervating DRG neurons or 
DRG neurons of the mixed nerve is largest in the small 

size range (skewed in small-sized range) and monotoni-
cally decreases to medium and large size ranges [20–22]. 
In contrast, the DRG neurons innervating the gastroc-
nemius muscle (GC) lack this skewing of the popula-
tion toward smaller cell sizes, and the histogram tends 
to be symmetrical and dome-shaped (Fig. 1) [19]. Similar 
observations have been reported in previous studies [21, 
23, 24]. Muscle DRG neurons expressing tropomyosin-
related kinase A (TrkA), which is a high-affinity recep-
tor for nerve growth factor (NGF) and is thought to be 
expressed in nociceptors [20, 21], are widely distributed 
from small to large sizes (Fig. 1 upper lane). Muscle DRG 
neurons with thin-axons might have larger cell bodies 
[25, 26]. As reported for the mesencephalic trigeminal 
nucleus [27, 28], where trigeminal proprioceptive affer-
ent neurons are located, the large TrkA-positive neurons 
in Fig.  1 might include proprioceptive afferents. How-
ever, the role of NGF in these neurons in adult animals 
remains unknown.

Spinal projections of electrophysiologically identified 
single-muscle C-fibers were traced [29] using an intracel-
lular injection of PHA-L in female guinea pigs. Labelled 
axons project two or three segments craniocaudally and 
give off collaterals in laminae I and II, where nociceptors 
synapse to secondary neurons. The central collaterals of 
muscle afferents are less dense than the cutaneous ones 
[30] but denser than the visceral collaterals [31, 32], and 
the segmental distribution is wider than the cutaneous 
ones but less wider than the visceral ones. A wider seg-
mental distribution than cutaneous ones might be related 
to the less localized nature of muscle pain.

In cats, thalamic neurons excited by electrical stimula-
tion of the gastrocnemius nerve are distributed not in the 
midst of the ventral posterolateral nucleus, but rather in 
its periphery [33]. Similar projections of cutaneous affer-
ents have been also reported [34]. Recently, Todd et  al. 
reported that 95% of the lamina I neurons of the lumbar 
spinal cord (but a lower % from the cervical cord) project 
to the lateral parabrachial nucleus [35], not to the thala-
mus, in rats. The percentage of neurons projecting to the 
lateral parabrachial nucleus is lower in cats than in rats. 
Whether this is true for lamina I neurons with muscular 
inputs remains unknown. However, this point requires 
further clarification.

Several pain models have been developed to study 
pathophysiological mechanisms underlying muscle 
pain. Inflammation model induced by carrageenan or 
complete Freund’s adjuvant has been well studied, and 
sensitization of Group III and IV afferents by inflamma-
tory mediators such as tumor necrosis factor (TNF-α 
[36], NGF [37], glial cell line-derived neurotrophic fac-
tor (GDNF) [38], and protons [39] has been reported. 
However, inflammation is not often observed in painful 
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muscle conditions; thus, other models are required. 
Sluka et  al. [40] developed an acid injection model by 
injecting acidic saline at pH4–6 two times at intervals 
of 5  days, resulting in long-lasting bilateral mechani-
cal hyperalgesia without inflammation. A repeated 
(intermittent) cold stress model was used for fibromy-
algia model [41–44]. The prevalence of myofascial pain 
syndrome, which is characterized by trigger point-like 
sensitive spots and muscle hardening (taut band) in the 
muscle, has been notably high [45]. Delayed onset mus-
cle soreness (DOMS) has been reported to exhibit mus-
cle changes akin to those observed in myofascial pain 
syndrome [3, 46, 47]; thus, it has been used in the study 
on myofascial pain syndrome. Intramuscular injection 
of NGF has also been used as a model of muscle pain. 
It induces muscle mechanical hyperalgesia and referred 
pain; thus, it can be used to study myofascial pain syn-
drome. Because NGF has been used in clinical settings 
[48–50], its safety for human use is assured. Thus, NGF 
became one of the few powerful tools for experimen-
tal study of muscle pain in humans [51–54]. Recently, 
a model of craniofacial myalgia, represented by myo-
genous temporomandibular disorder and tension-type 
headache, was developed by electrically contracting the 
masseter muscles and sensitizing the cervical muscles 
(trapezius muscle) with NGF [55]. It develops only in 
female rats, which is similar to the higher incidence of 

temporomandibular disorder and tension-type head-
aches in female humans.

In the following section, we focus on the mechanism 
of DOMS, which we have been studying in animals for 
approximately 20 years.

Brief overview of studies on LC‑induced changes 
including DOMS
DOMS is a common experience shared by nearly eve-
ryone, often occurring after activities such as mountain 
climbing for the first time, an occasional baseball game, 
or running in a once-a-year school sports meeting. Ini-
tially described by Hough in 1902, DOMS has been a 
recurrent sensation in various individuals [56]. DOMS is 
characterized by tenderness and movement related pain, 
with usually no pain at rest [57]. This is a common con-
sequence of unaccustomed strenuous exercise. Athletes 
who exercise daily experience DOMS when performing 
different types of sports or practicing new skills. DOMS 
is different from the acute pain experienced during and 
shortly after exercise, and it typically appears after some 
pain-free period (12–24 h), peaks at 24–72 h, and disap-
pears within 7  days after exercise without any medical 
treatment [57–59]. Exercise which induces DOMS has 
been identified to be eccentric type (lengthening contrac-
tion, LC) [60], where muscle is being stretched while it 
is contracted. LC has been a fascinating research topic in 
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Fig. 1 Size distribution of muscle innervating DRG neurons and expression of NGF and GDNF receptors. Muscle-innervating DRG neurons were 
traced by the retrograde transport of Fluorogold (FG). Upper column: Blue,  FG+ and  TrkA− neurons; green,  FG+/TrkA+ neurons; yellow, triple positive 
neurons  (FG+/TrkA+/GFRα1+). Lower column: blue,  FG+/GFRα1− neurons; orange,  FG+/GFRα1+ neurons: yellow, triple positive neurons  (FG+/TrkA+/
GFRα1+). Numbers of cells expressing TrkA, GFRα1 and both in each size range are cumulatively presented in each bar. The addition of all three 
in each size range provided the number of cells innervating the GC in that size range.  Modified from Murase et al. [19]
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sports and athletes from both theoretical and practical 
points of view because it can produce higher force with 
less energy  (O2 consumption) than shortening contrac-
tion, and training with LC increases muscle strength and 
size compared to shortening contraction [61–63]. A pos-
sible mechanism for LC to produce a higher force than 
shortening contraction can be found in the literature [64, 
65]. Fast-twitch fibers (myosin heavy chain IIb and IIx) 
are more susceptible to DOMS than slow muscles [66].

LC is usually accompanied by not only DOMS but also 
reduces the maximum power of the muscle and range of 
motion [67–69]. These changes have been considered to 
be related to damage to the subcellular structure of mus-
cle fibers: focal Z-band disruption (streaming or smear-
ing), focal sarcomere disruption, organelle displacement, 
and cytoskeletal disruption [70, 71]. While severe muscle 
damage has been reported in animals, the existence and 
extent of such damage in humans have been subjected 
to dispute and contention. Crameri et  al. showed that 
muscle damage is induced only when the muscle is elec-
trically stimulated to induce LC but not voluntarily con-
tracted in humans [72], while Lauritzen et al. showed that 
even voluntary LC can induce muscle fiber damage when 
LC is performed with maximal power [73]. Leakage of 
creatinine kinase into the blood is also considered to be 
related to microdamage of the sarcolemmal membrane. 
Because fast twitch fibers (myosin heavy chain IIb and 
IIx) are more susceptible to DOMS than slow muscles 
[66], depletion of the energy source could be the cause of 
damage. Biochemical and mechanical factors, including 
cytoskeletal changes, have been examined (see [74] for 
a review); however, the details of these changes are still 
unclear.

Presently, the most popular view of the DOMS mecha-
nism is the microdamage of muscle fibers and subsequent 
inflammation (mononuclear cell infiltration, macrophage 
accumulation, etc.). However, the changes considered 
indicative of muscle damage did not parallel the time 
course and severity of DOMS [75]. There are also reports 
that inflammatory cell infiltration into muscle fibers does 
not significantly induce soreness after voluntary contrac-
tions in humans [76, 77].

Neurochemical mechanism of delayed onset 
muscle soreness—our findings
DOMS model in rats and mice
Many animal studies have been performed using down-
hill treadmills running all-out. With this method, 
systemic effects could not be denied; therefore, we 
employed a one-hindleg exercise in which we electri-
cally stimulated the common peroneal nerve innervat-
ing the extensor digitorum longus muscle (EDL) with 
the use of insulated acupuncture needles except tips. 

Using this method, we avoided directly stimulating the 
muscle because it has been reported to induce more 
muscle damage (Crameri et  al. [72], also see the pre-
vious section). Simultaneously, the lower hind leg was 
stretched using a motor (Fig.  2a) [78]. The gastrocne-
mius muscle can be used as a target muscle by changing 
the nerve to stimulate and the direction of ankle move-
ment [79]. Following the completion of lengthening 
contractions (LC), the muscular mechanical withdrawal 
threshold (MMWT) was assesses using a Randall-
Selitto apparatus equipped with a cone-shaped probe 
(diameter of the base: 9  mm, tip: 2.6  mm) exhibited a 
decrease 1 day after the LC. This decrease persisted for 
up to 3 days post LC and subsequently returned to the 
pre-exercise level by the fourth day (Fig. 2b). The probe 
used was confirmed to measure the deep MMWT both 
experimentally [41, 80] and theoretically [81]. However, 
the cutaneous mechanical withdrawal threshold did not 
change [78]. The time course of DOMS is similar to that 
in humans. To ascertain whether the decrease in the 
MMWT represented muscular nociception, we exam-
ined c-Fos expression in the superficial layers (lami-
nae I–II) of the lumbar dorsal horn, where nociceptive 
transmission occurs. An increase in c-Fos expression 
was not observed in animals receiving only stretching 
(SHAM), compression, or LC. Animals with muscle 
compression 2  days after LC showed increased c-Fos 
expression in the superficial dorsal horn at L4, where 
the nerve innervating the lower hind leg extensors 
mainly terminates (Fig. 2c). These results align with the 
fact that DOMS is usually not accompanied by sponta-
neous pain [57], and the muscle after LC is tender.

To further validate these observations, we recorded 
ex vivo the mechanical responses of muscular thin-fiber 
afferents (mainly C-fibers), which transmit noxious infor-
mation from the muscle [15, 82]. The magnitude of the 
mechanical response (number of discharges induced) 
to ramp-shaped pressure stimulation increased, and the 
response threshold decreased in fibers recorded 2  days 
after LC (Fig. 2d) [83]. The sensitivity to heat, bradykinin, 
protons [83] and hypertonic saline [84] was not changed 
after LC. Spontaneous activity did not differ between the 
fibers recorded from the control and LC animals; this is 
considered to correspond to the absence of spontaneous 
pain in DOMS.

Existence of taut band-like hardening and trigger point-
like sensitive spots in the exercised muscle has been 
reported [3, 47, 85]. DOMS usually disappears within a 
week after LC; however, it can become chronic (extended 
by one week after the end of LC) when LC is repeated 
daily for 2  weeks [85]. These observations support the 
idea that DOMS can be used as a model for mechanistic 
studies on myofascial pain syndrome.
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Different types of knockout mice have been used to 
examine the involvement of receptor channels in DOMS. 
For this purpose, a mouse model of DOMS was devel-
oped using electrical stimulation of the tibial nerve [86] 
(details are introduced in the Section "Ion channels 
involved in mechanical sensitization in DOMS").

Stretch speed and range of motion, and DOMS 
and histological changes of the muscle
Although many studies have reported that muscles are 
damaged after LC, which is believed to be the cause of 
DOMS and other changes after LC, our DOMS model 
showed neither injured muscle fibers nor inflammatory 
cell infiltration into the muscle fiber bundle [37, 87, 88]. 
The belief in microdamage of muscle fibers and subse-
quent inflammation as a cause for DOMS is very strong; 

we thought it was essential to find out something to solve 
this discrepancy and to bind current beliefs and our 
observations. We believe that exercise intensity might be 
the key to bridging this gap and quantitatively examin-
ing the relationship between DOMS and tissue damage 
at various exercise intensities. We introduced a machine 
that can precisely control stretching speed and range of 
motion [69] and examined the MMWT and histology of 
the exercised muscle. Electrical stimulation of the com-
mon peroneal nerve was performed using a previously 
described [78]. The range of motion and stretch veloc-
ity were varied, stimulating the nerve with a constant 
current strength (3  times the twitch threshold, which is 
considered to activate all A-fibers) to induce contrac-
tion [89]. When the range of motion was fixed at 90°, 
the magnitude of mechanical hyperalgesia (decrease in 
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MMWT) correlated with the stretch velocity in the range 
of 100–400°/s (Fig.  3a–d), with a significant increase in 
the area above the curve over 200°/s (Fig. 3e). When the 
range of motion was fixed at a higher level (120°), a sig-
nificant increase in the area above the curve was detected 
at a lower stretch velocity (100°/s) [89]. When the stretch 
speed was fixed at 200°/s, the magnitude of mechani-
cal hyperalgesia correlated with the range of motion in 
the range of 60–120°, with a significant increase in the 
area above the curve over 90° (Fig. 3f–j). Even when the 
stretch velocity was fixed at a higher level (400°/s), no 
significant increase was observed for a smaller range of 
motion [89]. Histological examination revealed that the 
necrotic area (Fig. 3k) and the area occupied with Evans 
Blue-positive fibers (Fig.  3n, indication of disrupted 
integrity of the muscle cell membrane) were minimal in 
all ranges of stretch velocity and range of motion, except 
for the highest values (Fig. 3l, m, o, p). These results show 
that mechanical hyperalgesia (DOMS) is induced with-
out muscle fiber damage, and that muscle fiber damage at 
the light microscopic level can be induced only when the 
exercise parameters are very high.

In a previous study involving rats [69], using the same 
stretching machine and method used in the experiment 
by Hayashi et  al. [89] except for the use of direct elec-
trical stimulation of the muscle instead of motor nerve 
stimulation, revealed substantial areas displaying Evans 
Blue infiltration into muscle fibers. This infiltration is 
indicative of muscle fiber damage, a finding that con-
trasts significantly with Hayashi’s results. The extent of 
this damage was found to vary depending on the angular 
velocity (range of motion fixed at 90°). Consistent with 
animal experiments, Crameri et  al. reported infrequent 
observations of muscle damage following lengthening 
contractions (LC) with voluntary contraction, whereas 
damage was evident after contraction induced by electri-
cal stimulation of the muscle [72]. In contrast, Lauritzen 
et  al. reported that the most severe decrease in muscle 
power after maximal eccentric contraction, although vol-
untary, resulted in severe muscle damage [73]. In sum-
mary, whether muscle damage occurs depends on the 
strength of the LC, even with voluntary contraction, and 
the LC with electrical stimulation of the muscle is more 
prone to damage to the muscle fibers.

B2 bradykinin receptor‑NGF route
Many substances are released from exercising muscle: 
lactate [90]; bradykinin (including kallidin-like pep-
tide) [91, 92]; ATP [93]; several inflammatory cytokines, 
such as TNF-α, interleukin (IL)-6, IL-1β and some neu-
rotrophins have been suggested to play roles in mus-
cular mechanical hyperalgesia [94, 95]. However, little 
attention has been paid to the roles of these substances 

in DOMS and few pharmacological manipulations have 
been performed, except for the use of nonsteroidal anti-
inflammatory drugs [68]. Therefore, we focused on the 
role of bradykinin in DOMS, with special attention to the 
time points of its involvement.

When a B2 bradykinin receptor antagonist, HOE 140 
(0.01 and 0.1  mg/kg), was subcutaneously injected into 
experimental animals (rats) before LC, the MMWT 
did not change (i.e., mechanical hyperalgesia did not 
develop) (Fig. 4a). However, when HOE 140 (at a higher 
dose) was injected at the time point with the strongest 
MMWT decrease, that is, 2  days after LC, no reversal 
of the decreased MMWT was observed (Fig. 4b). When 
HOE 140 was injected 30  min after LC, no effect was 
observed; that is, DOMS developed as usual [37]. The 
B1 bradykinin receptor antagonist des-Arg HOE 140 
(0.1 mg/kg) had no effect when injected before or 2 days 
after LC (Fig.  4a, b). These results suggest that the B2 
receptor agonist (bradykinin or kallidin) works in a short 
time window, namely, from LC to up to 30  min after 
LC, but no later than this; that is, a process leading to 
mechanical hyperalgesia was initiated by B2 bradykinin 
receptor activation during LC to 30 min after LC, but the 
hyperalgesic state was not maintained by B2 bradykinin 
receptor  activation. The release of bradykinin during 
exercise has been previously reported [91, 92, 96, 97]; this 
bradykinin was reported to be mostly a kallidin-like pep-
tide (Arg-bradykinin) in rats, released from blood vessels 
by adenosine [92]. Since HOE 140 does not differentially 
antagonize bradykinin, kallidin, kallidin-like peptide, 
from now on we use ‘bradykinin’ to refer to all three of 
these kinins.

We identified a substance that functions downstream 
of bradykinin and plays a role in maintaining mechanical 
hyperalgesia. NGF is known to induce muscular mechan-
ical hyperalgesia in humans [53, 98]. We measured NGF 
expression in exercised muscles at various time points 
(Fig.  4c) after LC. The first significant increase in NGF 
messenger ribonucleic acid (mRNA) was detected 12  h 
after LC, and this increase lasted for up to 2 days after LC 
(Fig. 4c). Notably, there was a delay of up to 6–12 h before 
the upregulation of NGF mRNA was detected. This was 
also confirmed at the protein level (Fig.  4d). In accord-
ance with the finding that HOE 140 injection before LC 
suppressed the development of mechanical hyperalgesia, 
HOE 140 administration before LC also suppressed the 
upregulation of NGF 12 h after LC (Fig. 4e). Shortening 
contraction or stretching neither decreased the MMWT 
nor upregulated NGF mRNA levels in the muscle 12  h 
after LC [37]. Murase et al. also investigated the possible 
contributions of IL-1β, IL-6, and TNF-α, none of which 
were suitable for a substance that works downstream of 
bradykinin after LC [37]. Recently, NGF upregulation in 



Page 8 of 24Mizumura and Taguchi  The Journal of Physiological Sciences            (2024) 74:4 

biopsy specimens was reported 24 h after LC in humans 
[99]. To our knowledge, this is the first report of changes 
in NGF expression after exercise in humans.

NGF is produced by inflammatory cells such as mac-
rophages and mast cells [100]. However, these cells could 
not be responsible for NGF production after LC because 
they did not infiltrate the exercised muscle in our model 
[87]. In  situ hybridization histochemistry revealed NGF 
mRNA signals in the periphery around the nuclei of skel-
etal muscles and/or satellite cells (left panels in Fig.  5a) 
[101]. This result shows, for the first time, that NGF is 
produced by muscle and/or satellite cells.

To ascertain whether NGF is responsible for mechani-
cal hyperalgesia after LC, anti-NGF antibody was 
injected into the muscle after MMWT measurement 
2  days after LC. With this injection, the decreased 
MMWT was almost completely reversed 3  h after the 
injection (Fig.  5b) and the effect was still observed the 
following day. An anti-NGF antibody injected shortly 
after LC completely blocked the development of mechan-
ical hyperalgesia [37].

The time course of the effects of NGF on nocic-
eption was studied using behavioral tests and single-
fiber recordings ex  vivo [83]. NGF 0.2  μM (20  μL, i.m.) 
decreased the MMWT 2–5  h after injection. A higher 
dose (0.8  μM) decreased the MMWT at 3  h and up to 
2  days after injection (Fig.  5c). Single fiber recording 
from muscle thin fiber afferents (mainly C-fibers) showed 
NGF (0.8 μM, 5 μL) decreased the response threshold to 
ramp pressure stimulation 10  min after injection until 
observation was closed (Fig.  6a, b). The response mag-
nitude (number of discharges elicited) increased 20 min 
after injection, and this effect lasted until the end of the 
observation period (Fig. 6a, c). NGF is known to induce 
hyperalgesia in a short period by peripherally sensitizing 
nociceptors [102, 103] and, later, by changing the expres-
sion of neurotransmitters/modulators and ion channels 
in the DRGs [103–108]. The quick reversal of LC-induced 
mechanical hyperalgesia 3–4  h after antibody injec-
tion and the quick sensitization of muscular nociceptor 
responses to mechanical stimulation by NGF ex  vivo in 
10–20  min suggest that NGF sensitizes nociceptors to 
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mechanical stimulation peripherally without processes 
in the DRGs. A report using antagonists against TRP 
and acid-sensing ion channels [87] suggested that these 
peripheral effects might be induced through these ion 
channels.

In addition, the following mechanism is involved in 
the later phase (1 day or later after LC) of DOMS: recep-
tors/channels are upregulated by NGF transported to 
DRGs and then orthogradely transported to the central 
and peripheral afferent terminals, where they play a role 
in the sensitization of nociceptors. Central sensitiza-
tion has been suggested for DOMS in humans [109]. In 
other models, the descending facilitatory system [110], 
N-methyl-D-aspartate, and substance P receptors [111] 
have been suggested to be involved. Similar mechanisms 
may be involved in the development of DOMS.

Cyclooxygenase (COX)‑2‑GDNF route
Some studies have found that non-steroidal anti-inflam-
matory drugs can suppress DOMS in human subjects 
treated before (prophylactic) and often after exercise 
[112, 113]; however, studies on humans are often lim-
ited to the subjective evaluation of the soreness level. 
As is well known, cyclooxygenase (COX)-2 is produced 
by mast cells and macrophages during inflammation 
[114]. However, in our model, neither inflammatory cell 
infiltration nor necrotic muscle cells were found [87]. 
Stretching of cultured myoblasts or myocytes induces 
COX-2 shortly after stretching, leading to cell prolifera-
tion and growth [115, 116]. As discussed in the previous 
section, it is essential to examine the effects of a sub-
stance at various time points. Therefore, in this section, 
the effects of non-steroidal anti-inflammatory drugs 
(and prostaglandins) on DOMS were studied at differ-
ent time points. The COX-1 inhibitors, SC560 (10  mg/
kg, p.o.) and ketorolac (10  mg/kg, p.o.), both failed to 
stop the development of DOMS after oral administra-
tion before LC. They also failed to reverse the decreased 
MMWT in the midst of DOMS 2 days after LC. In con-
trast, the COX-2 inhibitors celecoxib (10  mg/kg) and 
zaltoprofen (5–10 mg/kg) completely blocked the devel-
opment of DOMS when applied before LC, but failed 
to reverse the developed DOMS when applied before 
MMWT measurement 2  days after LC [88]. We exam-
ined whether COX-2 inhibitors affected mRNA expres-
sion of NGF, IL-6 and TNF-α, which increased 12 h after 
LC (described in the previous section). COX-2 mRNA 
and protein in the exercised EDL significantly increased 
immediately after LC and remained upregulated up to 
12 h after LC [88]. Cells producing COX-2 are identified 
to be muscle/satellite cells and vascular smooth muscle 
cells by in  situ hybridization (specimens taken from the 
muscle immediately after LC). These data suggest that 

COX-2 (that produces prostaglandins) functions dur-
ing and immediately (0  h) after exercise as a trigger for 
the development of DOMS. It must be noted that COX-2 
mRNA upregulation immediately (0 h) after exercise was 
observed in all forms of exercise, LC, shortening contrac-
tion, and stretching; however, a significant increase in 
COX-2 mRNA 12 h after exercise was observed only after 
LC. Therefore, COX-2 upregulation immediately after LC 
is considered non-specific or has other functions. Thus, 
COX-2 upregulation at a later time point (12 h after LC) 
is important for the development of DOMS.

Similar to the B2 bradykinin antagonist, COX-2 inhibi-
tors had no effect when administered when DOMS was 
fully developed. Therefore, it is natural to think that mus-
cular mechanical hyperalgesia (DOMS) was maintained 
(or nociceptors were sensitized) not by prostaglandins, 
but by some other mediator(s). GDNF is known to be 
produced by muscle cells [117], is upregulated in the 
muscles of patients with polymyositis, Duchenne-type 
muscle dystrophy, and other neuromuscular diseases, 
and is considered a mediator of muscle pain in these 
pathological conditions. Therefore, we examined the 
role of GDNF in DOMS development. GDNF mRNA in 
exercised EDL significantly increased 12  h–1  day after 
LC (Fig.  7a), later than the increase of COX-2 mRNA, 
but increased neither after shortening contraction nor 
stretching. Other GDNF family ligands, such as arte-
min, neurturin, and persephin, did not increase after LC 
[88]. The signals of GDNF mRNA visualized with in situ 
hybridization in the ipsilateral EDL muscle 12  h after 
LC increased compared to those in the contralateral 
side without LC (Fig. 7b). Signals were mostly observed 
around the cell nuclei. We could not identify whether 
these nuclei were from skeletal muscle or satellite cells. 
Both COX-2 inhibitors suppressed GDNF mRNA upreg-
ulation 12  h after LC (Fig.  7c). To confirm the involve-
ment of GDNF in DOMS, an anti-GDNF antibody 
(10  μg) was intramuscularly injected 2  days after LC, 
which significantly reversed the decrease in MMWT at 
3 h and later after injection (Fig. 7d).

Single-fiber recordings from muscle nerve prepara-
tions ex vivo showed that, unlike NGF, C-fiber afferents 
were not sensitized by GDNF (0.03  μM) for up to 2  h 
after injection (Fig.  8b). Instead, Aδ-fibers were sensi-
tized 1  h after injection, and remained sensitized up to 
2 h after injection (Fig. 8a) [38]. The presently observed 
Aδ-fiber involvement in DOMS is somewhat unex-
pected in that DOMS is a dull pain. It is believed that 
Aδ-fibers transmit pricking sensation (fast pain), and 
C-fibers are responsible for burning sensation (slow 
pain) in the skin. However, intraneural microstimulation 
of the muscular Aδ- and C-afferent fibers revealed that 
both fibers induced the same dull, aching, or cramping 
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sensation [118]. Muscular mechanical hyperalgesia was 
dose dependently induced by intramuscular injection of 
GDNF (0.008–0.03 μM, 20 μL) [19, 38]. A decrease in the 
MMWT first appeared 1 h after injection and lasted up 
to the next day at a higher dose (Fig. 9b) [38].

Interaction between NGF and GDNF routes
As described in the previous two sections, two routes are 
involved in the development of DOMS: the B2 bradykinin 
receptor activation-NGF route and the COX-2-GDNF 
route. COX-2 inhibitors did not suppress NGF upregu-
lation; however, the B2 receptor antagonist HOE 140 
suppressed COX-2 and GDNF upregulation 12  h after 
LC. The induction of COX-2 by B2 bradykinin receptor 
upregulation is known to occur in DRG neurons [119], 

airway epithelial cells, and arterial smooth muscle cells 
[120]. Thus, interactions occur between the two routes at 
the level of COX-2 production.

Another significant interaction is evident from the fact 
that the application of a COX-2 inhibitor before length-
ening contractions (LC) leads to the complete suppres-
sion of delayed-onset muscle soreness (DOMS), despite 
the unaffected status of NGF upregulation [88]. Addi-
tionally, a notable observation arises from the combined 
application of NGF and GDNF at concentrations that, 
when applied individually, do not induce a decrease in 
MMWT (NGF 0.1 µM; GDNF 0.008 µM). This combina-
tion, however, results in a pronounced MMWT decrease 
comparable to that induced by concentrations 4–8 times 
higher (Fig.  9a–c). This effect cannot be considered 
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simply an addition of the effects of two substances at the 
subthreshold level because receptors for both substances 
are reported to be expressed in different sets of DRG 
neurons [121] and use different receptor ion channels 
(NGF: TRPV1, GDNF: ASIC3) (Fig. 10a, b). We hypothe-
sized that the site of interaction was the primary afferent 
nerve. To clarify this, the expression of phosphorylated 
extracellular signal-regulated kinase (pERK), which has 
been used as a marker of neuronal activation [122], was 
examined after compression of the muscle that received 
neurotrophic factors (thus, the sensitizing effects of NGF 
and GDNF were examined). Compression after NGF or 
GDNF alone at low concentration (0.1 and 0.008  μM, 
respectively) did not increase pERK immunoreactiv-
ity compared to injection of phosphate buffered saline 
(PBS). When a mixture of low NGF and GDNF levels was 
injected, pERK immunoreactivity increased significantly 
after mechanical stimulation (Fig. 9d, e). This observation 
indicated that the interaction between NGF and GDNF 
occurred at the primary afferent level. The effects of high 
NGF or GDNF levels were blocked by either TRPV1 spe-
cific antagonist capsazepine or the ASICs inhibitor ami-
loride, but not by another (Fig.  10a, b). In contrast, the 
decrease in the MMWT induced by the combination of 
low levels of NGF and GDNF was reversed by capsaz-
epine and amiloride (Fig.  10c, d). It has been reported 
that TrkA activation by NGF promotes RET (receptor for 
GDNF) phosphorylation in ligand-independent manner 
in mature sympathetic neurons [123]. If this also occurs 
in DRG neurons and both A-fiber and C-fiber neurons 
express both GDNF and NGF receptors at different 

levels, then the above-described inhibition of low-mix-
ture-induced hyperalgesia by capsazepine and amiloride 
could be explained. Double expression of the NGF and 
GDNF receptors in DRG neurons is discussed in the fol-
lowing section.

NGF specifically binds to tropomyosin-related kinase 
A (TrkA) [124] with high affinity and GDNF interacts 
with a receptor complex consisting of RET receptor and 
a GFRα1 coreceptor [125]. GFRα1 serves as a ligand-
binding domain that has no intracellular domain and is 
anchored to the cell membrane with glycosylphosphati-
dylinositol, and the RET receptor that has no ligand bind-
ing domain and serves as a signal-transducing domain 
with tyrosine kinase activity. Primary sensory neurons 
expressing TrkA in adult animals, and those expressing 
GFRα1 are believed to be different sets of afferents [121]. 
For both neurotrophins to interact at the primary affer-
ent level, both receptors (receptor complexes) must be 
co-expressed in DRG neurons. Since a great majority of 
DRG neurons are skin innervating, TrkA expression and 
GFRα1/RET expression in DRG neurons innervating 
the muscle might be different from that of cutaneous or 
whole DRG neurons (majority is cutaneous) as reported 
by Priestley et al. [121]. This point was examined by ret-
rograde tracing from gastrocnemius muscle (GC) with 
Fluorogold (FG) and double in situ hybridization of TrkA 
and GFRα1 mRNA, and it revealed that 23.7–29.2% of 
GC-innervating DRG neurons co-expressed TrkA and 
GFRα1 (Fig.  1) [19]. The cell size of the co-expressing 
neurons (shown in yellow in Fig. 1) was distributed widely 
from small to large; therefore, small-to medium-sized 
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co-expressing neurons (8–15% of DRG neurons innervat-
ing the GC), which are thought to have thin axons and 
play roles in nociception, are thought to contribute to 
this mechanical hyperalgesia. However, the role of large 
DRG neurons expressing both receptors remains unclear.

Since mechanical hyperalgesia after LC was reversed by 
both capsazepine and amiloride [87], similar to hyperal-
gesia after low NGF and GDNF mixture injection, con-
centrations of NGF and GDNF in the DOMS muscle 
might not be as high as high doses used by Murase et al. 
[37, 38], and rather low as low doses used by Murase et al. 
[19]. In concert with this observation, APETx2, a specific 
inhibitor of ASIC3, reversed the sensitized mechanical 

responses of both Aδ- and C-fibers after LC (Fig.  11) 
[126].

To elucidate the distinct involvement of ion channels 
and afferent fiber classes—Aδ-fibers for GDNF and pre-
dominantly C-fibers for NGF, as detailed in the previous 
section, in high NGF- and high GDNF-induced mechani-
cal hyperalgesia—one must consider neurons express-
ing both TrkA and GFRα1/RET, hypothesizing that they 
express both TRPV1 and ASICs. However, the rela-
tive expression levels remain variable. It is conceivable 
that one subset of neurons, potentially C-fiber neurons, 
expresses higher levels of TrkA and TRPV1 compared 
to GFRα1/RET and ASICs. Conversely, another subset, 
possibly Aδ-fiber neurons, might express elevated levels 
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of GFRα1/RET and ASICs relative to TrkA and TRPV1. 
Regrettably, current knowledge lacks information on 
these specific points. Furthermore, the precise intracellu-
lar signaling mediating the interaction between the TrkA 
and RET systems remains unknown. These unresolved 
aspects underscore the necessity for future studies to 
shed light on these crucial details.

Ion channels involved in mechanical sensitization in DOMS
The involvement of receptor ion channels, other than 
TRPV1 and ASIC3, in DOMS has also been studied 
in mice. DOMS was induced in mice using almost the 

same method as in rats: the muscle used was changed 
to GC and the number of LC was changed 300 times. 
The MMWT decreased 6–36  h after LC, with ear-
lier development and shorter duration of DOMS than 
in rats [86]. Corresponding to this time course, the 
upregulation of NGF and GDNF mRNA was observed 
only 3  h after LC. COX-2 upregulation was observed 
0 and 3  h after LC. DOMS was induced neither in 
 TRPV1−/− mice nor  TRPV4−/− mice. NGF i.m. induces 
mechanical hyperalgesia in wild-type (WT) and 
 TRPV4−/− mice but not in  TRPV1−/− mice. GDNF i.m. 
induced mechanical hyperalgesia in WT mice but not 
in  TRPV1−/− or  TRPV4−/− mice. These results show 
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(0.03 µµM)

cap/
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+ 

Low GDNF
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ami

a b 

c d Low NGF
+ 
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Fig. 10 Involvement of TRPV1 and ASICs in NGF- and GDNF-induced hypersensitivity. High NGF (0.8 μM, 20 μL, i.m.)-induced decrease 
in MMWT was reversed by capsazepine (50 μM, 20 μL) but not by amiloride (50 mM, 20 μL) (a), whereas high GDNF (0.03 μM)-induced decrease 
in MMWT was reversed by amiloride but not capsazepine (b), suggesting that TRPV1 is involved in high NGF-induced hypersensitivity, whereas 
ASICs are involved in high GDNF-induced hypersensitivity. A mixture of low NGF- and low-GDNF-induced decrease in MMWT was reversed 
by both capsazepine (c) and amiloride (d), suggesting that both receptor channels are involved in low mixture-induced hypersensitivity. Mean ± SD. 
a, c, and d: Modified from Murase et al. [19]; b: Modified from Murase et al. [38]
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Fig. 12 Neurochemical mechanisms for the development of DOMS. The starting point of this schema is based on the report by Boix et al. [92] 
that a bradykinin-like substance (Arg-bradykinin) is produced and released from blood vessels by the adenosine released by muscle contraction 
[148, 149]. Arg-bradykinin binds to and activates the B2 bradykinin receptor (B2R) in muscle cells to stimulate NGF production. NGF sensitizes 
C-fibers only when high concentrations are used, and both Aδ- and C-fibers when a low mix is used or in DOMS involving TRPV1 and ASIC3. 
In addition, the activation of B2R upregulates COX-2. Another route involves the upregulation of COX-2 in muscle fibers, resulting in increased 
production of prostaglandin (PG) E2. PGE2 rapidly spreads from the cells and binds to the EP2 receptor [150] to stimulate GDNF production. GDNF 
sensitizes nociceptors (Aδ-fibers only when high concentration was used, and both Aδ- and C-fibers when low mix was used or in DOMS) involving 
TRPV4 and ASIC3. A synergistic interaction has been observed between NGF and GDNF at the primary afferent level. The mechanism of this 
synergistic interaction is open to future studies

(See figure on next page.)
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that both TRPV1 and TRPV4 are involved in DOMS 
and GDNF-induced mechanical hyperalgesia and that 
only TRPV1 is involved in NGF-induced mechanical 
hyperalgesia.

Schema of mechanism
A schematic diagram summarizing the observations 
described in the previous sections (Sections from  "B2 
bradykinin receptor-NGF route" to  "Ion channels 
involved in mechanical sensitization in DOMS") is shown 
in Fig. 12.

Repeated bout effect
Repeated bout effect, first reported by Nosaka et  al. 
[127] is a phenomenon of soreness (Fig.  13a), swell-
ing, decrease in voluntary muscle isometric contrac-
tion power, and other changes after LC that are less 

when exercise is repeated within several weeks [128], 
compared with the initial bout. The repeated bout 
effect was greater when the LC exercise in the first 
bout was strong (e.g., 100% maximal isometric con-
traction force), but it was also obtained with the 1st 
bout performed at 40% maximal isometric contraction 
force [129]. Even isometric contraction three weeks 
before LC (not immediately before LC) prevents the 
development of muscle changes [130]. A comprehen-
sive review of repeated bout effect has been published 
[131], and neural adaptations, alterations to mechani-
cal properties of the muscle–tendon complex, extracel-
lular matrix remodeling, and biochemical signaling in 
repeated bout effect were introduced as the mechanism 
of repeated bout effect, proposing that these factors 
work in concert to coordinate protective adaptation. 
However, the possible mechanism of the repeated bout 
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Fig. 13 DOMS is attenuated by repeated LC. a: A Decrease in MMWT after LC did not occur after the second bout of LC with a 5-day-interval. b: 
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effect in DOMS has not yet been elucidated. Urai et al. 
[132] showed that mechanical hyperalgesia did not 
develop after 2nd LC 5 days after the first LC (Fig. 13a), 
and that NGF mRNA was not upregulated in exercised 
muscle after 2nd bout, corresponding to no decrease in 
MMWT (decrease in DOMS) (Fig. 13b). Urai et al. also 
examined whether this adaptation occurred before B2 
receptor activation. When the B2 receptor antagonist, 
HOE 140, was administered before 1st LC, no decrease 
in MMWT was observed as expected [37]. Notably, no 
mechanical hyperalgesia developed after the 2nd LC in 
rats received B2 receptor antagonist only before the 1st 
bout (Fig. 13c). The NGF mRNA levels did not increase 
after both 1st and 2nd bouts in the group that received 
the B2 receptor antagonist before 1st LC (Fig. 13d). The 
effect of HOE 140 lasted for only several hours; there-
fore, the absence of DOMS and NGF mRNA upregu-
lation after 2nd LC was not because the B2 receptors 
were still blocked by the antagonist. These results 
suggest that adaptation to LC occurred at least some-
where before B2 receptor activation, possibly produc-
tion/release of bradykinin-like substances, or further 
upstream to this, namely, release of adenosine and/or 
change in endothelial cells that received mechanical 
stress by LC (Fig. 12). Repeated bout effect in the COX-
2-GDNF route has also been reported [133]. Further 
experiments are required to clarify the mechanism of 
repeated bout effect on DOMS.

Repeated bout effect in NGF mRNA was also 
reported in humans [99].

LC‑induced DOMS in the human low back
While DOMS in extremity (limb) muscles such as knee 
extensors and elbow flexors has been well documented 
[134–136], DOMS in the lower back, which can often 
be induced in everyday work and athletic games, has 
been less characterized. To obtain topographic images 
of DOMS in the lower back, a repetitive LC was applied 
to the paraspinal muscles in the thoracolumbar area 
[137]. Participants had their trunk fall from a starting 
position (parallel to the floor) to a 40° flexed position 
and then returned as quickly as possible to the start-
ing position. The LC cycle was repeated until the par-
ticipants could no longer maintain their contractions. 
Pressure pain thresholds were systematically measured 
in the bilateral paraspinal muscles of the thoracolum-
bar area at the level of the spinous processes at Th1–
L5. The measurement points were 2 and 4  cm from 
the midline, and the measurements were repeated 
before LC and 24 and 48  h after LC [137]. In control 
participants without LC, the pressure pain thresholds 
remained unchanged over time (Fig.  14a). In contrast, 

the pressure pain thresholds of the participants who 
underwent LC decreased 24  h after LC and recovered 
48  h after LC (Fig.  14a). No left–right or mediolateral 
preference was observed for the distribution of pres-
sure pain thresholds. However, a remarkable decrease 
in the pressure pain thresholds was detected in the 
paraspinal muscles in the lumbar segments compared 
to those in the thoracic segments (Fig. 14b). The topo-
graphic distribution of pressure pain thresholds may be 
of clinical importance in the treatment of lower back 
muscle pain after exercise (DOMS).

Prevention, treatment of DOMS and usage of LC 
for strengthening the muscle
LC is known to increase muscle mass (even with almost 
the same  O2 consumption as concentric exercises) [62], 
and athletes use LC to strengthen their muscles. Athletes 
believe that muscle must be damaged to get stronger. 
However, Flann et  al. showed that muscle hypertrophy 
could be initiated independently of discernible muscle 
damage [138].

Our experiments [88] showed that COX-1 inhibi-
tor treatment had neither a preventive nor therapeutic 
effect on DOMS, and COX-2 inhibitors had only a pre-
ventive effect. Shimodaira et  al. have recently reported 
that aspirin, ibuprofen, loxoprofen, and acetaminophen 
administered 24  h after LC reversed the decreased 
MMWT dose-dependently [139], while they confirmed 
that celecoxib had no effect with the same procedure 
as Murase et  al. [88]. Shimodaira et  al. [139] suggested 
that the COX-independent pharmacological action of 
COX inhibitors could be induced by such as inhibition 
of TRPV1 and ASICs [140, 141] involvement of which in 
DOMS were reported in several studies [86, 87, 126], and 
inhibition of protein kinase C activity, which is involved 
in sensitization of TRPV1 by NGF [142].

Hot packs (thermal treatment) and massage (manual 
therapy) are often used for the treatment of DOMS, and 
their effectiveness has been reported [79, 143, 144]. The 
mechanisms underlying their effectiveness have been 
studied only a little [79].

The property that the LC strengthens muscles with 
lower  O2 consumption would be beneficial for those 
who have problems in cardiovascular and/or respiratory 
system(s). However, LC induces DOMS, thus discourag-
ing individuals from exercising. DOMS can be avoided or 
reduced by prior exercise with either a weaker LC [145] 
or isometric contraction [130]. Using these methods, LC 
can be used by the elderly to strengthen muscles to pre-
vent falls or flails [65, 146].



Page 19 of 24Mizumura and Taguchi  The Journal of Physiological Sciences            (2024) 74:4  

Before 24h after 48h after

Th1
Th5
Th9
L1
L3
L5

CTR

LC

4 2 2 4 

(n = 12)

(n = 12)

Lt. Rt.

(cm)

588

PPT 
(kPa)

490
392
294

***

0 100 200
DOMS (AUC, %)

0 100 200
DOMS (AUC, %)

0 100 200
DOMS (AUC, %)

0 100 200
DOMS (AUC, %)

Th1

Th3

Th5

Th7

Th9

Th11

L1

L2

L3

L4

L5

CTR
LC

Right (4 cm)Right (2 cm)Left (2 cm)Left (4 cm)
midline

***
**
**
****

**

**
***

* 

***
****

***
***
* 

* 

***
****
***
****

**

a

b 

Fig. 14 Human model of DOMS in the thoracolumbar paraspinal muscles. a Distribution of pressure pain thresholds. In the CTR group (n = 12), 
there were no remarkable changes in the pressure pain threshold maps at 0 (before LC), 24, and 48 h after LC. In the LC group (n = 12), the pressure 
pain thresholds remarkably decreased 24 h after LC, and the decreased threshold appeared to recover 48 h after LC. Heatmap images were 
obtained from the mean pressure pain threshold values at each measurement point (ranging from 294 to 588 kPa). b: Magnitude of DOMS 
in the thoracolumbar area after LC. Note the significantly higher magnitude of DOMS in the LC group than in the CTR group at segments Th11–L5 
(*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001; CTR vs. LC, two-way repeated-measures analysis of variance followed by Sidak’s multiple 
comparison test).  Modified from Hanada et al. [137]



Page 20 of 24Mizumura and Taguchi  The Journal of Physiological Sciences            (2024) 74:4 

Summary and perspective of DOMS study
In this review, we briefly show that two routes are 
involved: the B2-bradykinin receptor-NGF route and 
the COX-2-GDNF  route. Their initial mechanical 
events remain unclear. We also showed that the two 
routes interact at the primary afferent level and that 
TrkA and GFRα1 co-exist in small-to medium-sized 
DRG neurons, which enables interaction. The mecha-
nism by which these interactions occur remains open 
for future studies. In addition, the repeated bout effect 
of DOMS was interpreted based on the B2-bradykinin 
receptor-NGF route, and we showed that the repeated 
bout effect occurred before B2 bradykinin receptor 
activation. The initial event of the repeated bout effect 
is intriguing and requires further study.
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