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Abstract 

As in many mammalian behaviors, sexual behavior exhibits structure. Each modular components of the structure, 
that are linked together over time, occur in probabilistic manner. Endocrine milieu, in particular sex hormones, define 
the probability to synchronize the behavior with the production of gametes. Developmental experience and environ-
mental cues affect the hormonal milieu of the brain. This is especially true in female mammals, in which ova mature 
with certain intervals along with ovarian secretion of sex hormones. Estrogens secreted by mature ovarian follicles 
support both affiliative and executive components of female sexual behavior. In the absence of the ovarian steroids, 
females avoid males when possible, or antagonize and reject males when put together. Female sexual behavior 
is intimately linked with the estrous cycle in many species such that females are only receptive for a brief period 
at the estrus stage surrounding ovulation. Thus, in the rat, females strongly influence the outcome of mating encoun-
ter with a male. Affiliative or solicitatory behavior shown by females in estrus leads to the female adapting the lor-
dosis posture, which is characterized by hindleg postural rigidity and lordotic dorsiflexion of the spine, in response 
to touch-pressure somatosensory stimuli on the skin of the flanks, rump-tail base, perineum region given by male 
partner. The posture facilitates intromission and consequently fertilization. Although dependence on estrogens 
is the most important feature of female rat sexual behavior, cervical probing combined with palpation of the hind-
quarter skin acts as a supranormal stimulus to elicit lordosis. Thus, lordosis behavior is a hub of multi-tiered, chrono-
logically arranged set of behaviors and estrogen appear to alter excitability of neural network for lordosis.

The lordosis reflex, dorsiflexion of the vertebral column 
(Fig. 1), is an essential element of female rat copulatory 
behavior. This stereotyped behavior depends strongly 
on estrogen and elicited by somatosensory stimuli on 
rump-tail base-perineal skin [1]. Odor cues influence 
female rats’ mate choice of male partners [2, 3], but are 
not indispensable for the execution of the behavior [4]; 
the sighting of the particular male mating with another 

female do not necessarily alter females’ choice [5]. Ultra-
sound vocalization in the rat and mouse express their 
arousal and emotional states [6], however, is correlated 
with sexual motivation rather than the lordosis behavior 
[7].

Neural axis for lordosis behavior
Sites for estrogen action
An earlier study by Barfield and Chen [8] showed stereo-
taxic implants of crystalline estrogen (estradiol benzoate) 
were effective in both the preoptic area (POA) and the 
ventromedial hypothalamic nucleus (VMH), particularly, 
its ventrolateral quadrant (vlVMH), in terms of lordo-
sis and preceding affiliative behaviors, such as ear wig-
gling and darting, with the most intense responses were 
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induced by the implants in the VMH. Electrical stimula-
tion study revealed crucial role of the VMH in supporting 
lordosis reflex in ovariectomized female rats treated with 
subthreshold dose of estrogen [9]. Progressive increase 
in lordosis performance followed electrical stimulation 
of the VMH with a delayed onset and the effect persisted 
after termination of current application.

In contrast to the tardive response to VMH stimula-
tion, electrical stimulation of the midbrain central gray 
(CG) caused a prompt and transient facilitation of lordo-
sis [10]. The CG is a projection target of the VMH [11, 
12]. CG neurons send axons to the medullary core, a site 
of origin of medullospinal projection which implement 
lordosis by innervating spinal motoneurons. Antidro-
mic action potentials were recorded from CG neurons in 
response to stimulation of the medulla.

Thus, neural axis for the estrogen-dependent behav-
ioral activation of lordosis originates in the VMH and 
descends to the medulla via the CG. Stimulation of the 
VMH increased the frequency of successful antidromic 
propagation into the somatodendritic complex of certain 
CG cells showing excitatory nature of the VMH inner-
vation of these CG cells [13]. Estrogen treatment of the 
ovariectomized rat had a similar effect on the antidromic 
propagation as the VMH stimulation. ERα-expressing 
neurons project to the CG [14]. Estrogen enhances depo-
larizing action of N-methyl-D-aspartate (NMDA) and 
other molecules on VMH neurons by inhibiting K+ cur-
rents [15].

Inhibition of lordosis by POA projection to the midbrain
Along with the vlVMH, implants of crystalline estro-
gen in the medial POA also enhances lordosis and other 
affiliative behaviors albeit a larger dose of the hormone is 
needed [8]. The behavioral activation is, however, not a 
result of neural activation, but due to inhibition of POA 
efferents to the midbrain [16, 17]. Electrical stimulation 
of the POA reduced the probability of successful propa-
gation into the somatodendritic complex in antidro-
mic action potentials. Stimulation of the ventromedial 
nucleus of the hypothalamus (VMH) increased it. Con-
versely, electrolytic lesion of the POA facilitated, while 
VMH lesion reduced antidromic spike invasion.

Excitatory VMH innervation of the CG
Electrical stimulation studies [9] suggest that estrogen 
in the vlVMH causes behavioral activation of lordosis 
while causes behavioral disinhibition in the POA. Par-
tial subsistence of sexual behavior in female rats with 
vlVMH lesion [18] can be a result of estrogen action on 
the POA. Cholecystokinin A receptor-expressing cells 
in the vlVMH were the key controllers of female sexual 
behaviors [19]. Work in mice identified the vlVMH as 
the attack center. Ablation of ERα-positive vlVMH neu-
rons in females greatly diminished sexual receptivity and 
in males reduced mating and aggression [20]. Yang et al. 
[21] showed that the activity of these vlVMH neurons in 
males represents aggression performed by self and oth-
ers as mirror neurons. Thus, the vlVMH likely mediates 
multiple social behaviors and future studies will need to 
address how factors including social experience, hormo-
nal state, and behavioral context influence which behav-
iors are generated.

In addition to classical ERα, the vlVMH contains neu-
rons with a putative G-protein coupled membrane ER 
called GPR30 [22]. GPR30 binds 17β-estradiol with an 
affinity similar as ERα and activates both PKA and extra-
cellular-regulated kinase signaling pathways. Adminis-
tration of G-1, a selective agonist for GPR30 [23], in an 
estradiol-progesterone priming paradigm, increased 
lordosis behavior in female mice [24]. GPR30 activation 
phosphorylate the classical ERα, showing that crosstalk 
with ERα is important in the display of this and other 
behaviors, many of which are absent in ERα-null mice 
[25]. GPR30-mediated phosphorylation may be also 
involved in the estrogen-dependent masculinization of 
the POA during development [26].

Progesterone and nonsteroidal molecules
Although the lordosis behavior can be elicited solely by 
estrogen in experimental settings, successive action of 
progesterone is needed to induce a full set of female rat 
sexual behavior. Estrogen induces progestin receptors 

Fig. 1  A. Lordosis posture in a female rat in estrus, immediately 
after the individual was dismounted; B. Projections 
from the ventromedial nucleus of the hypothalamus (VMH) 
or the medial preoptic area (POA). Arrows depict sites of estrogen 
induced excitation (B, in red) or inhibition (C, in blue). Other CG 
midbrain central gray, VTA ventral tegmental area. Reference number 
for each connection is in parentheses
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or receptors for progesterone in the hypothalamus and 
preoptic area [27]. A series of pharmacological studies, 
initially conducted with substances such as GABA [28], 
gonadotropin releasing hormone (GnRH) [29, 30] and 
prostaglandin E2 [31] also modulated lordosis behavior 
in ovariectomized, estrogen-primed rats.

Other neurotropic drugs
Neurotropic non-steroidal molecules, like reserpine, and 
other peptides, e.g., oxytocin, prolactin, opioids, substi-
tutes progesterone, but not estrogen, to induce lordosis 
behavior. GABA may depolarize hypothalamic neurons 
due to high chloride content as we have shown in GnRH 
neurons [32]. The diversity of effective agents suggests 
that multiple signaling pathways may be involved in the 
regulation of female sexual behavior [33]. GABA action 
may be enhanced by a direct action of progesterone on 
GABA receptors [34].

The VMH is also important for the modulation of 
lordosis by molecules other than ovarian steroids, but, 
nevertheless, estrogen pretreatment is a prerequisite 
for these effects. Infusions of agonists or antagonists of 
acetylcholine [35], norepinephrine [36], and serotonin 
[37, 38] into the VMH have been examined with vari-
ous results. Moreover, infusion of neuropeptides, such 
as GnRH [39], and oxytocin [40] into the VMH has been 
shown to alter lordosis. Oxytocin is one of non-steroidal 
molecules which has been shown in earlier studies to 
facilitate lordosis and affiliative behaviors in estrogen-
primed ovariectomized rats [41, 42]. Affiliative responses 
in females constitute proceptive behavior toward male 
partners which in turn initiate copulatory interactions 
which include lordosis in females. Gentle tactile stimula-
tion of rump, tail-base and perineum induces affiliative 
responses in female rats in estrus. Infusion of oxytocin 
antagonist into the medial POA increases rejection and 
disrupts receptivity in estrogen-primed ovariectomized 
rats [43]. Because transcription of both oxytocin ligand 
and its receptor depends on estrogen, observations that 
oxytocin stimulates lordosis behavior in female rats 
might indicate oxytocin mediates secondary action to 
estrogen [41]. Further mediation of the oxytocin effect by 
prostaglandin E2 and GnRH signaling cascade has been 
shown [44]. The vlVMH as well as the adjacent neuropil 
are extremely rich in oxytocin binding sites, in addition 
to the medial POA which express smaller but definite 
oxytocin binding [45].

Descending POA projections
A well circumscribed, homogeneous lesion of the POA 
produced by local infusion of ibotenic acid enhanced 
lordosis and precipitated reductions in the procep-
tivity of estrogen-treated ovariectomized female rats 

[46] (Fig.  2A). The dose of estrogen which induced the 
receptivity in the lesioned rats was much smaller than 
that required in the sham-operated animals (Fig.  2B). 
The reduced proceptivity was characterized by the loss 
of behavioral sensitivity to estrogen. Ibotenic acid has 
been described as having several practical advantages 
over other excitotoxins in producing homogeneous 
lesions over a relatively large area, leaving fibers of pas-
sage unaffected [47]. The failure of prepubertal infusion 
of kainic acid into the POA to alter sexual behavior in 
non-ovariectomized rats has been ascribed to functional 
compensation, because, at the time of behavioral obser-
vation several weeks after the infusion, estrous cyclic-
ity was present in the infused animals [48]. In the male 
rats, ibotenic acid lesion of the POA abolishes sexual 
motivation [49], but promotes the lordosis [50]. The 
decrease in the amount of estrogen needed to induce lor-
dosis in the lesioned animals suggests that ibotenic acid 
removed POA neurons that would otherwise be inhibited 
by estrogen. Indeed, electrical stimulation of the POA 
suppresses lordosis (Fig.  2C), and electrophysiologi-
cal recordings have shown that estrogen mostly inhibits 
neuronal activity in the POA [51]. In female rats carry-
ing Electrical stimulation of the area of the ibotenic acid 
lesion, which activated fibers of passage with origins in 
the septum or cingulate cortex [52, 53]. The female rat 
POA contains many neurons that are targets of estrogen 
[54, 55]. With the dorsal inputs to the POA removed by 
anterior roof cut (Fig.  2D, E) [56], electrical stimulation 
of the deafferented POA caused prompt interruption of 
lordosis (Fig.  2F) without affecting proceptive behavior. 
Selective disruption of the stria medularis, which carries 
POA inputs from the amygdala, was effective as the ante-
rior roof cut to interrupt lordosis (Fig. 2G). The removal 
of POA projections to the ventral tegmental area (VTA) 
which continues to midbrain regions [57, 58], disinhib-
ited the receptivity. Behavioral effects of axons of pas-
sage in the POA [59] that were spared by the excitotoxin 
lesion, were examined by combined ibotenic acid lesion 
and focal stimulation of the POA. The neurotoxic effect 
of ibotenic acid is expressed postsynaptically via NMDA 
receptor [60], that has been found in large numbers in 
the forebrain [61]. POA infusion of an NMDA antagonist 
interrupted the lordosis in fully receptive females [62]; 
a reduced excitatory amino acid transmission to GnRH 
neurons has been associated with this effect.

The VTA
VTA stimulation in freely moving, estrogen-primed ova-
riectomized female rats caused a rapid and strong sup-
pression of lordosis in response to either male mounts or 
manual cutaneous stimuli (Fig. 2H, I) [63]. The interrup-
tion occurred in a graded manner to increased stimulus 



Page 4 of 9Sakuma ﻿The Journal of Physiological Sciences           (2023) 73:35 

intensity, with a low threshold. After the termination of 
electrical stimulation, lordosis performance returned 
promptly to the prestimulation level. No aversive 
response accompanied the blockade of lordosis. Electri-
cal stimulation specifically blocked lordosis, without dis-
rupting the preceptive behavior.

The POA contains a separate pool of neurons that pro-
mote proceptivity in addition to those that inhibit the 
receptivity. In particular, the excitability of POA neurons 
with axons to the VTA diminishes following estrogen in a 

sexually dimorphic pattern, in parallel to the capability of 
this steroid to induce the receptivity [16, 17].

The VTA is one of the major terminal fields of estro-
gen-concentrating POA neurons [64]. Electrical stimu-
lation of axons in passage in the POA, which survived 
ibotenic acid lesion of the area [56] differed that the 
stimulation interrupted lordosis without inducing any 
proceptivity, whereas that of the deafferented POA [56] 
or the VTA [63] specifically blocked lordosis while pre-
serving the proceptive components of female rat sexual 
behavior. Such dissociation of receptive and proceptive 

Fig. 2  A. Photomicrograph of a frontal section showing ibotenic acid lesion in the medial prcoptic area (POA), immunocytochemistry against glial 
fibrillary acidic protein. Arrows indicate damage by the injection needles. The lesion also caused enlarged third ventricle (V3). OC, optic chiasm. B. 
Ibotenic acid lesion of the POA enhanced the lordosis quotient (percent occurrence of lordosis per 10 mounts) in ovariectomized rats given 1.5 μg 
estradiol benzoate. Significantly fewer animals with the lesion showed solicitatory behavior; the rejection rate (percent interruption of copulatory 
interactions by females) was high in animals with the lesion. Open bars, control; shaded bars, lesioned. A and B; Reprinted from [46] with permission 
from Elsevier. C. Electrical stimulation of the POA caused slow-onset, long-lasting inhibition of lordosis score (LS, an arbitrary unit with maximal 
dorsiflexion set at 3) in ovariectomized, estrogen-treated rats. D. A scheme of the anterior roof cut of the POA by rotation of an L-shaped knife. 
The cut disrupted dorsal input to the POA at its junction to the lateral septum (LS), dorsal to the anterior commissure (AC). E. The anterior roof cut 
of the POA in frontal sections at levels a-a’ and b–b′ in D. CG, midbrain central gray; VMH, ventromedial hypotalamic nucleus; VTA, ventral tegmental 
area. F. Electrical stimulation of the POA with parameters same as in C. Note short time course in both onset and recovery of the inhibition. G. 
Bilateral disruption of the stria medularis was as effective as the frontal roof cut to cause POA-bound prompt inhibition of lordosis. C–F; Reprinted 
from [56] with permission from Elsevier. H, Stimulation sites in the VTA; filled circles, suppression of lordosis at currents below 50 μA; filled triangles, 
above 50 μA; open circles minor or no effect. Numbers denote distance from interaural line. CP cerebral peduncle, IP interpeduncular nucleus, 
ML medial lemniscus, P pons, R red nucleus, SN substantia nigra, III oculomotor nerve. VTA Stimulation caused prompt suppression of lordosis I. 
Reprinted from [63] with permission from Elsevier
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components of female sexual behavior also follows lesion 
or stimulation of several other brain structures [65, 66]. 
Among others, Whitney [67] showed that the higher lor-
dosis quotients in female rats with POA lesion diminish 
if the females were allowed to evade male partner. The 
female could control her proximity to males. It appears 
that the POA contains a neural substrate for the promo-
tion of proceptivity in addition to the suppression of lor-
dosis. Large POA lesions or those including the rostral 
periventricular POA [68, 69] might also diminish lordosis 
through the destruction of local GnRH neurons or their 
axons [70]. ER positive neurons in the rostral periven-
tricular POA [71] have been implicated in motivation of 
female mice sexual behavior through their innervation of 
GnRH neurons by kisspeptin [72].

The inhibition of proceptivity and receptivity obtained 
by electrical stimulation of focus of ibotenic acid lesion 
in the POA is due to the activation of fibers of passage 
which survived the excitotoxin challenge. In the lesioned 
animals, further transection to remove the POA affer-
ents nullified the focal stimulation effect. The transac-
tion was similar as the dorsal deafferentation of the POA 
by [73] which facilitated lordosis in non-lesioned ani-
mals (Fig. 2F, G). In the non-lesioned animals, electrical 
stimulation of the deafferented POA, which presumably 
activated local efferents, augmented the behavioral sup-
pression through elimination of inputs via stria terminalis 
[56]. Thus, the POA is heterogenous not only in neuronal 
composition but also in axons penetrating the structure. 
The heterogeneity of the POA might have contributed to 
discrepancies among the reported POA effects on female 
rat sexual behavior.

The septum
The inhibitory effect of the septum on the lordosis reflex 
has been recognized [73, 74]. The basic organization of 
midbrain projections out of the lateral septum [75] is 
remarkably like that of the POA, and a massive projec-
tion of the septum projects caudally to the midbrain to 
end in the CG, VTA, dorsal and median raphe, and lat-
erodorsal tegmental nucleus [76, 77]. Some of these mid-
brain structures have been implicated in the inhibitory 
regulation of the lordosis reflex [57, 63, 78]. The lateral 
septum and the POA also resemble each other in that 
both contain ER-positive neurons [55]. The qualitatively 
similar behavioral consequences of the deletion of local 
efferent neurons in the POA and the removal of efferent 
of the septum [56] present a coherent picture of the roles 
of the POA and septum in the regulation of lordosis as far 
as they are currently understood. In conclusion, the POA 
contains neurons that tonically inhibit the lordosis.

Motivational behavior in female rats
While anestrous female rats consistently avoid males, 
females in estrous approach and provoke males to initiate 
mounting. The series of affiliative or solicitatory behavior 
in females includes peculiar pattern of increased locomo-
tor activity often called hopping and darting in front of 
the males. Increased locomotor activity in female rats in 
estrus embodies enhanced sexual motivation [79–81]. 
Estrogen action on ERα in the POA is responsible for 
the increased locomotion [82]. Subsets of ERα-positive 
POA neurons other than those involved in the inhibi-
tion of lordosis enhance locomotion. Behaviors such as 
hopping and darting have been used as indices of sexual 
motivation in females, as have other patterns of behav-
ior such as seeking proximity to a sexually active male 
[66, 83, 84], the estrous female exhibits a sequence of 
events consisting of approach toward, orientation to, 
and rapid run away from the male [85]. The spinal step-
ping mechanism that induces locomotion is regulated by 
the midbrain locomotor region (MLR) in the rat [86], as 
originally shown in the cat [87]. In the rat, the MLR has 
been identified in the rostral part of the pedunculopon-
tine and cuneiform nuclei of the midbrain [88]. Estrogen 
is responsible for the increased locomotion in female rats 
in estrus, because systemic administration of estrogen to 
ovariectomized rats increases both open-field [89] and 
wheel-running [90] activities.

The medial POA has been positively identified as a 
site for estrogen-induced activation of wheel running 
[91] while the brain site for the action of estrogen on the 
open-field activity [89, 92] has not been singled out. This 
may be due to the fact that the open-field activity is con-
founded by multiple factors, such as fear and emotion-
ality. The preoptic area contributes to the rostro-caudal 
neural axis for the locomotor synergy [93] with its heavy 
projections to the MLR [88, 94]. The preoptic locomo-
tor region [95] from which stepping can be initiated 
by chemical [96] or electrical [95] stimulation, is in the 
medial portion of the lateral POA. In contrast, the loco-
motor activity can be consistently reduced by cholinergic 
activation of the periventricular POA [97, 98]. Estro-
gen excites axons in the MLR with origins in the lateral 
POA, but inhibits those from the medial POA [99]. In the 
light of electrical and chemical stimulation of the POA, 
such diametric effects of estrogen would culminate in 
enhanced wheel running.

Estrogen action to alter axonal excitability
The opposite effects of estrogen on the medial and lateral 
POA neurons are reminiscent of our other observations. 
Estrogen decreased antidromic activation thresholds 
in axons in the CG with origins in the VMH [100], but 
increased the thresholds in POA axons in the VTA [17]. 
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The effects of estrogen on the axonal excitability are sex 
specific [101] and can be modified by neonatal endocrine 
treatments [17, 100].

Estrogen-induced changes in the axonal excitability 
occur in long time-courses, which implicate the involve-
ment of receptor-mediated, genomic activation [102]. 
Both the medial and lateral POA contain neurons that 
express ER [54, 103]. Estrogen promoted the activity of 
Na+,K+-transporting adenosine triphosphatase in the 
medial basal hypothalamus while it suppressed the activ-
ity in the POA [104]. The effects were also sex specific 
[105]. This enzyme can reach axonal terminals by axonal 
flow and alter its excitability [106]. In rat uterus, estro-
gen alters expression of K+ channels [107]. Estrogen acti-
vates phosphatidyl inositol pathway which in turn can 
increase protein kinase C activity, Ca2+ mobilization, 
and arachidonic acid metabolism [108]. With whole-cell 
patch clamp study in the GT1-7 cells, we have shown 
that estrogen at physiological concentrations augments 
K(Ca) currents via ERβ, at least partly by increasing the 
transcription of BK channel genes, thereby modifying the 
cellular excitability. A large part of the K(Ca) currents is 
likely to comprise BK currents [109].

Conclusion
Sexual behavior is a multitiered set of components which 
occur sequentially under the influence of sex hormones, 
particularly estrogen in female rodents. This charac-
teristic has been thoroughly utilized in studies to iden-
tify and analyze neural mechanism for the behavior. 
Thus, separate neuronal circuitries, inter alia, those that 
promote or suppress each of proceptive and receptive 
component of sexual behavior have been shown. This 
multiplicity contributed to confusions in the interpreta-
tion of the results of studies which employed focal brain 
stimulation or lesion. For example, systemic adminis-
tration of subthreshold dose of estrogen was needed to 
obtain enhanced lordosis from local implants of estrogen 
crystals in the VMH [8] or electrical stimulation of the 
VMH [9]; large amount of estrogen reinstituted lordosis 
in female rats with VMH lesions [18]. The latter must 
be due to estrogen-induced removal of inhibitory POA 
effects. The failure to remove estrogen-dependent POA 
inhibition might have caused suppressed sexual recep-
tivity in ovariectomized rats with estrogen implants in 
the VMH [110]. The series of research results presented 
here indicate that the study of sex differences and sexual 
differentiation of the brain, which has been focused on 
morphology, has reached a stage where physiological 
and molecular biological approaches, such as neuronal 
channel expression and neurotransmitter dynamics, 
are required. Further developments in animal study in 

the field may help enhance understanding of human 
sexuality.
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