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Abstract 

The external globus pallidus (GP) firing rate synchronizes the basal ganglia-thalamus-cortex network controlling 
GABAergic output to different nuclei. In this context, two findings are significant: the activity and GABAergic transmis-
sion of the GP modulated by GABA B receptors and the presence of the GP-thalamic reticular nucleus (RTn) pathway, 
the functionality of which is unknown. The functional participation of GABA B receptors through this network in 
cortical dynamics is feasible because the RTn controls transmission between the thalamus and cortex. To analyze this 
hypothesis, we used single-unit recordings of RTn neurons and electroencephalograms of the motor cortex (MCx) 
before and after GP injection of the GABA B agonist baclofen and the antagonist saclofen in anesthetized rats. We 
found that GABA B agonists increase the spiking rate of the RTn and that this response decreases the spectral density 
of beta frequency bands in the MCx. Additionally, injections of GABA B antagonists decreased the firing activity of the 
RTn and reversed the effects in the power spectra of beta frequency bands in the MCx. Our results proved that the GP 
modulates cortical oscillation dynamics through the GP-RTn network via tonic modulation of RTn activity.

Keywords Globus pallidus, Thalamic reticular nucleus, Tonic inhibition, Beta band, Desynchronization, GABA B 
receptor, Network, Disinhibition

Introduction
The networks formed by the external globus pallidus 
(GP) through its afferents allow it to function as a hub 
that modulates the flow of information in the basal 

ganglia (BG)-thalamus (Th)-cortex (Cx) network [1–3]. 
The modulation of network activity is mediated by the 
GP spiking rate [1]. Alterations in both the firing pat-
tern and oscillatory dynamics in the frequency beta range 
of the GP are of paramount importance in BG function 
and dysfunction [4–9]. In this framework, the GP sends 
GABAergic axons to the motor region of the thalamic 
reticular nucleus (RTn) [10, 11].

The RTn is a master huddle of neurons that link up net-
work dynamics based on its firing activity [12–14]. In this 
way, RTn neurons shape the thalamic output to the Cx 
by GABAergic synapses with thalamocortical (TC) and 
corticothalamic (CT) axons [15, 16]. The firing activity is 
modulated by both inputs and neuromodulators [17, 18] 
and is the base that originates both physiological [19, 20] 
and pathological oscillations [20–22]. However, the par-
ticipation of the RTn in motor control has yet not been 
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established with the exception of an interesting report 
showing the participation of the RTn in locomotor activ-
ity [23].

In motor physiology, the BG modulates the motor sec-
tor of the Th by two output trails (the internal GP and 
substantia nigra pars reticulata) and relays the motor 
signal to the Cx [24, 25]. In the above setting, the cur-
rent model of the BG-Th-Cx network does not consider 
the presence and contribution of the GP–RTn pathway. 
However, substantial evidence shows a morphological 
and functional connection between the neurons of the 
motor sector of the RTn and the motor nuclei of the Th 
[26].

GABAergic systems reconfigure oscillatory brain 
dynamics by metabotropic GABA B receptors (GABA 
B-Rs). In the synapse, these systems participate by 
modulating transmission in two ways: they inhibit neu-
rotransmission at the presynaptic level by inhibiting volt-
age-gated  Ca+2 channels, and at the postsynaptic level, 
they modulate G-protein-coupled inward-rectifying  K+ 
channels and voltage-gated  Ca+2 channels in the soma-
todendritic region [27]. At the neuronal network level, 
presynaptic GABA B-Rs at excitatory and inhibitory syn-
apses induce inhibitory and disinhibitory effects, respec-
tively [28, 29]. Additionally, presynaptic GABA B-Rs 
mediate tonic inhibition [30–32]. In the GP, both the 
expression of GABA B-Rs and their functional implica-
tion in the firing frequency are currently accepted [33–
38], but their involvement in GP targets has been little 
explored.

In the context of the BG-Th-Cx circuit, the follow-
ing evidence is essential: an increase in inhibition dur-
ing phasic transmission by the overflow of GABA to the 
extrasynaptic area [39]. At the GP level, this event acti-
vates presynaptic GABA B-Rs in both the striatopalli-
dal and subthalamic terminals and subsequently lessens 
GABA and glutamate release, respectively [40]. How-
ever, previous evidence has shown that both higher lev-
els of GABA in the GP [41] and the administration of 
glutamate and GABA modulate the spontaneous firing 
of the RTn [42]. The firing rates modulate the oscillation 
dynamics in the global brain network [9, 43–45]. Thus, 
the functional importance of the firing pattern of both 
the GP and the RTn in their respective circuits is widely 
accepted. In addition, the presence of the GP-RTn con-
nection suggests a functional implication in the oscilla-
tory dynamics of the cerebral cortex.

The previous framework allows us to hypothesize that 
activation of pallidal GABA B-Rs disinhibits RTn neu-
rons and thereby modulates oscillations in the motor 
cortex (MCx). To test this hypothesis, we used the 
extracellular unit recording of RTn neurons, pharma-
cological manipulation of GABA B-Rs into the GP, and 

electroencephalogram (EEG) of the MCx in anesthetized 
rats. The results described below suggest that GABA 
B-Rs of GP participate in the oscillatory dynamics of the 
MCx in the beta frequency band and thus modulate the 
RTn via the GP-RTn pathway.

Experimental protocol
During the experiments, the animals were handled 
in agreement with the guidelines of the ESM-IPN in 
accordance with the International Animal Care and Use 
Committees (IACUCs) and the local Animal Ethics Com-
mittee of Instituto Nacional de Psiquiatría Ramón de la 
Fuente Muñiz. The experimental protocols followed the 
Norma Official Mexicana for the care and use of labora-
tory animals (NOM-062-ZOO-1999) and the Guide for 
Care and Use of Laboratory Animals published by the 
U.S. National Institute of Health. Efforts were made to 
minimize the number of animals used and their suffering.

Subjects and stereotaxic procedure
Male Wistar rats weighing 220–260 g were used for the 
experimental procedure. The rats were maintained in 
individual cages in a room with an ambient temperature 
of 20–24 °C and a 12/12-h light/dark cycle and given free 
access to water and food.

Prior to the stereotaxic procedure, coordinates were 
obtained with a rat brain atlas [46]. For ipsilateral implan-
tation of the recording electrode and injection cannula, 
the surgery was conducted under anesthesia adminis-
tered through an intraperitoneal injection of 1.25  mg/
kg urethane (Sigma–Aldrich). The anesthetized rat was 
placed in a stereotaxic instrument (David Kopf, Tujunga, 
CA, USA), set down in a heating pad to conserve the 
body temperature between 37 and 38 °C and monitored 
with a rectal thermometer system (Frederick Haer, Bow-
doin ME, USA). The craniotomy for the RTn electrode 
was performed at the following coordinates: 1.4  mm 
posterior, 1.2–2.1 mm lateral relative to the bregma, and 
5.3–7 mm deep relative to the dura. The GP was 0.6 mm 
posterior and 2.4–3 mm lateral relative to the bregma and 
5–7  mm deep relative to the dura. The injection device 
for pharmacological handling was implanted in the core 
of the GP at an angle of 60° relative to the horizontal in 
the lateral plane. The coordinates were 0.8 mm posterior 
and 5.8 mm lateral to the bregma and 5.8 mm deep into 
the dura mater. The EEG from the MCx was obtained by 
implanting steel screws 3.70 mm anterior to the bregma 
and 1.9 mm lateral to the midline and a grounding elec-
trode above the parietal bone.

Electrophysiology
Extracellular unit recordings analyzed the RTn or GP 
firing activity using glass micropipettes filled with 2 M 
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NaCl and a resistance of 5–10 MΩ. The signals were 
amplified 10,000 x, bandpass filtered between 0.3 and 
3  kHz (DAM-80 WPI, Sarasota, FL, USA), and saved 
to a PC for thorough offline analysis. For data analysis, 
time segments were defined in the complete record-
ing (these parameters were established according to 
previous studies [41]; based on the rate of spontane-
ous activity. Once the neuron showed stable activity, 
the mean value and standard deviation (SD) of the fir-
ing rate during a 120-s segment (1-s bins) before drug 
administration was calculated and was considered as 
baseline firing. Changes in firing rate during a 180-s 
period from 30-s after the end of drug application were 
examined. The effect of drug application was consid-
ered significant if the firing rate exceeded a level of the 
mean ± 2SD. The duration was defined as the time dur-
ing the significant change. The mean firing rate during 
the 180-s period was also calculated and compared with 
the baseline activity. After setting these parameters, 
the coefficient of variation (CV) was calculated as the 
ratio of the standard deviation of the interspike inter-
val (ISI) to the mean ISI. The EEG signals were ampli-
fied, bandpass filtered (1–100  Hz), and digitized (300 
samples/s). A spectral analysis of the EEG data was per-
formed by fast Fourier transformation from a 5-s epoch 
([FFT]; Hanning window function; data point block size 
of 1024; resolution of 0.9766 Hz). A custom MATLAB 
script (2020b MathWorks, Natick, MA, USA) was used 
to develop the spectrograms.

Before analysis, the EEG recording data were digi-
tally filtered (bandpass: 5–50 Hz) in each time window 
to avoid the existence of artifacts. The power spectral 
analysis was in the 10–30-Hz range (due to participa-
tion of the GP in this frequency range), and the coher-
ence analysis was used to evaluate the activity of the 
MCx and RTn in the same frequency range. The same 
parameters were applied to the coherence and power 
spectral analysis (window, block, and resolution for 
FFT).

The coherence analysis was based on the following 
equation:

where  Pr m is the cross-power spectral density of two sig-
nals, (r) corresponds to the signal of the RTn, and (m) 
corresponds to the signal of the MCx. In addition,  Pr r (f) 
and  Pm m (f) are the power spectral densities of the RTn 
and MCx, respectively. Thus, the coherence values were 
between 0 and 1 and are considered significant if the val-
ues lie above the confidence level. The offline analysis was 
accomplished using Spike 2 analysis software (Cambridge 
Electronic Design, Cambridge, UK).
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Drug application
Before use, baclofen and saclofen (Sigma‒Aldrich) were 
dissolved in 0.9% w/v NaCl solution. Neurons with sta-
ble baseline firing for 5 min were selected for unilateral 
application into the GP during RTn or pallidal record-
ing. The injection volume for every infusion was 100 nl. 
A maximum of five applications were administered to 
each rat, and the distance and interval between appli-
cations were at least 1  mm and 35  min. The injection 
cannula system (30 gauge) was connected to a microsy-
ringe (Hamilton, 10  µl) through a polyethylene tube 
and to a precision micrometer head. The infusion was 
performed at a rate of 50 nl/15 s. The doses used in the 
present study were in the range applied previously to 
the GP [35, 36, 47].

Histology
The rapid procedure method [48] was used to con-
firm the position of the electrode tip and cannula. 
After receiving a lethal dose of pentobarbital (150 mg/
kg, i.p.), the rats were transcardially perfused with 4% 
formaldehyde. The brains were obtained and sliced at 
a width of 50  µm. The experiment was omitted when 
the electrode and cannula were outside the nuclei of 
interest.

Statistical analysis
Statistical comparisons were made using OriginPro8 
(OriginLab, Northampton, MA, USA). The significance 
(a value of p < 0.05) was determined by paired t test 
and one-way ANOVA. The data are expressed as the 
means ± S.E.Ms. or as percentages of the control values. 
The effect of GP handling on the RTn firing patterns was 
analyzed by the burst index (BI), which was calculated 
by dividing ISIs < 10 ms by ISIs < 200 ms. The power data 
were normalized and expressed as the means between 
5 and 50  Hz. The coherence was considered significant 
upward of 95% of the confidence limit [49–51].

Results
Firing characteristics of RTn neurons and localization.
In this study, all neurons recorded in the RTn were 
localized to the rostral portion and showed an inter-
change between tonic and burst firing (irregular firing 
pattern). The total number of recorded neurons was 97 
(mean spiking frequency = 7.29 ± 0.73 spikes/s, and the 
mean BI was 0.55 ± 0.044; Fig. 1).

Response of RTn neurons to activation of the GABA B‑Rs 
in the GP
Different doses of GABA B-R agonists were applied to 
the GP to determine the effect of GABA B-Rs on the 
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RTn neuron firing rate. All doses of baclofen evoked 
an enhancement in the spiking frequency of RTn neu-
rons (Fig. 2). The first dose evaluated was 300 ng. This 
dose increased the firing frequency by 74.66 ± 13.50% 
relative to the basal values (mean basal firing 
rate = 9.38 ± 2.04; mean firing rate after baclofen admin-
istration = 14.16 ± 2.71; p = 0.0008, paired t test; n = 12 
neurons). The second tested dose (100 ng) exerted the 
same effect but with a smaller magnitude: the spiking 
was enhanced by 64.72 ± 11.62% (mean basal firing 
rate = 5.23 ± 1.62; mean firing rate after baclofen admin-
istration = 8.89 ± 2.44; p = 0.00192, paired t test; n = 12 
neurons). The last dose evaluated was 300 pg, and this 

dose increased the firing rate by 49.82 ± 7.28% (basal 
mean firing rate = 9.05 ± 1.49; mean firing rate after 
baclofen administration = 13.35 ± 2.34; p = 0.00286, 
paired t test; n = 10 neurons). However, there was no 
significant difference between all doses applied to the 
GP (p = 0.5511; one-way ANOVA, [Fig. 2C]). The effect 
had a mean duration of 106.6 s. The firing pattern was 
evaluated in the RTn neurons showing a significant per-
centage response (mean basal BI = 0.55 ± 0.08; basal BI 
after a baclofen dose of 300  ng = 0.57 ± 0.08; p = 0.50, 
paired t test; n = 12 neurons; Fig. 2E left. BI with 100 ng 
of baclofen; basal 0.47 ± 0.044; baclofen 0.45 ± 0.043; 
p = 0.20, paired t test; n = 12 neurons; Fig. 2E right-top. 

Fig. 1 Experimental procedure and histological localization of RTn neuron recordings. A Schematic representation of the experimental setup, 
which included pharmacological stimulation of the GP, extracellular unit recording of RTn neurons, and EEG recordings of the motor cortex. B 
Raw traces of firing patterns characteristic of RTn neuron recordings. C The image shows histological verification of the recording (upper) and 
microinjection (down) zones
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Fig. 2 The activation of GABA B-Rs in the GP increases the firing rate of RTn neurons. A Sample of raw traces of the basal (left) firing activity of RTn 
neurons and their firing activity after (right) microinjection of GABA B agonist baclofen into the GP. The voltage and time scales apply to both traces. 
B Peri-event histogram and raster representation of the spiking activity of RTn neurons after administration of 300 ng of baclofen into the GP. The 
black horizontal segment and dashed line represent the injection period. Both graphs are of the same neuron. C Statistical analysis the effect of the 
application of different concentrations of baclofen to the ipsilateral GP on the RTn neuron firing rate. The effect is expressed as percent changes 
from the basal activity. No significant difference was observed between all doses applied to the GP (p = 0.5511; one-way ANOVA). Ten neurons 
showed a decreased firing rate after baclofen treatment (p = 0.00034, paired t test), and seven neurons showed no response to any concentration 
(p = 0.056; paired t test). Each circle represents one neuron—NS: not significant; *** p < 0.05. D Heatmap of the normalized (z score for the mean) 
firing rate of all neurons recorded before and after baclofen application into the GP. All doses of baclofen tested are represented. The orange 
horizontal bar represents the injection period. E Statistical analysis of the effects of all doses of baclofen on the burst index compared with the 
basal (300 ng: p = 0.50, paired t test; n = 12 neurons. 100 ng: p = 0.20, paired t test; n = 12 neurons; 300 pg: p = 0.27, paired t test; n = 10 neurons.). 
Each symbol represents one neuron. F Representation in the coronal plane of the recording sites and type of response of RTn neurons. G The graph 
represents the type of response of RTn neurons as a percentage
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BI with 300 pg of baclofen; basal 0.49 ± 0.0034; baclofen 
0.48 ± 0.029; p = 0.27; paired t test; n = 10 neu-
rons; Fig.  2E right-bottom), and the CV remained 
unchanged. Ten neurons showed a decreased firing rate 
by 41.10 ± 8.12% after baclofen treatment (mean basal 
firing rate = 16.98 ± 3; mean firing rate after baclofen 
administration = 11.98 ± 2.20; p = 0.00034, paired t test; 
n = 10 neurons; Fig.  2C), and seven neurons showed 
no response to any concentration (basal mean spik-
ing activity = 4.31 ± 1.80; mean spiking activity after 
baclofen administration = 4.09 ± 1.84; p = 0.056; paired t 
test; n = 7 neurons; Fig. 2C). The location of each neu-
ron’s recording is shown in Fig. 2F.

In the control experiment, 100  nl of NaCl solution 
(0.9% w/v) was applied to the GP. Five neurons recorded 
after application of the NaCl solution did not show a 
change in their frequency discharge or firing pattern 
(spiking rate = 8.94 ± 1.14 spikes/s [basal] vs. 8.9 ± 1.18 
spikes/s [NaCl]; BI: 0.47 ± 0.04 [basal] vs. 0.45 ± 0.028 
[NaCl]; CV: 0.40 ± 0.18 [basal] vs. 0.44 ± 0.19 [NaCl]; 
p = 0.35; t test; n = 5 neurons).

Effect of GABA B‑Rs on the spiking rate of GP neurons.
The firing rate of GP neurons decreases after applica-
tion of baclofen (Fig. 3). Two concentrations of baclofen 
were applied: 300  ng and 100  ng. The baclofen concen-
tration of 300  ng reduced the firing rate of GP neurons 
by 47.85 ± 4.53 (basal mean firing rate = 23.30 ± 2.97, 
mean firing rate after baclofen = 12.38 ± 2.29; p = 0.00003; 
paired t test; n = 13 neurons; Fig.  3B left-C). Two neu-
rons did not respond to this concentration (basal 
spiking rate = 20.99 ± 3.37, mean spiking rate after 
baclofen = 20.36 ± 3.68; p = 0.28; paired t test; n = 2 neu-
rons). The baclofen concentration of 100  ng reduced 
the firing rate by 36.65 ± 6.08% in six pallidal neuron 
recordings (basal mean rate = 11.38 ± 2.65, mean rate 
after baclofen = 7.96 ± 2.40. Figure  3C). Four neurons 
showed no response to this concentration of baclofen 
(basal mean firing rate = 18.49 ± 5.06, mean firing rate 
after baclofen = 18.69 ± 4.70; p = 0.74; paired t test; n = 4 
neurons. Figure  3B right). Similar to the results found 
from analyzing the responses of RTn neurons, no sig-
nificant difference was found between the tested doses 
(p = 0.2577; two-tailed t test; Fig. 3C).

MCx activity in response to a GABA B‑R agonist in the GP 
and its effect on the RTn
The increment in the spiking rate of the RTn after ago-
nism of GABA B-Rs in the GP decreased the power spec-
tra in the beta frequency in the MCx (Fig.  4). During 
simultaneous recordings of the RTn and MCx activity, the 
basal firing rate of the RTn was adjusted to a frequency 
of 20.73  Hz (range = 17–26  Hz, Fig.  4A top), and the 

frequency of MCx basal activity was set at a frequency 
of 19.25 Hz (range = 11–24 Hz, Fig. 4A). The RTn firing 
enhancement induced by agonism (300  ng of baclofen) 
of pallidal GABA B-Rs was adjusted to a frequency of 
26.11Hz (range = 22–29 Hz), and the effect on MCx activ-
ity was set at a frequency of 11.65 Hz (range = 10–16 Hz;  
Fig. 4A bottom). The power spectral density of the MCx 
after baclofen administration was 55.74 ± 4.78% compared 
with the basal values (basal mean power = 2.53 ×  10–5  
± 5.28 ×  10–6 µV2, mean power after baclofen [300  ng] 
administration = 8.04 ×  10–6 ± 1.65 ×  10–6 µV2; paired t 
test p = 0.0003; n = 13 neurons; Fig. 4B).

An analysis of low (13–19  Hz) and high (20–30  Hz) 
beta bands showed a significant decrease in the power 
density in both bands (Fig.  4C). The magnitude of the 
power reduction in the low beta band was 73.30 ± 2.64% 
(mean basal power = 4.58 ×  10–5 ± 5.55 ×  10–6 μV2; mean 
power after the administration of 300 ng of baclofen = 1
.28 ×  10–5 ± 2.71 ×  10–6 μV2; paired t test, p = 0.000017; 
n = 13 neurons; Fig. 4C top). The percent reduction in the 
high beta band was 39.62 ± 5.34% (basal power = 7.13 ×  
10–6 ± 1.33 ×  10–6 μV2, power after baclofen administra-
tion = 3.85 ×  10–6 ± 4.24 ×  10–7 μV2; paired t test p = 0.007; 
n = 13 neurons; Fig. 4C bottom).

The coherence at the beta band was higher between 
RTn and MCx activity after the activation of GABA 
B-Rs into the GP (Fig.  4D). At 13–19  Hz, the coher-
ence between the increase in the firing of RTn neurons 
by agonism of GABA B-Rs into the GP showed a sig-
nificant increment relative to the basal values (mean 
basal = 0.082 ± 0.006, mean after baclofen admin-
istration = 0.62 ± 0.06; p = 0.000007, paired t test; 
n = 13 neurons). Similarly, the 20–30-Hz band exhib-
ited a higher coherence relative to the basal values 
(basal = 0.07 ± 0.006, mean after the administration of 
300  ng of baclofen = 0.43 ± 0.03; p = 0.000002; paired t 
test; n = 13 neurons; Fig. 4E).

Response of RTn neurons to antagonism of GABA B‑Rs 
in the GP
The effect of saclofen (a highly potent and selective 
antagonist of GABA B-Rs) was evaluated to confirm the 
involvement of GABA B-Rs in RTn neuron activity. The 
infusion of 300 ng of saclofen decreased the spiking activ-
ity of RTn neurons to 69.86 ± 3.23% (basal = 6.86 ± 0.74 
spikes/s, after saclofen = 2.09 ± 0.33 spikes/s; 
p = 0.000001, paired t test; n = 12 neurons; Fig.  5A). 
Four neurons showed an enhancement in spiking activ-
ity after the same doses of saclofen (basal = 7.12 ± 0.94 
spikes/s, saclofen = 10.75 ± 1.37 spike/s; p = 0.005, paired 
t test, n = 4 neurons), and one neuron did not exhibit a 
response. Under basal conditions, the spontaneous fir-
ing of the RTn was located at a frequency of 22.15  Hz 
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(range 19–26  Hz, Fig.  5B top), and the cortical activ-
ity was located at 20.60  Hz (range 19–24  Hz, Fig.  5B 
top). After GABA B antagonism in the GP, the reduc-
tion in the firing activity of the RTn was located at a 
frequency of 13.67 Hz  (range = 9.66–19.24  Hz), and 

the cortical oscillations were located at a frequency of 
21.31 Hz (range = 15–24 Hz, Fig. 5B bottom).

The power spectral density of the MCx did not show 
a change after the decrease in the firing activity of the 
RTn induced by antagonism of GABA B-Rs in the GP. 

Fig. 3 Effects of GABA B activation on GP neurons. A Histogram representation of one GP neuron spiking activity after the local administration 
of 300 ng of baclofen. The orange horizontal line represents the injection period. B Left. Spiking rate of GP neurons under basal conditions and 
effects after pharmacological stimulations with 300 ng of baclofen. The firing rate of GP neurons decreased relative to the basal values after the 
local injection of baclofen (p = 0.00003; paired t test; n = 13 neurons). Right. Spiking rate of GP neurons both in the basal condition and after 
pharmacological stimulations with 100 ng of baclofen. Four neurons showed no change in firing rate in response to this concentration of baclofen 
(p = 0.74; paired t test; n = 4 neurons). C Statistical analysis of the effect of the application of different concentrations of baclofen to the GP. The 
effects are expressed as percent changes relative to the basal activity. No significant difference was observed between the doses applied to the GP 
(p = 0.2577; two-tailed t test). D The graph represents the response of GP neurons as a percentage
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The power spectral density in the low beta band was 
similar to the basal values (basal power spectral den-
sity = 2.52 ×  10–5 ± 4.17  10–6 μV2, power spectral density 
after saclofen administration = 2.52 ×  10–5 ± 4.17  10–6 
μV2; p = 1, paired t test; n = 12 neurons, Fig. 5C). Never-
theless, the high beta band in the power spectra increased 
relative to the basal values in response to decreases in the 
RTn spiking activity induced by intrapallidal injection of 
saclofen (basal power density = 2.76 ×  10–5 ± 2.94 ×  10–7 
μV2, power density after saclofen administra-
tion = 5.27 ×  10–6 ± 7.77 ×  10–7 μV2; p = 0.00365, paired t 
test; n = 12 neurons). The GABA B-R blockade in the GP 
did not exhibit a coherent response between the RTn and 
MCx (Fig. 5D left).

The effects of the coadministration of baclofen and 
saclofen were evaluated in another series of trials. The 
coadministration in the GP (300  ng baclofen + 300  ng 
saclofen) did not increase the spiking rate of 12 RTn neu-
rons (basal = 6.58 ± 0.63 spike/s, baclofen + saclofen = 6.5
4 ± 0.57 spike/s; p = 0.79, paired t test) (Fig. 6). The effect 
of the RTn under all application conditions is summa-
rized in Figure 6B.

Discussion
Important lines of evidence emerge from our results: 
tonic modulation of the spontaneous activity of the RTn 
and by GP mediated by GABA B-Rs, functional role of 
the GP-RTn pathway in the BG-Th-Cx network at the 
beta frequency, and participation of GABA B-Rs in cir-
cuit function.

The integrative role of the GP in BG physiology 
involves GABAergic transmission to diverse areas 
and its firing rate [1]. In these functions, the GP fir-
ing is inhibited by GABA B-Rs [35–38], and its projec-
tions control the spontaneous activity of the RTn [42, 
52], similarly, inhibition of the GP increases the spik-
ing activity of RTn neurons [42]. Based on this evi-
dence, we evaluated the spiking activity of the RTn 

after pharmacological activation of pallidal GABA 
B-Rs. This study revealed higher spontaneous activ-
ity of RTn neurons after pallidal infusion of baclofen. 
We correlated the activation of the GABA B-Rs of the 
GP with the activation of RTn neuron spiking because 
we found inhibition of GP firing after baclofen admin-
istration (similar to pioneering results [35–38]), and 
this response and the effect on RTn neurons were 
reversed by coadministration in the GP with the more 
highly selective antagonist [35–38] saclofen. Given 
this context, we assume that the inhibition of GP neu-
rons by GABA B-Rs reduces the inhibition of the RTn 
and increases its firing rate. Another possibility that 
explains our results is that baclofen infusion did not 
directly stimulate the neurons that project to the RTn. 
However, despite the above findings, RTn neurons send 
collaterals to neighboring neurons that they tonically 
inhibit and thus generate disinhibition adjacent to the 
inhibitions [16, 55]. As a result, the registered neurons 
are disinhibited by inhibiting the neighboring neurons.

The current evidence of the localization and function 
of GABA B-Rs at the synaptic level in the BG circuit pro-
vides a broad mechanism that explains our results. GPs 
express GABA B-Rs presynaptically at both the striato-
pallidal (GABAergic) and subthalamic (glutamatergic) 
terminals [34, 53, 54] and at the postsynaptic level in 
dendrites. The inhibition of glutamatergic transmission 
by the activation of presynaptic GABA B-Rs has been 
demonstrated in several brain areas [39, 56–58], includ-
ing the BG [59–62] and GP [63]. In this sense, the local 
application of glutamate increases the GP firing rate and 
lessens RTn neuron activity [42]. Thus, baclofen increases 
the spiking rate of the RTn by reducing glutamate release 
into GP neurons through the activation of presynap-
tic receptors in subthalamic terminals. Moreover, the 
activation of presynaptic GABA B-Rs in striatopallidal 
terminals reduces GABA release and thereby increases 
spatial and temporal inhibition [37, 64]. [39]. Both events 

Fig. 4 Enhancement of the RTn firing rate later GABA B-Rs agonism in GP decreases the cortical beta frequency band. A Spectrograms of the 
RTn neuron and cortical activity under both experimental conditions (5-s bin). Activation of GABA B-Rs in the GP by baclofen (300 ng) injections 
reduced the spectral density of the cortical beta band and subsequently increased the RTn neuron spiking activity. Top: Raster plot showing the 
RTn neuron activity under basal conditions and after pharmacological stimulation. The bottom traces illustrate the cortical activity under both basal 
and baclofen conditions. The time scales apply to both traces. The plot was derived from the same neuron. B The graph shows the average power 
spectrum density under the experimental conditions. Stimulation of GABA B-Rs in the GP with 300 ng of baclofen decreased the spectral density 
at frequencies of 13 to 30 Hz. The inset plot shows the statistics of the effect of baclofen in the whole beta band. C Top: statistics of the effect of 
the application of baclofen to the ipsilateral GP in the low beta band (13–19 Hz; p = 0.000017; paired t test; n = 13 neurons). Bottom: Statistics of 
the response to intrapallidal baclofen in the high beta band (20–30 Hz; p = 0.007; paired t test; n = 13 neurons). D Heatmap showing the higher 
coherence between the MCx and RTn neurons in the beta frequency band. Coherence showed a significant increment relative to the basal values 
after baclofen administration (mean basal = 0.082 ± 0.006, mean after baclofen = 0.62 ± 0.06; p = 0.000007, paired t test; n = 13 neurons). The dashed 
lines indicate 95% confidence intervals. E Graph showing the coherence values after baclofen (300 ng) application between the MCx and RTn 
neurons at frequencies associated with low and high beta activity. At low beta activity (13–19 Hz), the coherence between RTn and MCx showed 
a significant increment (mean basal = 0.082 ± 0.006, mean baclofen = 0.62 ± 0.06; p = 0.000007, paired t test; n = 13 neurons). At high beta activity 
(20–30-Hz), coherence increased significantly relative to the basal values (basal = 0.07 ± 0.006, mean baclofen = 0.43 ± 0.03; p = 0.000002; paired t 
test; n = 13 neurons; E)

(See figure on next page.)
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contribute to GP inhibition, which allows the disinhibi-
tion of RTn neurons.

Additionally, the GP shows high ambient GABA lev-
els under basal conditions [1] and expression of GABA 
B-Rs in extrasynaptic regions [65]. Thus, higher GABA 
levels favor leaking to extrasynaptic sites and the acti-
vation of extrasynaptic GABA B-Rs under basal con-
ditions and during phasic synaptic transmission. A 
similar effect is observed after blockade of GABA 

transporter type 1 [(GAT-1); [63]]. In this context, the 
pharmacological elevation of the GABA levels in the 
GP increases the spiking discharge of the RTn [41]. Pre-
vious evidence contributes to our finding of an increase 
in the spontaneous firing of the RTn by activation of 
GABA B-Rs in the GP, and we hypothesize that GABA 
B-Rs are tonically activated and modulate the RTn 
through the GP-RTn pathway. Accordingly, we provide 
evidence showing that GABA B-Rs in the GP modulate 

Fig. 4 (See legend on previous page.)
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the functionality of the network, as has been shown in 
other brain regions [32, 66–69].

In contrast, we identified a group of RTn neurons 
that showed no decrease in firing activity after baclofen 
administration and another group of neurons that 
showed no response to any concentration of baclofen. GP 
neurons show morphological and functional heterogene-
ity [1, 7, 70, 71]. As part of this heterogeneity, a baclofen-
insensitive neuronal subpopulation has been described 
[72]. This observation indicates that a group of GP neu-
rons do not show a response to the administration of 
baclofen and consequently does not affect RTn neu-
ron firing. Lateral inhibition is accepted as a functional 
mechanism in the interaction of collaterals within the GP 
[73]. This process provides other evidence explaining the 
increase in the activity of the RTn neurons. When a GP 
neuron is inhibited, it releases the neurons that receive 
its collateral, and thus, the released neuron increases its 
firing, which inhibits the RTn neuron.

In the RTn, regional diversity in the firing pattern is 
accepted as an essential functional characteristic [74, 75]. 
In the neural network context, the transition in the fir-
ing mode shapes the information output that leads to the 
physiological state. Similarly, it has been suggested that 
tonic inhibition contributes to rapid modification of syn-
aptic integration in a cell population and thus modulates 
the neuronal output pattern [76]. Our study focused on 
neurons with an irregular firing pattern,in this frame-
work, we described an increase in the mean spiking rate 
induced by GABA B-R activation in the GP without a 
change in the spiking mode in these neurons. A similar 
effect was previously observed in this type of neuron 
after administration of GABA into the GP [42] and sec-
ondary to the increase in GABA levels in the GP after 
the pharmacological blockade of GAT-1 [41]. During 
tonic inhibition, a similar firing mode behavior has been 
observed in two types of inhibitory neurons of the cere-
bellar cortex [76]. Based on this evidence, we hypothesize 
that the GP tonically modulates reticular neurons with 
irregular firing and thus modulates information transfer 
to the Th-Cx circuit.

In the GP, GABA B responses are evoked by both stri-
atal and local collateral axon GABA release [38, 54]. 

Fig. 5 Antagonism of GABA B-Rs in the GP inhibits the activity of 
RTn neurons and the reduction in the power spectra in the cortical 
beta band. A Histogram of one RTn neuron firing activity after GP 
administration of saclofen (300 ng). The red line represents the 
injection period. Right: Spiking rate of RTn neurons under basal 
conditions and after pharmacological stimulation with 300 ng 
of saclofen. The firing rate of RTn cells decreased relative to the 
basal values after local injection of saclofen; p = 0.000001, paired 
t test; n = 12 neurons). The same doses of saclofen increased 
the spiking activity in four neurons (basal = 7.12 ± 0.94 spikes/s, 
saclofen = 10.75 ± 1.37 spike/s; p = 0.005, paired t test, n = 4 neurons). 
B Spectrograms of the RTn and cortical activity under experimental 
conditions (5-s bin). The blockade of GABA B-Rs by 300 ng of saclofen 
in the GP did not modify the spectral density of the cortical beta 
band after reducing the firing rate of RTn neurons. Top: Raster plot 
representing the RTn neuron activity in the basal state and after 
pharmacological blockade. Bottom: Traces illustrating the cortical 
activity under both basal and baclofen conditions. The time scales 
apply to both traces. The plot was derived from the same neuron. 
C Left: The plot shows the average power spectral density under 
the experimental conditions. The blockade of GABA B-Rs in the GP 
with 300 ng of saclofen does not modify the spectral density in the 
13–19Hz frequency. However, an increase in the power spectral 
density is observed in the frequency range of 20–30 Hz. Right: 
Statistics on the effect of the application of saclofen to the ipsilateral 
GP at 13–19 Hz (p = 1, paired t test; n = 12 neurons, top) and 20–30 Hz 
(p = 0.00365, paired t test; n = 12 neurons, bottom). D Left: Graph 
showing a lack of coherent activity at frequencies associated with the 
beta band between the MCx and RTn neuron activity. The dashed 
lines represent the 95% confidence intervals. Right: The graph 
represents the percent response of the RTn neurons after antagonism 
of GABA B-Rs in the GP
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During synaptic transmission, the GABA B-Rs activated 
by GABA release play a part in the feedback and feedfor-
ward control of the neurons in the target region [1, 36, 
37, 77]. In addition, the modulation of GABA B-Rs has 
been reported in several brain circuits [78–80]. Similarly, 
our results are in line with these conclusions because the 
GP sends axons to the rostral part of the RTn [10, 11]. 
Additionally, we found that activation of GABA B-Rs in 
the GP increases the firing rate of RTn neurons; hence, 
our results suggest the involvement of the GP-RTn path-
way in the control of information flow in the BG-Th-Cx 
network.

We found that the administration of baclofen to the 
GP reduces the spectral density of the MCx in the beta 
frequency. This effect showed coherence between the 
firing activity of the RTn and the MCx at the same fre-
quency band. Our observation was contrary to the effect 
observed with different conditions. The intraperitoneal 
application of baclofen increases the power spectral den-
sity in the beta band [81, 82]. However, similar effects (a 
reduction in the power spectral density) were found on 
gamma oscillations in the hippocampus [78, 81]. Two 
events allow establishment of a feasible explanation for 

diminishing the beta power. First, the increase in the 
spiking frequency of RTn neurons inhibits the burst of 
TC neurons sent to the cortex [19, 83]. Second, neurons 
in the rostral zone of the RTn send axons to ventrolat-
eral nuclei (VLs) and the MCx [26, 84, 85]. Therefore, an 
increase in the spiking frequency of RTn neurons inhibits 
VL neurons [13, 26]. In light of this functional connec-
tivity, we hypothesize that VL neurons are inhibited by 
increases in the spiking frequency of the RTn rostral neu-
ron after GABA B-R activation in the GP.

The antagonism of GABA B-Rs in the GP increases its 
firing rate [1, 36]. This effect is secondary to reducing the 
activity of GABA B-Rs by the antagonism of both pre-and 
postsynaptic receptors [27, 86] in the glutamatergic sub-
thalamic terminal. The reduced excitation results in un-
inhibition [64]. The above mentioned evidence supports 
our observation that GP injection of saclofen decreased 
the firing rate of the RTn. Thus, the disinhibited GP 
neurons increased their firing rate and thus inhibited 
neurons in the RTn, and this inhibition had an essential 
impact on cortical activity. We found that RTn inhibition 
by the blockage of GABA B-Rs in the GP reverses the 
effect of baclofen on the power spectral density at 13 to 

Fig. 6 The coadministration of baclofen and saclofen to the GP has no effects on RTn neurons. A Left: Frequency histogram of one RTn neuron 
firing activity after coadministration of baclofen (300 ng) and saclofen (300 ng) in the GP. The horizontal yellow line represents the injection period. 
Right: Spiking rate of RTn neurons under basal conditions and after pharmacological stimulation by coadministration of baclofen and saclofen. The 
firing rate of RTn cells after local coinjection did not differ from the basal values; p = 0.79, paired t test; n = 12 neurons). B The plot summarizes the 
response of the RTn under all application conditions. The effects are expressed as percent changes relative to the basal activity
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19 Hz. These results align with the effects of GABA B-Rs 
on network function: modulation of the spiking activ-
ity of individual neurons during oscillation [87]. We also 
present evidence showing that inhibition of the RTn after 
injection of the antagonist of GABA B-Rs into the GP 
increases the power spectral density at 20–29 Hz. Simi-
lar results have been found for oscillatory events in other 
brain areas, although in other frequency bands [88–91]. 
Based on the above-described results, we hypothesize 
that the GP, through GABA B-Rs, desynchronize cortical 
beta oscillations by disinhibiting reticular neurons.

Oscillatory activity in the beta frequency band is 
prominent in the MCx. Variations in the power density 
in this frequency band have been linked with the stage 
of motor activity. The decrease (desynchronization) has 
been correlated with the onset of movement, unilateral 
movement of a limb [92], and during ipsilateral execu-
tion movements [8, 93]. Our results display evidence of 
physiological events underlying these results because 
we observed that a decrease in the ipsilateral beta power 
was more coherent with an increase in activity in the 
same frequency band after activation of GABA B-Rs in 
the GP, which suggests that the GP modulates beta activ-
ity during the stages of movement through the GP-RTn 
pathway. Interestingly, GABA B-Rs have been implicated 
in ipsilateral pivoting [35, 47], and it has been speculated 
that the GP-RTn connection is involved in this motor 
event [47]. Our results provide evidence supporting this 
hypothesis.

In contrast, frequencies of 11 to 30 Hz are accepted as 
anti-kinetic; similarly, it has been suggested that desyn-
chronization could reflect a less efficient transition 
between processing states [94]. Consequently, desynchro-
nization in the beta band is necessary for the initiation of 
movement, which is favored by disinhibition of the RTn; 
therefore, the tonic inhibition of the RTn by the GP and 
subsequent modulation of beta activity may contribute to 
motor behaviors. However, although our results suggest 
that the GP-RTn participates in the flow of motor infor-
mation within the BG-Th-Cx network, future studies are 
needed to confirm this hypothesis.

Our results conclude that the GP, through GABA B-Rs, 
modulate the spontaneous firing of RTn neurons toni-
cally; consequently, these receptors decrease the corti-
cal beta power, which suggests that the GP exerts control 
by disinhibition the RTn and contributes to cortical beta 
oscillation activity.
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