
Yoshizawa et al. 
The Journal of Physiological Sciences           (2022) 72:26  
https://doi.org/10.1186/s12576-022-00848-y

ORIGINAL PAPER

Role of microglia in blood pressure 
and respiratory responses to acute hypoxic 
exposure in rats
Masashi Yoshizawa1,2, Isato Fukushi2,3, Kotaro Takeda2,4, Yosuke Kono1,2, Yohei Hasebe1,2, Keiichi Koizumi5, 
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Abstract 

Microglia modulate cardiorespiratory activities during chronic hypoxia. It has not been clarified whether microglia are 
involved in the cardiorespiratory responses to acute hypoxia. Here we investigated this issue by comparing cardiores-
piratory responses to two levels of acute hypoxia (13% O2 for 4 min and 7% O2 for 5 min) in conscious unrestrained 
rats before and after systemic injection of minocycline (MINO), an inhibitor of microglia activation. MINO increased 
blood pressure but not lung ventilation in the control normoxic condition. Acute hypoxia stimulated cardiorespiratory 
responses in MINO-untreated rats. MINO failed to significantly affect the magnitude of hypoxia-induced blood pres-
sure elevation. In contrast, MINO tended to suppress the ventilatory responses to hypoxia. We conclude that microglia 
differentially affect cardiorespiratory regulation depending on the level of blood oxygenation. Microglia suppressively 
contribute to blood pressure regulation in normoxia but help maintain ventilatory augmentation in hypoxia, which 
underscores the dichotomy of central regulatory pathways for both systems.
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Background
Acute hypoxia is sensed mainly by peripheral chemore-
ceptors, elevates arterial blood pressure, and increases 
ventilation [1–4]. Previous studies focused mainly on 
neurons, regarding the cellular mechanisms of cen-
tral hypoxic cardiorespiratory regulation [5–8]. In 
recent years, the involvement of glial cells, particularly 
astrocytes, in the hypoxic regulation of cardiorespira-
tory function has attracted attention [9–19]. Microglia, 
another type of glial cells, are known to evoke pro/anti-
inflammatory responses in the central nervous system 
and contribute to synaptic plasticity [20–22]. For exam-
ple, microglia play an important role in learning and 

memory [23] and various pathological conditions, such 
as allodynia, i.e., the sustenance of nociceptive disorders 
[24]. Regarding the role of microglia in hypoxic responses 
of the cardiorespiratory system, both in vivo and in vitro 
studies reported their augmenting or suppressing action 
[20, 25–34]. In those studies, hypoxia was usually loaded 
to animals over a relatively long time of a few hours to 
several days in sustained or chronic intermittent hypoxia 
routines. Both chronic and acute intermittent hypoxia 
also modulate sympathetic and respiratory neuronal net-
work interactions [35–43]. However, the role of microglia 
in cardiorespiratory responses to hypoxic exposure of 
minutes’ duration, which sufficiently induces cardiorespi-
ratory excitation, has not been fully elucidated. Based on 
this background, we aimed to investigate whether micro-
glia would be involved in the modulation of cardiores-
piratory responses to acute hypoxia by simultaneously 
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measuring blood pressure and ventilation in conscious 
rats.

Methods
Animals
We used Wistar rats for this study (n = 6, aged 
23–26 weeks). Only male rats were used to avoid possi-
ble sex differences in microglial gene expression within 
the cardiorespiratory network [44] and the influence 
of the menstrual cycle. Experiments were performed 
with the approval of the Ethics Committee for Animal 
Experiments of the Murayama Medical Center in Tokyo 
(approval numbers: 12–2) and complied with the Guide-
lines for Care and Use of Laboratory Animals released 
by the National Research Council of the National Acad-
emies (8th edition, revised 2011) and with the Guiding 
Principles for Care and Use of Animals of the Physiologi-
cal Society of Japan. The animals were purchased from 
Sankyo Labo Service (Tokyo, Japan), individually housed 
in plastic cages under a constant room temperature 
(23 ~ 24 °C), 50–60% relative humidity, and a 12-h light–
dark cycle with access to standard commercial chow and 
water ad libitum. All efforts were made to minimize ani-
mal suffering and to reduce the number of animals used.

Preparation for blood pressure measurement
To measure arterial blood pressure, we used a telemetry 
system. Rats were anesthetized with isoflurane inhalation 
followed by injection of pentobarbital sodium (50 mg/kg, 
i.p.). The abdominal cavity was opened by a midline inci-
sion to expose the aorta. A telemeter transmitter (TRM 
54P, Kaha Sciences, Auckland, New Zealand) was placed 
in the cavity, and the transducer cable (length 9 cm, outer 
diameter 500 μm) with a pressure sensor at its tip (tip’s 
outer diameter 660 μm) was inserted into the aorta in the 
caudo-rostral direction from the level 2–3 mm rostral to 
the common iliac arteries. The transducer cable was fixed 
to the aortic surface with tissue adhesive (Vetbond, 3 M, 
Saint Paul, MN). An antibiotic (cefazolin, 50 mg/kg) dis-
solved in saline was applied before closing the abdomen. 
The surgery was conducted aseptically. The rats were 
allowed to recover from surgery for at least 1 week.

Recording of blood pressure and heart rate
Unrestrained rats were placed in a recording chamber 
of the whole-body plethysmograph (see details below). 
Blood pressure signals were continuously transmitted 
to a receiving and processing unit (TR181/TR190, Kaha 
Sciences) positioned beneath the recording chamber of 
the plethysmograph. Raw blood pressure signals were 
digitized at a 2 kHz sampling rate with an A/D converter 
(PL 3504 Power Lab 2/26, AD Instruments, Colorado 
Springs, CO) and stored in a PC with LabChart7 software 

(AD Instruments) for offline analysis. The mean arterial 
pressure (MAP; mmHg) was computed from the blood 
pressure waveforms and the pulse rate was counted using 
LabChart7. The pulse rate precisely coincided with the 
heart rate (HR; beats/min) obtained in the electrocardio-
graphic recording in preliminary experiments. Thus, HR 
was used hereafter in this work.

Recording of ventilation
Ventilatory variables were measured by whole-body 
plethysmography. A recording chamber (volume 
3.77 L) was placed inside a transparent acrylic box (size 
30 × 30 × 30  cm). The chamber temperature was main-
tained constant at 25  °C throughout the experiment. 
The air in the recording chamber was continuously suc-
tioned with a constant flow generator that supplied fresh 
air into the chamber. To calculate the respiratory flow, 
the pressure difference between the recording and refer-
ence chambers was measured with a differential pressure 
transducer (TPF100, EMMS), connected to an ampli-
fier (AIU060, Information & Display Systems, Bordon, 
UK), and was bandpass filtered at 0.1–20 Hz. The signal 
was integrated to obtain tidal volume ( V̇t; mL/kg body 
weight) for each respiratory cycle, which was then aver-
aged. Respiratory rate (RR; breaths/min) was counted. 
Minute ventilation ( V̇e; mL/kg/min) was calculated as  
V̇t × RR. The oxygen concentration was monitored with 
an oxygen analyzer incorporating a polarographic sensor 
(Respina IH 26, San-ei, Tokyo, Japan) and was adjusted to 
the desired level by controlling the flows of nitrogen and 
air blown into the acrylic box. Respiratory flow and oxy-
gen concentration signals were simultaneously digitized 
at a 400 Hz sampling rate with an A/D converter (Power 
Lab 4/26, AD Instruments) and stored in a PC with Lab-
Chart7 software (AD Instrument).

Blood pressure and ventilatory signals were meas-
ured by two researchers using two independent record-
ing systems. The two recordings were conducted 
simultaneously.

Inhibition of microglial activity
Blood pressure and ventilatory measurements were con-
ducted before and after administration of minocycline 
(MINO), a selective suppressor of stimulus-induced 
microglia activation [45–47]. The interval between the 
measurements before and after MINO administration 
was at least 1 week. MINO suppressed microglial prolif-
eration and activation by inhibiting p38 MAPK, existing 
in the active form only in microglia [29, 46], inflamma-
tory cytokine secretion, toll-like receptor 2 (TLR2) 
expression [48], and nuclear translocation of NF-κB [49]. 
It easily crosses the blood–brain barrier due to its high 
lipid solubility. In the present study, MINO (Fuji Pharma, 
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Tokyo Japan) was diluted in physiological saline and neu-
tralized with sodium hydroxide solution to adjust pH to 
7.4 (final concentration 11.8  mg/mL) and was admin-
istered in a dose of 25 mg/kg/day, i.p. for 3 consecutive 
days before the experiment, with the last dose at least 3 h 
before measurements [34, 47].

Loading of hypoxia
For acclimatization, each rat was placed in the recording 
chamber for 60  min before the onset of measurements. 
Then, after taking the baseline blood pressure and venti-
lation recordings in room air for 2 min, the oxygen con-
centration in the chamber was rapidly lowered to 13% 
(mild hypoxia) by blowing nitrogen into the acrylic box 
under monitoring the intra-chamber oxygen concentra-
tion. After 4 min, the chamber gas was returned to room 
air, and recording continued for at least a 12-min post-
hypoxia recovery phase, further referred to as “recovery.” 
Variables were continuously recorded through the pre-
hypoxic baseline, hypoxic, and post-hypoxic recovery 
phases. After we confirmed that animals fully recovered 
from the hypoxic stress and the variables stabilized after 
mild hypoxia, severe hypoxia (7% O2) was induced for 
5 min and the measurements were repeated similarly. To 
evaluate the magnitudes of hypoxia-induced changes in 
MAP, HR, and VE, hypoxia-baseline and recovery-base-
line differences (ΔMAP, ΔHR, and ΔVE) were calculated.

Statistical analysis
Data were presented as means ± SD. A two-way analy-
sis of variance (ANOVA) was conducted to examine the 
effects of hypoxia on MAP, ΔMAP, HR, ΔHR, RR, V̇t,  
V̇e, and Δ V̇e with a two- ‘drug’ condition (control-MINO) 
and a six-oxygen phase or four-oxygen phase for ΔMAP, 
ΔHR, and Δ V̇e as within-subject factors. The oxygen 

phases included mean values just before hypoxia (0–2-
min baseline), the end of hypoxia (5–7  min in mild and 
6–8 min in severe hypoxia), and recovery (16–18 min in 
both mild and severe hypoxia). The reason we adopted 
the mean values instead of peak values was that these 
physiological signals fluctuate and spontaneously vary to 
some extent and thus values at single time points do not 
adequately represent changes. The Greenhouse–Geisser 
adjustment was used to correct for violations of sphericity 
whenever necessary. We applied the Bonferroni correc-
tion for multiple comparisons in post-hoc tests. A p < 0.05 
defined a statistically significant difference. The analysis 
was performed using SPSS 27.0 (IBM, Armonk, NY).

Results
Circulatory responses to hypoxia and MINO treatment
Mean arterial blood pressure (MAP)
At baseline normoxia, MAP was higher in MINO-
treated than MINO-untreated rats (96.8 ± 9.7 vs 
89.0 ± 6.8  mmHg, p < 0.05) in the mild hypoxia proto-
col. A similar tendency was in severe hypoxia, although 
the difference was insignificant (Figs. 1, 2, 3). In MINO-
untreated rats, both mild and severe hypoxia increased 
MAP. In mild hypoxia, the increase was higher than that 
in recovery (p < 0.05), and in severe hypoxia it was higher 
than those at baseline and recovery (p < 0.05 and p < 0.01, 
respectively). In MINO-treated rats, MAP increased at 
both hypoxic levels significantly more over the increase 
in the untreated ones (p < 0.05). There was a significant 
interaction between MINO conditions and oxygen levels 
(F(5, 25) = 2.86, p < 0.05) (Figs. 2, 3).

A comparative evaluation of differences in MAP 
increases showed that ΔMAP was higher in severe 
hypoxia than in recovery (a significant main effect 
of oxygen levels (F(3,15) = 6.63, p < 0.01). However, 

Fig. 1  Effects of minocycline (MINO) on blood pressure and ventilatory responses to mild (13% O2) and severe (7% O2) hypoxia. Representative 
traces of blood pressure and respiratory flow signals (inspiration upward). A Control condition (MINO-untreated). B MINO-treated condition



Page 4 of 13Yoshizawa et al. The Journal of Physiological Sciences           (2022) 72:26 

the main effect between before and after MINO 
(F(1,5) = 0.54, p = 0.495) and the interaction between 
MINO-treatment and oxygen levels (F(3,15) = 1.34, 
εGG = 0.37, p = 0.302) were insignificant (Fig. 4).

Heart rate (HR)
At baseline normoxia, HR did not differ between MINO-
treated and MINO-untreated rats (Figs.  1, 2). HR 
increased in mild hypoxia compared to the baseline level; 
p < 0.05 (calculations included both MINO-untreated and 
treated conditions). The main effect of oxygen levels was 

Fig. 2  Effects of minocycline (MINO) on mean arterial pressure (MAP) and heart rate (HR) responses to mild (13% O2) and severe (7% O2) hypoxia 
(shaded areas). A, B Representative timelines of the intrachamber oxygen concentrations during mild and severe hypoxia (shaded periods). C, D 
Time courses of MAP in the control (MINO-untreated) and MINO-treated rats during mild and severe hypoxia. E, F Time courses of HR in the control 
(MINO-untreated) and MINO-treated rats during mild and severe hypoxia
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significant (F(5,25) = 12.30, εGG = 0.39, p < 0.01). How-
ever, neither the interaction between MINO-treatment 
and oxygen levels (F(5,25) = 1.281, p = 0.303) nor the 
main effect between before and after MINO was signifi-
cant (F(1,5) = 0.80, p = 0.413) (Figs. 2, 3).

For ΔHR, there was a significant main effect of 
oxygen levels (F(3,15) = 9.83, p < 0.010), but it was 

detected only in mild hypoxia and recovery from severe 
hypoxia; p < 0.01 (calculations included both MINO-
untreated and treated conditions). Neither the inter-
action between MINO-treatment and oxygen levels 
(F(3,15) = 0.56, p = 0.562) nor the main effect between 
before and after MINO were significant (F (1,5) = 1.17, 
p = 0.329) (Fig. 4).

Fig. 3  Effects of minocycline (MINO) on mean arterial pressure (MAP) and heart rate (HR) responses to mild (13% O2) and severe (7% O2) hypoxia. 
Mean values were compared among the baseline (0–2 min before hypoxia loading), end-hypoxia (5–7 min in mild hypoxia and 6–8 min in severe 
hypoxia), and recovery (16–18 min) phases. A, B Comparison of MAP among three oxygen phases during mild and severe hypoxia. MAP values 
in the mild hypoxia condition were higher in the MINO-treated condition compared to the control (MINO-untreated) in all oxygen phases. C, D 
Comparison of HR values among three oxygen phases during mild and severe hypoxia. * p < 0.05, ** p < 0.01
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Ventilatory responses to hypoxia and MINO treatment
Ventilatory variables responded sluggishly to MINO 
injection at baseline normoxia. They tended, on aver-
age, to increase but changes failed to reach significance. 

Hypoxia, expectedly, caused hyperventilation that was 
mostly driven by RR increase; the effect was distinctly 
potentiated at the stronger stimulus level (Figs. 5, 6).

Fig. 4  Effects of minocycline (MINO) on mean blood pressure (MAP) and heart rate (HR) responses to mild (13% O2) and severe (7% O2) hypoxia. To 
evaluate response magnitudes, ΔMAP and ΔHR were calculated for the hypoxia-baseline and recovery-baseline differences. ΔMAP and ΔHR were 
compared between the control (MINO-untreated) and MINO-treated conditions. There was the oxygen main effect on blood pressure responses 
in severe hypoxia, and ΔMAP increased during hypoxia and decreased during recovery. The post-hoc test revealed that there was not a significant 
difference between any pairs. * p < 0.05, ** p < 0.01
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Respiratory rate (RR)
RR consistently increased in hypoxia both before and 
after MINO treatment. In mild hypoxia in MINO-
untreated rats, RR was higher than those at baseline and 
recovery (p < 0.01 and p < 0.05, respectively). The same 
was true for severe hypoxia (p < 0.01). In mild hypoxia in 
MINO-treated rats, RR was higher than that at baseline 

(p < 0.01), and in severe hypoxia, it was higher than those 
at baseline and recovery (p < 0.01). RR increased signifi-
cantly more in severe than mild hypoxia (p < 0.01). There 
was a significant interaction between the two MINO 
conditions and oxygen levels (F(5, 25) = 2.62, p < 0.05). 
However, RR failed to differ significantly before and after 
MINO conditions at either level of oxygen (Figs. 1, 5, 6).

Fig. 5  Effects of minocycline (MINO) on ventilatory responses to mild (13% O2) and severe (7% O2) hypoxia. A, B Representative timelines of the 
intrachamber oxygen concentrations during mild and severe hypoxia (shaded periods). C, D Time courses of respiratory rate (RR) in the control 
(MINO-untreated) and MINO-treated rats during mild and severe hypoxia. E, F Time courses of tidal volume ( ̇Vt) in the control (MINO-untreated) 
and MINO-treated conditions during mild and severe hypoxia. G, H Time courses of minute ventilation ( ̇Vt) in the control (MINO-untreated) and 
MINO-treated conditions during mild and severe hypoxia loading
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Tidal volume ( V̇t)
V̇t was higher in severe hypoxia than those at base-
line and recovery, and its increase was the highest in 
severe hypoxia; p < 0.01 (calculations included both 

MINO-untreated and treated conditions) (Figs.  1, 5, 6). 
There was no significant interaction between the MINO 
conditions and oxygen levels (F(5,25) = 1.52, p = 0.219). 
However, there was a significant main effect between 

Fig. 6  Effects of minocycline (MINO) on ventilatory responses to mild (13% O2) and severe (7% O2) hypoxia. Mean values were compared among 
the baseline (0–2 min before hypoxia), end-hypoxia (5–7 min in mild hypoxia and 6–8 min in severe hypoxia), and recovery (16–18 min) phases. 
A, B Comparison of respiratory rate (RR) among three oxygen phases during mild and severe hypoxia. RR was higher during hypoxia than in other 
phases (for details, see Results). C, D Comparison of tidal volume ( ̇Vt) among three oxygen phases during mild and severe hypoxia. E, F Comparison 
of minute ventilation ( ̇Ve) among three oxygen phases during mild and severe hypoxia. In both mild and severe hypoxia, V̇E was larger during 
hypoxia than during baseline and recovery (p < 0.01). In severe hypoxia, V̇E was larger than that in mild hypoxia (p < 0.01). * p < 0.05, ** p < 0.01
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the two MINO conditions (F(1,5) = 7.38, p < 0.05), mean-
ing that V̇t was, as overall, higher in MINO-treated than 
MINO-untreated conditions. In addition, there was a 
significant main effect of oxygen levels (F(5,25) = 9.83, 
εGG = 0.43, p < 0.001).

Minute ventilation ( V̇e)
V̇e was higher in both mild and severe hypoxia when 
compared with the baseline and recovery levels and it 
was the highest in severe hypoxia; p < 0.01 (calculations 
included both MINO-untreated and treated conditions). 
There was no significant interaction between the MINO 
conditions and oxygen levels (F (5,25) = 2.10, p = 0.099). 
Neither was there a significant main effect between the 
two MINO conditions (F (1,5) = 2.07, p = 0.210). How-
ever, there was a significant main effect of oxygen levels 
(F(5,25) = 125.67, εGG = 0.26, p < 0.001) (Figs. 1, 5, 6).

As for Δ V̇e, there was no significant interaction 
between the MINO conditions and oxygen levels 
(F(3,15) = 0.76, p = 0.532). There was a significant main 
effect between the two MINO conditions (F(1,5) = 16.78, 
p < 0.01) meaning that Δ V̇e was, as overall, smaller in the 
MINO treated than untreated condition across all oxygen 

phases. The hypoxia-baseline Δ V̇e in the control MINO-
untreated condition tended to be higher than that in the 
MINO-treated one in both mild and severe hypoxia, 
but the differences were statistically insignificant. There 
also was a significant main effect of oxygen phases 
(F(3,15) = 104.21, p < 0.001) (Fig. 7).

Discussion
In the present study, using a pharmacologic inhibitor of 
microglia activation, minocycline (MINO), we investi-
gated the involvement of microglia in blood pressure 
and ventilatory responses to acute exposures to mild and 
severe hypoxia in unrestrained conscious rats. Although 
hypoxia was loaded only for several minutes, it was suf-
ficient to induce augmentation of the cardiorespiratory 
function. In the control MINO-untreated condition, 
hypoxia elevated MAP and increased HR, as previously 
reported [50], although the responses did not follow the 
stimulus severity-dependency. In MINO-treated con-
dition, MAP increased more than in MINO-untreated 
one across all oxygen phases in mild hypoxia. However, 
MINO did not affect the magnitude of hypoxia-induced 
blood pressure elevation (ΔMAP) or HR increase (ΔHR).

Fig. 7  Effects of minocycline (MINO) on ventilatory responses to mild (13% O2) (A) and severe (7% O2) (B) hypoxia. To evaluate response magnitudes of 

minute ventilation, Δ ̇Ve was calculated for the hypoxia-baseline and recovery-baseline differences. Δ ̇Ve was significantly larger in hypoxia than in recovery 

(** p < 0.01). There was a significant main effect between the two MINO conditions (F(1,5) = 16.78, p < 0.01) meaning that Δ ̇Ve was, as overall, smaller in the 

MINO treated than untreated condition across all oxygen phases. The hypoxia-baseline Δ ̇Ve in the control MINO-untreated condition tended to be higher 
than that in the MINO-treated one in both mild and severe hypoxia, but the differences were statistically insignificant. * p < 0.05, ** p < 0.01
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In contrast to cardiovascular responses, hypoxia 
increased ventilation in a stimulus-dependent manner 
in both MINO-untreated and treated conditions. MINO 
tended to increase V̇t across all oxygen phases in both 
mild and severe hypoxia, although the treatment per se 
did not affect RR or V̇e. However, as assessed by Δ V̇e, 
MINO treatment tended to attenuate hypoxia-induced 
ventilatory augmentation.

These results suggest that microglia contributed to 
the blood pressure homeostasis by mitigating its eleva-
tion in the normoxic condition but their role in the acute 
hypoxia-induced blood pressure elevation could not be 
convincingly shown. On the other side, the microglia’s 
contribution to ventilation in the normoxic condition 
was insignificant, but it appeared to play an active role 
in the augmentation of ventilatory responses to acute 
hypoxia. These findings indicate that the suppressive/
augmenting action of microglia is differential concerning 
blood pressure and ventilatory regulations. It suppresses 
blood pressure in the normal state but augments ventila-
tion in the hypoxic state.

Microglia are resident immune cells in the brain. They 
are activated by various stress stimulations and change 
their shape from ‘ramified’ to ‘reactive’ with retracted 
branching processes. Regarding the possible morpho-
logic changes of microglial cells, a much longer time 
than minutes’ exposure applied in the present study, 
approaching at least 1 h, is required to notice shorter and 
fewer cellular outgrowths in the cardiorespiratory brain 
region in rats [31]. However, recent studies show that 
microglial functional changes do not necessarily require 
morphologic counterparts and may rapidly arise upon 
various types of stimulation. In mouse and rat spinal cord 
slices, perfusion with a lipopolysaccharide (LPS)-mimetic 
agent causes nearly an instant activation of toll-like 
receptor 4 (TLR4) in 1 min, increasing intracellular Ca2+ 
in microglia with a peak delay of 3.8 min [51]. Likewise, 
in mouse hippocampal slices, activation of microglia by 
LPS increases the frequency of spontaneous excitatory 
postsynaptic currents in neurons within minutes [52]. In 
focal injuries of the mouse cortex, surrounding microglia 
respond in the first minute of post-ablation with tips of 
cellular processes being enlarged in the vicinity of injury 
[53]. Furthermore, microglia respond with large, gen-
eralized Ca2+ transients damaging individual cortical 
neurons with a latency of only 0.4–4.0 s, which is much 
more rapid than ever considered [54]. Even in the resting 
brain with a ‘ramified’ phenotype, microglia are highly 
and constantly dynamic with motile processes and pro-
trusions [55–57]. Thus, it could be expected that acute 
hypoxia lasting for several minutes might cause func-
tional activation of microglia, affecting the cardiorespira-
tory function.

Several studies have reported the association between 
hypoxic cardiorespiratory responses and microglia. 
Microglia are involved in the autonomic modulation by 
regulating inflammatory cytokines in the paraventricu-
lar nucleus of the hypothalamus and rostral ventrolateral 
medulla during acute hypoxic stimulation [21, 58]. In 
steady-state hypoxia, suppression of microglia activation 
inhibits the expression of inflammatory markers in the 
autonomic brainstem nuclei during 3-h hypoxic stimu-
lation and attenuates hypoxic ventilatory augmentation 
during 10-min hypoxic stimulation in rats [32]. It has also 
been shown that hypoxia-induced blood pressure eleva-
tion is suppressed by MINO treatment in rats during 
24-h sustained hypoxia [34].

In the present study, inhibition of microglia activa-
tion elevated blood pressure but did not affect ventila-
tion in the pre-hypoxic baseline phase, which suggests 
that microglia play a role in the regulation of blood pres-
sure by mitigating its elevation but not ventilation in 
the normoxia. That is in line with the reports showing 
that microglia have an anti-inflammatory and neuron-
suppressing M2 phenotype at rest [22, 59]. On the other 
hand, inhibition of microglia suppressed the hypoxia-
induced ventilatory increase, indicating that microglia 
play a role in the augmentation of ventilation in acute 
hypoxia. These findings may be explained by hypoxia’s 
rapid activation of microglia in the respiratory center 
and the phenotype change from the anti-inflammatory 
neuron-suppressing M2 to the pro-inflammatory neu-
ron-stimulating M1 [22, 59]. The major mechanism of 
microglia activation by hypoxia consists of increased 
expression of potassium channels, e.g., Kiv1.1 and Kiv1.2, 
which facilitate the secretion of inflammatory cytokines 
from microglia [56, 60]. In addition, hypoxia can activate 
microglia by upregulation of TLR4 at the mRNA and pro-
tein levels [61] and purinergic receptor expression [62].

The putative role of microglia in augmenting hypoxic 
ventilation is akin to the presumptive role of astrocytes 
in hypoxia sensing by the brain tissue [9–19]. It has been 
reported that activated microglia release ATP that stimu-
lates astrocytic purinergic receptors and increases the 
excitatory postsynaptic current frequency in neurons 
through a metabotropic glutamate receptor mechanism 
[52]. The action of microglia in augmenting ventilatory 
responses to acute hypoxia demonstrated in the present 
study may be attributed to the positive interaction of 
microglia and astrocytes upstream to neurons [28, 52].

Concerning neural plasticity in the cardiorespiratory 
control, we have reported that astrocytes mediate post-
hypoxic persistent respiratory augmentation (PHRA), 
i.e., sustained potentiation of breathing for a time after 
the cessation of acute hypoxic exposure. The breathing 
potentiation was suppressed by inhibition of astrocytic 
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activation in mice [12]. Contrary to that report, post-
hypoxic persistent cardiorespiratory augmentation was 
not observed in the present study. This discrepancy may 
be attributed to the species difference. Alternatively, 
longer hypoxic exposure might be required to induce 
post-hypoxic PHRA and blood pressure elevation.

There have been several reports concerning the role 
of microglia for cardiorespiratory neural plasticity. 
Microglia activated by LPS attenuate phrenic long-term 
facilitation following acute intermittent hypoxia in rats 
[25–27]. Stokes et  al. [31] reported that hypoxia acti-
vates both microglia and astrocytes. The activated glial 
cells mediate ventilatory acclimatization to hypoxia as 
chronic hypoxia augmented responsiveness to acute 
hypoxia persists upon return to normoxia; the phenom-
enon is suppressed by blockade of microglial activation 
[31]. Other studies also show a role of microglia for inter-
mittent hypoxia, resembling sleep-disordered breathing, 
or steady-state hypoxia. In intermittent hypoxia, under-
lain by reshaped carotid body chemosensory reflexes, 
microglia participate in enhanced sympathetic activa-
tion persisting after breathing normalization [3, 63, 64]. 
It has been reported that cytokines released by microglia 
in intermittent hypoxia cause a long-term potentiation of 
cardiopulmonary function, contributing to neuroplasti-
city and respiratory adaptation to hypoxia [20]. The role 
of microglia for respiratory plasticity appears complex 
and may be either facilitating or inhibiting depending 
on experimental conditions [33]. Microglia also appear 
to shape synaptic plasticity in pathophysiological condi-
tions [21, 22, 24], and may be involved with cardiorespi-
ratory disorders in humans, such as hypertension, sleep 
apnea, sudden infant death syndromes, and others. Fur-
ther studies are needed using alternative study designs, 
e.g., genetically modified animals, to explore the role of 
microglia in the cardiorespiratory function [65].

Conclusions
In synopsis, the study showed that microglia contrib-
uted to cardiovascular but not ventilatory control by 
counteracting the arterial blood pressure augmenta-
tion in the resting normoxic condition. On the other 
hand, microglia appeared to contribute to respiratory 
but not cardiovascular control by augmenting ventila-
tory responses to acute hypoxia. Taken together, the 
present and other reports suggest the modulatory role 
of microglia be mediated by an interaction between 
microglia and astrocytes upstream to neurons. Differ-
ences in shaping the cardiovascular and ventilatory reg-
ulation by these two non-neuronal brain cells require 
further exploration using alternative study designs.
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