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Involvement of cannabinoid receptors 
in depression of the putative nociceptive 
response in spinal cord preparations isolated 
from neonatal rats
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Abstract 

A metabolite of acetaminophen, AM404, which is an anandamide transporter inhibitor, induces analgesia mainly 
via activation of transient receptor potential channel 1 in the spinal cord, although the role of cannabinoid receptors 
remains to be studied. The ventral root reflex response induced by stimulation of the dorsal root in in vitro prepara-
tions of rat spinal cord is useful to assess the effect of analgesics. We analyzed the effects of AM404 and cannabinoid 
receptor antagonist AM251 on reflex responses in lumbar spinal cord preparations from newborn rats and found 
that the amplitude of the slow ventral root potential after administration of 10 µM AM404 was not significantly 
changed, whereas 10 µM AM251 significantly increased the amplitude. Administration of the cannabinoid receptor 1 
agonist WIN55,212-2 (10 µM) did not significantly affect the reflex response. We suggest that endogenous cannabi-
noids in the spinal cord are involved in the antinociceptive mechanism through suppressive effects.
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Background
Nonsteroidal anti-inflammatory drugs (NSAIDs) and 
local anesthetics are mainly used for postoperative 
pain control in orthopedic surgery. In particular, multi-
modal analgesia using acetaminophen is a topic that has 
received attention in pain control because of the intra-
venous application of high-dose acetaminophen [1–3]. 
Some reports show that multimodal analgesia relieves 
postoperative pain and reduces the quantity of other 
drugs, such as NSAIDs (which are associated with the 

risk of peptic ulcer formation and renal dysfunction) or 
opioids (which are associated with adverse effects such 
as digestive symptoms, delirium, and respiratory depres-
sion) [4–6].

Regarding the analgesic mechanism of acetaminophen, 
the metabolite of acetaminophen, AM404 (N-arachi-
donoylphenolamine), which is known as an anandamide 
(arachidonoyl ethanolamide [AEA]) transporter inhibitor, 
is suggested to influence analgesic activity through sev-
eral pathways, including transient receptor potential V1 
(TRPV1), cyclooxygenase, cannabinoid receptor 1 (CB1), 
and serotonin neurons [6–10]. In the analgesic mecha-
nism of acetaminophen in the higher brain, AM404 may 
promote activation of the central endocannabinoid sys-
tem through action at both the TRPV1 channels and CB1 
cannabinoid receptors [6]. Barrière et  al. [11] reported 
that periaqueductal gray-located CB1 receptors were 
essential to exert the analgesic effects of acetaminophen 
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through the AM404-activated TRPV1 channel-mGlu5 
receptor-PLC-DAGL-CB1 receptor signaling cascade. At 
the spinal cord level, it was reported that AM404 caused 
analgesia via activation of TRPV1, and involvement of 
CB1 seemed to be less important (e.g., [10]). In the lat-
ter study, activation of TRPV1 by AM404 in slice experi-
ments was produced within a range of minutes and was 
independent of CB1 receptors. Contrastingly, analgesia 
by systemic administration of acetaminophen appeared 
within a range of hours, and it was not clear whether the 
action of AM404 as an anandamide transporter inhibitor 
was involved in the long-lasting effects.

As an experimental model for neurophysiological and 
neuropharmacological studies of the pain control mecha-
nism, Otsuguro et al. [12] reported that the nociceptive 
response could be evaluated by the slow ventral root 
potential (sVRP) induced by stimulation of the dorsal 
root in in  vitro preparations of rat lumbar spinal cord. 
These methods enable stable recording of the nocicep-
tive response over a longer period (hours) [13, 14]. Thus, 
this in  vitro experimental model is useful for assessing 
the analgesic effects of drugs. The objective of the present 
study was to clarify the effects of AM404 and the can-
nabinoid receptor antagonist AM251 on the sVRP and to 
verify the relevance of the CB1 receptor to the analgesic 
mechanism.

Methods
The experimental protocols were approved by the Animal 
Research Committee of Showa University (approval nos. 
09049, 02022, 03066) in accordance with Law No. 105 for 
the care and use of laboratory animals of the Japanese 
government. All efforts were made to minimize the num-
ber of animals used and their suffering.

Preparation and solutions
Spinal cord preparations (the tenth thoracic–fifth lumbar 
spinal cord) were dissected from 0- to 3-day-old Wistar 
rats (n = 27, either sex) deeply anesthetized with isoflu-
rane as previously described [13–15]. Preparations were 
continuously superfused with the following artificial cer-
ebrospinal fluid (ACSF) [16] (mM): 124 NaCl, 5.0 KCl, 
1.24 KH2PO4, 2.4 CaCl2, 1.3 MgCl2, 26 NaHCO3, and 30 
glucose equilibrated with 95% O2 and 5% CO2, pH 7.4, 
at 25–27 °C. The antinociceptive effects of the examined 
drugs were evaluated by recording the fourth or fifth 
lumbar spinal cord reflex following ipsilateral, same-level 
dorsal root stimulation via a glass suction electrode. The 
reflex response was recorded via the 0.5 Hz high-pass fil-
ter of an AC amplifier (AB-651 J, Nihon Kohden, Tokyo, 
Japan). Stimulation (5–20  V, 200  μs square pulse, every 
60  s) was applied to the dorsal root with an intensity 
that was set to produce an approximate half-maximum 

response. The preparations were superfused with ACSF 
for at least 15 min until the spinal reflex stabilized.

Drugs
AM404 and AM251 (CB1 antagonists) were purchased 
from Sigma-Aldrich (Tokyo, Japan), and WIN55,212-2 
(CB1 agonist) was purchased from ChemScene (Mon-
mouth Junction, NJ, USA). Drugs were stored as a 10 mM 
stock solution. Effective concentrations of AM404 in the 
in vitro experiments have been reported to be 3–30 μM, 
e.g., in lumbar dorsal root ganglion neurons from adult 
mice [17] and slice preparations from adult rat lumbar 
cords [10]. In our preliminary experiments, therefore, 
we examined the effects of 10 and 30 μM AM404 on the 
sVRP. Because we found that there was no difference in 
the response between the two concentrations, data in the 
present study were collected using only 10  μM AM404. 
Previous studies reported that 10 μM WIN55,212-2 and 
10 μM AM251 were effective in depressing and enhanc-
ing spinal seizure-like activity, respectively, in the brain-
stem-spinal cord preparation from newborn rat [18, 19]. 
Thus, all drugs were dissolved in ACSF and bath-applied 
at a final concentration of 10 μM.

Data analysis
All data analyses were performed using the LabChart  7 
Pro software program (ADInstruments, Castle Hill, Aus-
tralia). The peak amplitude of the sVRP was calculated 
from the mean value of five consecutive responses in 
each preparation. Data are presented as the mean and 
standard deviation (SD). The significance of the values 
was analyzed by a one-way repeated-measures analy-
sis of variance (ANOVA) followed by a Tukey–Kramer 
multiple comparisons test (GraphPad InStat; GraphPad 
Software Inc., La Jolla, CA, USA). P values of < 0.05 were 
considered to indicate statistical significance.

Results
Effects of AM404 on the sVRP
The effects of a 15 min application of 10 µM AM404 on 
the spinal reflex response were examined in 10 prepara-
tions. The average peak amplitudes of the sVRP were 
288.5 ± 93.1  µV, 283.9 ± 101.8  µV, and 325.1 ± 127.6  µV 
at control, immediately before washout, and 15  min 
after washout, respectively. A typical example and sum-
mary are shown in Fig.  1. Although the changes in the 
average sVRP amplitude in the 10 preparations were not 
statistically significant, in half of the preparations, they 
decreased during the application of AM404 and tended 
to increase after washout. Although our results did not 
show that the increase after washout always occurred in 
association with the decrease during AM404 applica-
tion (Fig. 1D), Fig. 1C shows an example in which both 
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Fig. 1  Typical example of the effect of AM404 on the slow ventral root potential (sVRP) in newborn rat spinal cord preparations. A Time course 
of the changes in peak amplitude of the sVRP in response to the application of 10 µM AM404. B Examples of the reflex response in the control (a), 
at 15 min after the administration of AM404 (b), and after 15 min of washout (c). a–c correspond to a-c in panel A. C Example showing a decrease 
in sVRP amplitude during the application of AM404 and an increase after washout. D Data plots of the sVRP amplitude from 10 preparations 
at control (black), 15 min application of AM404 (red), and 15 min after washout (blue). Bars on the right side of the individual datasets denote 
the mean ± S.D. The average values of the sVRP amplitude did not change significantly
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changes (i.e., decrease in amplitude → increase in ampli-
tude) were observed.

Effects of AM251 on the sVRP
The effects of the CB1 antagonist 10 µM AM251 on the 
spinal reflex response were examined in 7 preparations. 
The peak amplitude of the sVRP gradually increased 
after the administration of AM251, and this tendency 
lasted for more than 30  min after washout. The aver-
age peak amplitudes of the sVRP were 309.6 ± 59.6  µV, 
359.1 ± 72.2  µV, and 386.1 ± 93.0  µV at control, immedi-
ately before washout (P < 0.05, in comparison to control), 
and 15 min after washout (P < 0.01, in comparison to con-
trol), respectively. A typical example and summary are 
shown in Fig. 2.

Effects of the CB1 agonist WIN55,212–2 on the sVRP
Next, we tested the effects of the CB1 agonist 
WIN55,212-2 on the spinal reflex response in 5 prepara-
tions. The administration of 10 µM WIN55,212-2 showed 
no significant effect on the reflex response. The aver-
age peak amplitudes of the sVRP were 311.5 ± 36.9  µV, 
311.9 ± 29.9  µV, and 313.8 ± 46.4  µV at control, immedi-
ately before washout, and 15 min after washout, respec-
tively. A typical example and summary are shown in 
Fig. 3A–C.

Time control
For time control, we examined the peak amplitude of the 
sVRP in 5 preparations under ACSF without the admin-
istration of any drugs. There was no significant difference 
in the peak amplitude for more than 45  min. The aver-
age peak amplitudes of the sVRP were 275.4 ± 58.2  µV, 
276.1 ± 57.7 µV, and 290.0 ± 62.6 µV at 15, 30, and 45 min, 
respectively, after the measurement was started. A typical 
example and summary are shown in Fig. 3D–F.

Discussion
In the present study, we investigated the effects of an 
anandamide transporter inhibitor, AM404, and a CB1 
receptor antagonist, AM251, on the sVRP in newborn 
rat spinal cord preparations. Our results showed that 
AM404 exerted no significant effect, whereas AM251 
induced a long-lasting increase in the amplitude of the 
sVRP.

Acetaminophen is metabolized into the N-acylphe-
nolamine AM404 in the liver, brain, or spinal cord [6]. 
Zygmunt et  al. [20] reported that AM404 affected the 
activation of vanilloid receptors (TRPV1). Ohashi et  al. 
[10] suggested that AM404 induces analgesia directly via 
TRPV1 expressed on the central terminals of C-fibers 
in the spinal dorsal horn but not via CB1. They showed 
that AM404 decreased the amplitudes of excitatory 

post-synaptic currents (EPSCs) evoked by C-fiber stimu-
lation. This AM404-induced response was blocked in the 
presence of the TRPV1 receptor antagonist capsazepine 
(10  μM) and was preserved in the presence of the CB1 
receptor antagonist AM251 (3 μM) [10, 21]. However, it 
might be not clear how a transient activation of TRPV1 
by AM404 relates to the long-lasting analgesic effects 
induced by systemic administration of acetaminophen 
in  vivo as shown in Ohashi et  al. [10] because these 
responses showed different time courses, and TRPV1 
might be desensitized rapidly [22]. Sustained desensiti-
zation of TRPV1 following initial activation by AM404 
might be related to the long-lasting analgesic effects pro-
vided by acetaminophen [10]. We previously showed that 
the application of a TRPV1 agonist, capsaicin, induced 
a transient decrease in the amplitude of the sVRP fol-
lowed by recovery, even during capsaicin treatment, 
that was possibly due to the desensitization of TRPV1 
[15, 23]. Therefore, if AM404 could act via TRPV1 in the 
present spinal cord preparation, it would be expected to 
decrease the amplitude of the sVRP. Indeed, we observed 
a decrease in the sVRP amplitude in half of the prepara-
tions during AM404 application, although these changes 
in the average value of all 10 preparations did not reach 
statistical significance. One possible explanation for our 
result—that AM404 did not effectively activate TRPV1—
might be differences in the ages of the rats that were 
used (i.e., newborn rats in the present study vs. adult rats 
by Ohashi et  al. [10]. In contrast, the administration of 
AM251 increased the amplitude of the sVRP. This result 
could be explained by the mechanism through which 
endogenous anandamide, AEA, was already functioning 
suppressively under control conditions, and the block-
ade of CB1 receptors by AM251 reduced the suppressive 
effect of endogenous AEA. Thus, the putative increase in 
AEA by the inhibitory effect of AM404 on the ananda-
mide transporter showed no further remarkable effect. 
A similar mechanism could also explain why the CB1 
agonist WIN55,212-2 induced no significant effect. We 
speculated that partial activation of the CB1 receptor 
by endogenous anandamide is enough to cause reduc-
tion of the sVRP, and this effect may be saturated under 
the present experimental condition. Therefore, further 
activation of CB1 by WIN55,212-2 might not induce any 
detectable changes in the sVRP. Thus, our results suggest 
that endogenous cannabinoids suppress the nociceptive 
reaction in the spinal cord. Future studies will need to 
clarify whether the endocannabinoid system in the spi-
nal cord is involved in analgesia induced by AM404 (and 
thus by acetaminophen) under certain conditions.

In the present study, we observed a slow increase in 
amplitude after the washout of AM404 in some prep-
arations. Although the results suggest the presence of 
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Fig. 2  Typical example of the effect of AM251 on the slow ventral root potential (sVRP) in newborn rat spinal cord preparations. A Time course 
of changes in the peak amplitude of the sVRP in response to the application of 10 µM AM251. B Examples of the reflex response in control (a), 
at washout immediately after the 15 min administration of AM251 (b), and after 15 min washout (c). a–c correspond to a-c in panel A. Note 
the gradual increase in the sVRP amplitude after treatment with AM251. C Data plots of the sVRP amplitude from 7 preparations at control (black), 
15 min application of AM404 (red), and 15 min after washout (blue). Bars on the right side of the individual datasets denote the mean ± S.D. The 
average values of the sVRP amplitude were significantly increased. ** P < 0.01, *** P < 0.001, by a one-way repeated-measures ANOVA, followed 
by a Tukey‒Kramer multiple comparisons test
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slowly appearing effects of AM404 in some prepara-
tions, the detailed mechanism is unknown.

An sVRP is induced by the excitation of the ventral 
root motoneuron via plural interneurons. On the spi-
nal dorsal horn, glutamic acid or substance P released 
from the primary afferent Aδ and C fibers affects these 
interneurons [24], and stimulation of the CB1 recep-
tors may suppress glutamatergic EPSCs in the substan-
tia gelatinosa neurons of the rat spinal cord [25, 26]. 
Therefore, the target sites of AM251 were thought to be 
primarily located in the dorsal horns of the spinal cord. 
It has been suggested that AM404 activates CB1 recep-
tors and/or TRPV1 channels in the periaqueductal gray 
of the midbrain and induces analgesic effects through 
descending serotonergic pathways [6]. However, this 

system could not be involved in the present experi-
ments, which used preparations of the 10th thoracic–
5th lumbar spinal cord. We recently reported that CB1 
receptors may be involved in the descending inhibitory 
system at the motor neuron level against the generation 
of spinal seizure-like activity [19]. Such putative CB1 
receptors in the ventral horn could be an additional tar-
get of AM215.

Conclusions
We found that the sole administration of AM404 was not 
associated with a remarkable change in the sVRP in new-
born rat spinal cord preparations. However, the adminis-
tration of AM251 induced long-lasting increasing effects 
on the amplitude of the sVRP. The findings of the present 

Fig. 3  Typical example of the effect of WIN55,212-2 and time control on the slow ventral root potential (sVRP) in newborn rat spinal cord 
preparations. A Time course of changes in the peak amplitude of the sVRP in response to the application of 10 µM WIN55,212-2. B Examples 
of the reflex response in control (a), at 15 min after the administration of WIN55,212-2 (b), and after 15 min of washout (c). a–c correspond 
to a-c in panel A. C Data plots of the sVRP amplitude from 5 preparations at control (black), 15 min application of WIN55,212-2 (red), and 15 min 
after washout (blue). Bars on the right side of the individual datasets denote the mean ± S.D. The average values of the sVRP amplitude did 
not change significantly. D Time course of the changes in the peak amplitude of sVRP without drug application. E Examples of the reflex response. 
a-c correspond to a-c in panel A. F Data plots of the sVRP amplitude from 5 preparations at control (black), 30 min after control data acquisition 
(red), and 45 min after control data acquisition (blue). Bars on the right side of the individual datasets denote the mean ± S.D. The average values 
of the sVRP amplitude did not change significantly
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study suggest that CB1 receptors could be involved in the 
intrinsic antinociceptive mechanism.
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