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REVIEW

Temporal variations in the pattern 
of breathing: techniques, sources, 
and applications to translational sciences
Yoshitaka Oku*    

Abstract 

The breathing process possesses a complex variability caused in part by the respiratory central pattern generator in 
the brainstem; however, it also arises from chemical and mechanical feedback control loops, network reorganiza-
tion and network sharing with nonrespiratory motor acts, as well as inputs from cortical and subcortical systems. 
The notion that respiratory fluctuations contain hidden information has prompted scientists to decipher respiratory 
signals to better understand the fundamental mechanisms of respiratory pattern generation, interactions with emo-
tion, influences on the cortical neuronal networks associated with cognition, and changes in variability in healthy 
and disease-carrying individuals. Respiration can be used to express and control emotion. Furthermore, respiration 
appears to organize brain-wide network oscillations via cross-frequency coupling, optimizing cognitive performance. 
With the aid of information theory-based techniques and machine learning, the hidden information can be translated 
into a form usable in clinical practice for diagnosis, emotion recognition, and mental conditioning.
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Introduction
Humans breathe throughout their lives; from birth to 
death, our breaths are always changing, and no single 
breath is identical to another. Where do these variations 
originate from? What information can we extract from 
the variations in breathing? What are the physiologi-
cal and pathophysiological implications of these varia-
tions? Breath-to-breath variations in breathing patterns 
can occur as uncorrelated random variations (white 
noise), correlated random changes, periodic variations, 
or nonrandom, nonperiodic fluctuations [1]. This review 
focuses on these temporal variations in the pattern of 
breathing, including the complex variability of breathing 
and characteristic breathing patterns.

Definition of terms The term “variability” is used in dif-
ferent ways. For example, heart rate variability refers to 
small fluctuations in the time interval between heart-
beats. However, the term is also used to describe more 
diverse variations in the pattern of breathing. In this 
review, the term “respiratory variability” is used in a 
broader sense, as equivalent to “breath-to-breath varia-
tions in breathing patterns” described by Bruce [1]. The 
term “complexity”, synonymous with “complex variabil-
ity”, has a meaning that is qualitatively and quantitatively 
distinguishable from traditional concepts and metrics 
of “variability” [2]. Although no formal definition of this 
term exists, it may be said that “complexity” is a meas-
ure of the amount of information and unpredictability, 
which is quantified with the information theory-based 
techniques mentioned in  "Techniques for analyzing res-
piratory variability" section. As revealed in "Respiratory 
variability in health and disease" and "Future directions in 
translational sciences" sections, the concept of complex 
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variability can be usefully applied to translational sci-
ences. The term “nonlinearity” refers to the relation-
ship between system inputs and outputs where the latter 
is not directly proportional to the former; thus, small 
input perturbations can cause large effects on the out-
puts [2]. A linear system, but not a nonlinear system, can 
be described by an autoregressive model or frequency 
response characteristics.

Recognizing the presence of ’hidden information’ in 
physiological time series necessitates the use of fluctua-
tion analysis techniques in statistical physics [3–7], which 
are unfamiliar to physiologists. Therefore, this review 
begins by summarizing techniques for analyzing complex 
variability and then discusses the sources of respiratory 
variability and translations of the information hidden 
therein to health-related sciences.

Techniques for analyzing respiratory variability
A common measure of gross variability is the coefficient 
of variation (CV), which is defined as the ratio of the 
standard deviation to the mean. When datasets with var-
ied units or considerably different means are compared, 
the CV should be used instead of the standard deviation. 
The root mean square successive difference (RMSSD) 
measures the extent of variability between successive 
time points; for example, the RMSSD of the interheart-
beat interval can be used as an index for monitoring 
changes in parasympathetic activity [8].

Respiratory variability is produced through an inte-
grated process that involves multifunctional control 
mechanisms in the brain; therefore, the characteristics of 
present breaths are correlated with the characteristics of 
past breaths. The autocorrelation (AR), which is defined 
as the correlation between a signal and a delayed copy 
of itself as a function of the delay, is a common correla-
tion metric for discrete time-series data. For example, the 
white noise exhibits zero correlation with any nonzero 
time lag. On the other hand, if a signal is not random, 
one or more of the autocorrelations remains significantly 
nonzero. Previous studies on respiratory variability have 
typically used the AR at one breath lag [9].

In well-controlled experimental settings, respiratory 
control systems can be regarded as stationary. In such 
cases, the mean, standard deviation, CV, and AR remain 
invariant throughout the observation period. However, 
this is not always the case; in particular, during long-
term observations, e.g., overnight monitoring, respira-
tory control systems become nonstationary. Detrended 
fluctuation analysis is a scaling analysis approach that 
was originally designed to quantify long-range power-
law correlations in signals; however, it can also be used 
to investigate both long-term (LTCs) and short-term 
correlations (STCs) in nonstationary systems [10, 11]. 

Detrended fluctuation analysis uses the integrated fluctu-
ation of a signal; the integrated time series is divided into 
N epochs of length n, and each epoch is detrended with a 
least squares fit, yielding a locally detrended time-series 
segment xnk (t), k = 1, . . . , N. The average fluctuation for a 
given epoch is calculated as

The LTCs or STCs can then be extracted by the scaling 
exponent, α, which is the slope of log(F(n))log(n)  for a specific 
range of n [12].

Deterministic dynamical systems that follow a unique 
path or evolution can exhibit complex behaviors. One 
example is the Rössler attractor (Fig. 1), which is a system 
composed of three nonlinear ordinary differential equa-
tions. In such a system, a small difference in initial con-
ditions can result in significantly different behaviors, and 
predicting future behavior becomes progressively more 
difficult with time, a traditional indicator of ‘chaos’. The 
largest Lyapunov exponent (LLE) measures the predicta-
bility of a system’s behavior; a positive LLE indicates that 
the attractor diverges, i.e., chaotic behavior [13].

The complexity of the variability of a system can be 
visualized through state space reconstructions. These 
visualizations can be obtained from a single observ-
able variable using delay-time embedding (Fig.  1c). If 
we have time-series data u(i), i = 1, 2, . . . ,N  , the state 
space can be reconstructed as an m-dimensional state, 
Xm
i = {u(i),u(i + τ ), . . . ,u(i + (m− 1)τ )} , where m is 

the embedding dimension and τ is the time delay. If we 
choose m and τ properly, then the complexity of the vari-
ability is well characterized by the reconstructed attrac-
tor [14, 15].

As seen in three-dimensional plots of the Rössler 
attractor (Fig.  1b), the trajectories never return to past 
trajectories but do pass near them. When we plot the 
neighborhoods Xj of Xi whose norm is within r , we can 
visualize these state recurrences [16]. This is called a 
recurrence plot, and it is mapped as

 where � · � is a norm, r is a threshold distance, and � 
is the Heaviside function, which has a value of 1 if the 
expression in the inner parenthesis has a value greater 
than zero and a value of zero otherwise. Diagonal lines 
of different lengths that appear in the recurrence plots 
(Fig.  1d) indicate that a state visits the same region of 
the attractor at different times [17]. Eckmann et al. [16] 
showed that the length of these short upward diagonal 
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lines is inversely proportional to the LLE. Based on the 
probability of diagonal lines with specific lengths appear-
ing, the amount of information or uncertainty can be cal-
culated using an entropy measure, the Shannon entropy 
(ShEn) [17], which is formulated as

 where P(Li)is is the probability that diagonal lines of 
length Li appear.

Attractors that originate from complex systems often 
exhibit fractal structure or self-similarity, where simi-
lar patterns appear at increasingly small scales. A widely 
used index for characterizing fractal structures is the 
correlation dimension, which was proposed by Grass-
berger and Procaccia [18]. For any positive number r 
and embedding dimension m, the correlation sum C(r) , 
which is the discrete version of the correlation integral, is 

ShEn = −

n
∑

i=1

P(Li)logP(Li)

defined as the fraction of pairs in the time delay embed-
ding vector Xm

i  that have distances smaller than r,

where N ′
= N − (m− 1)τ , � · � is the Euclidian norm, 

and � is the Heaviside function [19]. If an attractor 
reconstructed by delay-time embedding exhibits a fractal 
structure, there exists a region in r where log(C(r))log(r)  is lin-
ear. The correlation dimension is defined as the slope of 
this scaling region. Figure  2 shows the attractor recon-
struction, recurrence plot, and correlation dimension 
estimation from an actual respiratory signal.

The amount of information and the unpredict-
ability of fluctuations in time-series data can be cal-
culated directly using another entropy measure, the 
approximate entropy (ApEn) [9, 20]. The algorithm first 
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Fig. 1  Visualization of the Rössler attractor, a continuous-time dynamical system that exhibits chaotic dynamics with fractal properties. The system 
is composed of three nonlinear differential equations and thus has three variables. a Temporal fluctuations of the x variable. Although each variable 
oscillates within a fixed range of values, its amplitude is highly variable. b Three-dimensional trajectory of the Rössler attractor visualized using the 

values of all three variables. c Three-dimensional plot of the Rössler attractor reconstructed using delay-time embedding (  τ = 30 a.u.  ) of a single 

variable (x). Note that the complexity of the system is well preserved compared to b, in which all three variables are used. d Recurrence plot of the 
reconstructed attractor using delay-time embedding (  m = 3, τ = 30 a.u.  , r = 1.0) consisting of diagonal lines with different lengths, indicating 
that the trajectories pass neighborhoods of past trajectories with limited durations. This means that the reconstructed attractor exhibits a fractal 
structure or self-similarity
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estimates the appearance frequency of a similar pat-
tern of sequences by evaluating whether a sequence of 
data points with length m is similar to other sequences 
in the data, with an allowed distance of r between the 
points. For each sequence Xm

i , i = 1, . . . ,N −m+ 1 , 
the appearance frequency is defined as

where m is the length of the sequence, N is the number 
of data points, � · � is the norm, and � is the Heaviside 
function. Then, ApEn can be measured using the average 
logarithmic appearance frequency:

Cm
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Fig. 2  Visualization and quantification of the complexity of actual experimental data. The data, obtained from an open dataset [225], contain a 
human respiratory signal while the participant watched a scary video. The respiratory signal is the temporal change in chest dimension associated 
with the expansion and contraction of the chest cavity, which was measured using a Hall effect sensor placed high on the torso. a The temporal 
change in chest dimension, sampled at 10 Hz, was used as the x variable for attractor reconstruction (b) and to generate the recurrence plot (c). 
b Three-dimensional plots of an attractor reconstructed using delay-time embedding ( τ = 0.6 s) . Variables y and z represent respiratory signals 
0.6 s and 1.2 s advanced relative to the x variable, respectively. c Recurrence plot of human respiration while the participant watched a scary 
video (   m = 3, τ = 0.6 s  , r = 0.8). d The log–log plot of a distance r versus the correlation sum C(r) has a linear scaling region, indicative of a fractal 
property. e The slope of the log–log plot (   log(C(r))

log(r)
  ) converges to 1.5 as the embedding dimension grows
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The sample entropy (SampEn) is a modification of the 
ApEn that is used to assess the complexity of physiologi-
cal time-series signals and to diagnose disease states [21]. 
SampEn is defined as

Correlated variability arises from either a stochas-
tic process (e.g., Brownian motion) or a deterministic 
nonlinear process. Due to various measurement restric-
tions, respiratory data have a limited length. As a result, 
any nonlinear dynamics that originate from determin-
istic processes cannot be distinguished from correlated 
variations caused by stochastic events [22]. To detect 
nonlinearity in the observed data, the surrogate test has 
often been used. In this test, surrogate data are gener-
ated based on a model or a combination of Fourier and 
inverse Fourier transformations. The surrogate data share 
the same statistical properties, such as the AR and power 
spectrum, as the original data, but do not retain their 
nonlinear properties [23]. Then, a null hypothesis against 
the presence of nonlinearity is tested using Monte Carlo 
methods [23, 24]. Namely, a discriminating statistic of 
nonlinearity is calculated for the original and all surro-
gate data, and the null hypothesis is rejected if the value 
for the original dataset is significantly different from that 
of the surrogate dataset.

A major obstacle for detecting the nonlinearity of res-
piratory variability is that nonlinear characterization 
methods, such as Lyapunov exponents and correlation 
analyses, are sensitive to both uncorrelated and corre-
lated noise [25]. In addition, although the surrogate test 
infers the presence of nonlinearity, the results are not 
sufficient for determining the presence of chaos [26]. An 
alternative method that can circumvent these limitations 
is noise titration. In this method, noise is gradually added 
to the observed data by increasing the standard deviation 
of the data. The noise limit (NL) is defined as the stand-
ard deviation at which nonlinearity cannot be detected 
by the Volterra–Wiener algorithm, with NL > 0 indicating 
the presence of chaos [25]. There are some circumstances 
in which noise titration fails to distinguish colored noise 
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from chaos; however, a ‘remedy’ has been provided to 
address these circumstances [27].

Sources of respiratory variability
The respiratory control system is complex; while the 
primary goal of the respiratory system is to maintain 
arterial blood gas homeostasis, if the work of breath-
ing is too costly, the homeostatic maintenance function 
can be compromised, and the magnitude and pattern of 
the respiratory motor output are optimized in terms of 
a cost function [28, 29]. Swallowing, coughing, sighing, 
and other nonrespiratory motor acts reset the respira-
tory rhythm produced by the respiratory central pattern 
generator (rCPG) in the brainstem. Respiratory neurons 
in the Bötzinger complex and ventral respiratory group 
are involved in generating the spatiotemporally organ-
ized activities associated with coughing and swallowing, 
and some respiratory neuronal networks are shared by 
nonrespiratory networks [30, 31]. Spatial network reor-
ganization, i.e., the expansion and contraction of the 
active network during the inspiratory phase of breathing, 
occurs within the rCPG via a balance between excita-
tion and inhibition [32]. This network sharing and reor-
ganization contribute to the flexibility and variability of 
breathing [33, 34]. Furthermore, volitional and emotional 
controls of breathing can take control over the pattern of 
breathing, either consciously or unconsciously, via direct 
projections to respiratory motoneurons and projections 
to diverse respiratory control areas in the midbrain, pons, 
and medulla oblongata [35–38]. This multifaceted con-
trol produces variations in breathing that are not random 
but have some structure inherited from past breaths. 
In this section, sources of respiratory variability at each 
level—from automatic control by respiratory rhythmic 
cores in the brainstem to respiratory control by cortical 
and subcortical systems—are reviewed.

Complex variability intrinsic to the rCPG
The characteristics of a given breath were found to be 
dependent on the characteristics of the immediately pre-
ceding breath in paralyzed, artificially ventilated, and 
vagotomized cats whose spinal cords were cut at the T1 
level [39]. This suggests that the nonrandom variability 
of breathing originates at least in part in the rCPG. The 
pre-Bötzinger complex (preBötC), which is located in the 
ventrolateral medulla, is the respiratory rhythmic core 
that generates the bursting activity that triggers inspira-
tion [40–42]. Another respiratory oscillator, the parafa-
cial respiratory group (pFRG, also known as the lateral 
parafacial), which is located ventrolateral to the facial 
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nucleus, is an expiratory rhythm generator that causes 
active expiration during states of elevated respiratory 
drive [40, 43, 44]. Neurons in the preBötC autonomously 
exhibit periodic bursting activity due to their channel 
properties even if they are isolated and produce periodic 
inspiration-related synchronized activity in slice prepara-
tions [45, 46].

Del Negro et  al. [47] analyzed respiratory variability 
at the neuron population level in a highly reduced, but 
rhythmically active preparation by measuring the inte-
grated preBötC activity. A Poincaré map, which is an 
intersection of the state space, was obtained by plotting 
∫

PBCn+1 against 
∫

PBCn , where 
∫

PBCn represents the 
n-th integrated preBötC activity. They observed discrete 
transitions in the Poincaré maps from periodic oscilla-
tions to mixed-mode periodicity, quasiperiodicity, and 
finally disorganized aperiodic activity, with progres-
sive increases in neuronal excitability, suggesting that 
the preBötC produces neural activity characteristic of 
a nonlinear dynamic system. Koshiya et  al. [48] applied 
a voltage-sensitive dye imaging technique to rhythmi-
cally active slices and recorded spatiotemporal preBötC 
activity. They observed that the center of activity, which 
is calculated according to the magnitude of fluorescence 
intensity, moved within the preBötC during neuronal 
population bursts. The state space reconstructed from 
the moving speed of the center of activity was quasiperi-
odic, and a correlation dimension analysis and surrogate 
test suggested the presence of nonlinear dynamics.

Carroll and Ramirez [49] investigated cycle-to-cycle 
variability during preBötC neuronal recruitment using 
a multielectrode recording technique and found that 
respiratory neurons were stochastically activated with 
each burst. Furthermore, they found that the burst onset 
variability could not be reproduced in fully intercon-
nected computational models but could be reproduced 
in sparsely connected network models with as little as 1% 
connectivity. However, this estimate was based on a ran-
domly connected network that included only excitatory 
neurons; the preBötC neuronal network includes both 
excitatory and inhibitory neurons [50, 51]. A higher burst 
onset variability may be achieved with a higher fraction 
of all-to-all synaptic connections in a more realistic net-
work with both excitatory and inhibitory neurons since 
the interburst interval becomes variable when inhibitory 
connections are included [52].

The pFRG was first identified as a presumptive rhythm 
generator that triggers the inspiratory pattern generator 
[53] in the brainstem–spinal cord preparations of neona-
tal rodents developed by Suzue [54]. The pFRG partially 
overlaps with the retrotrapezoid nucleus (RTN), which 
is located ventromedial to the facial nucleus, contains 
chemosensitive cells and distributes a CO2-dependent 

excitatory drive to the respiratory network [45, 55–57]. 
In more mature, intact preparations, neurons in the 
pFRG appear to be quiescent; however, they generate 
late-expiratory bursts of action potentials when they are 
disinhibited or activated [58]. Therefore, the pFRG is 
postulated to be a conditional oscillator for active expi-
ration [40, 43]. Neurons in the preBötC and pFRG are 
bidirectionally connected; therefore, these inspiratory 
and expiratory oscillators are coupled. When the excit-
ability of the preBötC network decreases, the inspiratory 
bursts skip their expected timings in an unpredictable 
manner; thus, quantal slowing of the respiratory rhythm, 
a phenomenon in which the respiratory rhythm jumps 
nondeterministically to integer multiples of the control 
period, occurs [59]. This quantal slowing could be caused 
by transmission failure from the pFRG to preBötC net-
works due to suppressed or stochastic excitatory synap-
tic transmission [59, 60]. Alternatively, quantal slowing 
could result from a breakdown of synchronized bursting 
in the preBötC [61]. In either case, the coupled oscillators 
in the preBötC and pFRG produce respiratory variability 
similar to atrioventricular blocks in the heart.

Normal breathing consists of three phases: inspira-
tion, postinspiration, and late expiration, all of which are 
believed to originate in the rCPG in the brainstem [41, 
62]. Sequential transection experiments have shown 
that the three-phase rhythm requires the integrity of the 
pontine–medullary respiratory network [63]. The pons 
plays two major roles in the rCPG, with both mediated 
by neuronal circuitry within the Kölliker-Fuse (KF) area 
[64]. First, the pons provides an inspiratory off-switch 
that causes an inspiratory-to-expiratory phase transition 
in conjunction with sensory feedback from slowly adapt-
ing pulmonary stretch receptors. Second, the pons regu-
lates postinspiration, adjusting upper airway resistance 
during the respiratory cycle. Lesioning the pons results 
in a longer and more irregular inspiratory phase [65–67]. 
Stimulus after-effects (the prolongation of the inspira-
tory duration) have been found to be augmented follow-
ing lesioning, suggesting that the pons plays an important 
role in the stability of the rCPG [67].

Yu et  al. [68] investigated the effects of changing the 
input to the pons using a conductance-based model of 
the four different types of cells in the rCPG. The model 
shows that reduced pontine input causes longer inspira-
tory phases, reduced respiratory rate (RR), and increased 
breath-to-breath variability, consistent with the experi-
mental findings. Furthermore, they investigated how 
channel noise affects neural dynamics at the circuit level. 
The model predicted that the expiratory phase is more 
variable than the inspiratory phase when the channel 
number is small, and vice versa when the channel num-
ber is large. Among the four different types of cells, the 
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pacemaker cell exhibited the highest sensitivity to chan-
nel noise.

Astrocytic contributions to respiratory variability
Astrocytes respond to changes in neuronal network 
activity across brain states and behaviors [69] and mod-
ulate central pattern-generating motor circuits [70]. 
Astrocytes can even modulate brain-wide oscillations 
by transmitting the oxygenation status to higher corti-
cal areas [69]. In the preBötC, the astrocyte glutamate–
glutamine cycle and the supply of glutamine to neuronal 
glutamatergic terminals are essential for rhythm genera-
tion [71]. Furthermore, blocking the vesicular release of 
preBötC astrocytes reduces the resting breathing rate, 
lowers the frequency of periodic sighs, decreases rhythm 
variability, impairs respiratory responses to hypoxia and 
hypercapnia, and reduces exercise capacity [72].

Rhythmic, inwardly directed currents attributed to 
neuronal population bursts have been found in 10% of 
preBötC astrocytes [73]. Okada et  al. [74] recorded the 
spatiotemporal activities of neurons and astrocytes in 
the preBötC using a calcium imaging technique. They 
found that a subset of astrocytes exhibited preinspira-
tory increases in the intracellular calcium concentration 
that were irregularly coupled with inspiratory neuronal 
bursts. In addition, they found that optogenetic stimu-
lation of the astrocytes triggered action potentials in 
inspiratory neurons in the preBötC. Similar irregular 
coupling between the calcium activities of neurons and 
astrocytes has been reported in organotypic cultures of 

preBötC slices and pFRG slices [75, 76]. Network struc-
ture analyses with the cross-correlation technique and 
graph theory [77] revealed three separate but intercon-
nected subnetworks: the glial, neuronal, and glial-neu-
ronal networks [76]. These networks are organized into 
a small-world network structure commonly observed in 
biological networks [78]. On the other hand, half of the 
preBötC astrocytes showed synchronized low-frequency 
(0.023  Hz) oscillations; thus, a subset of the astrocytes 
forms a slow oscillator (Fig. 3) [73, 74, 79]. Therefore, the 
neurons and astrocytes in the preBötC and pFRG may 
form coupled slow and fast oscillators and can mutually 
interact, thus producing complex behaviors (Fig. 4a) [79, 
80]. 

Coupled oscillators desynchronize for sufficiently small 
couplings and then bifurcate to partially synchronized 
states when the coupling increases above a critical value 
[81]. Cross-frequency coupling (CFC), which is the inter-
action between oscillations in different frequency bands, 
is a widely observed phenomenon in the brain that may 
play a functional role in neuronal computation, com-
munication, and learning [82]. There are various types 
of CFC, including phase-phase, phase-frequency, phase-
amplitude, amplitude-amplitude, frequency-frequency, 
and amplitude-frequency (Fig.  5) [83]. In particular, 
phase-amplitude coupling changes quickly in response to 
sensory, motor, and cognitive events and correlates with 
performance in learning tasks (see "Control of respira-
tion during cognition" section) [82]. However, the cou-
pling between glial and neuronal oscillators may be more 
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Fig. 3  Representative calcium transients of EGFP-positive and EGFP-negative cells [79]. a Astrocytes are identified with GFAP promoter-controlled 
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complex, since the coupling is not compatible with any 
known type of CFC. Therefore, this interaction may be 
revealed only through nonlinear analyses, such as cross-
recurrence plot analysis [84, 85].

Correlated variability and oscillations originating 
from the chemical control system
The integrated phrenic nerve activity ( 

∫

Phr ) responses to 
the electrical stimulation of a carotid sinus nerve (CSN) 
in anesthetized, paralyzed, vagotomized, and glomec-
tomized cats have two distinct components: a rapid 
increase that accounts for approximately half of the full 
response and a gradual increase that eventually reaches 
a steady-state plateau [86]. After the stimulation stops, 
short-term potentiation (STP) of respiration is observed, 
in which the level of 

∫

Phr decreases rapidly but remains 
higher than the prestimulation level [86]. STP has also 
been observed after acute exposure to hypoxia, which is 
known as post-hypoxic persistent respiratory augmenta-
tion (PHRA) [87, 88]. Arundic acid, which is an astrocyte 
inhibitor, has been shown to suppress PHRA; however, 
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Fig. 4  Schematic drawings of coupled slow and fast oscillators that 
exhibit cross-frequency coupling (CFC). a Slow glial (red circles) and 
fast neuronal (black circles) oscillators are organized within the pFRG 
and preBötC and modulate their intrinsic rhythms [75]. The pFRG and 
preBötC conditionally couple, resulting in complex variability, such 
as quantal slowing. b The slow respiratory oscillator (black circle) 
orchestrates fast neuronal oscillations (blue circles) in the anterior 
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astrocyte-specific Trpa1 knockout did not abolish PHRA, 
indicating that astrocytes mediate PHRA through mech-
anisms other than the putative ventilatory hypoxia sensor 
TRPA1 channels [89].

In addition to STP, several different types of memory 
effects have been shown to be associated with chemo-
receptor afferent activation [90, 91]. CSN stimulation 
or hypoxia exposure increases 

∫

Phr ; however, the RR is 
below that of the steady-state baseline level. This phe-
nomenon is known as the short-term depression (STD) 
of respiration. Injections of muscimol, a GABAA agonist, 
into the ventrolateral pons, where low current pulses 
evoke short-latency inhibition of phrenic nerve activ-
ity, have been shown to abolish STD [92]. This result 
suggests that the integrity of the ventrolateral pons is 
required for STD [92]. While STD involves a decrease 
in RR that occurs when hypoxic exposure is sustained 
for tens of seconds to a few minutes, hypoxic ventilatory 
depression (HVD) involves a decrease in tidal volume 
(VT) that occurs when moderate hypoxemia is sustained 
for 5–30  min [90]. Although the mechanism of HVD is 
unknown, recent findings have shown that astrocytes 
in the preBötC play an important role in counteracting 
HVD by releasing ATP to stimulate ventilation by acti-
vating P2Y1 receptors [93]. Repeated CSN stimulation or 
hypoxia exposure has been shown to result in long-term 
potentiation (LTP) of respiration in rats, where 

∫

Phr 
remained above that of the controls for at least 30 min. 
Vermalectomy eliminated LTP, which suggests that the 
cerebellar vermis plays a role in LTP [91].

The above experiments on STP, STD, and LTP were 
all conducted under open loop conditions, i.e., with-
out chemical feedback control; therefore, these memory 
effects must be caused by neural mechanisms rather than 
chemical feedback mechanisms. However, correlated res-
piratory activity can also arise from chemical feedback [1, 
94]. The VT of each breath in anesthetized, vagotomized, 
and spontaneously breathing rats was correlated with 
that immediately preceding breathing; however, such 
a correlation was not observed in the 

∫

Phr of anesthe-
tized, vagotomized, paralyzed, and artificially ventilated 
rats [94]. Therefore, the autocorrelation originates from 
chemical feedback mechanisms.

Hypoxia, in combination with sleep and hypocapnia, 
can induce periodic breathing characterized by repeated 
clusters of two to five breaths interspaced with regularly 
spaced expiratory pauses [95]. During wakefulness, iso-
capnic hypoxia increases gross respiratory variability but 
decreases the autocorrelation coefficient at a lag of one 
breath for minute ventilation. The increase in respira-
tory variability can be decomposed into a random com-
ponent and an oscillatory component, indicating that 
hypoxia induces hidden oscillations even in the absence 

of hypocapnia in healthy awake subjects [96]. The 
PaCO2 level also affects respiratory variability. Hyper-
capnia reduces respiratory variability and increases LLE, 
whereas hypocapnia increases respiratory variability and 
decreases LLE [97].

Phase resetting of the respiratory rhythm
The response dynamics of chemical feedback and mech-
anoreceptor feedback systems differ, with the latter 
depending on when the stimulus is presented [98]. For 
example, lung inflation during inspiration shortens the 
inspiratory time, whereas lung inflation during expiration 
prolongs the expiratory time. This suggests that the pre-
dicted timing of a certain phase, e.g., the onset of inspi-
ration, can shift depending on the timing of a stimulus. 
This phenomenon is referred to as the phase resetting 
characteristic [99]. The phase resetting characteristics of 
the rCPG were first investigated by electrically stimulat-
ing the midbrain [100], which facilitates inspiration; how-
ever, these characteristics were most extensively studied 
by electrically stimulating the vagus nerve and superior 
laryngeal nerve (SLN) [1], which suppress inspiratory 
activity during most phases of the respiratory cycle. A 
plot of the time between the onset of the preceding inspi-
ration and a stimulus (termed the old phase) versus the 
time between the stimulus and the onset of the following 
inspiration (termed the cophase) determines the topo-
graphical type of phase resetting [100]. If the stimulus is 
weak, a net change in the cophase as the old phase moves 
through one respiratory cycle becomes one respiratory 
cycle, and the topographical type is classified as type-1. If 
the stimulus is strong, the net change becomes 0, and the 
phase resetting is classified as type-0.

A brief SLN stimulation produces after-effects that can 
last for several cycles [101]. The stimulus after-effects 
depend on the timing of a given stimulus. Brief vagal 
nerve stimulation delivered during each respiratory 
cycle at mid-inspiration, mid-expiration, and late expira-
tion near the expiratory-to-inspiratory phase transition 
can result in complex breath-to-breath variability [102]. 
Dhingra et  al. [103] investigated vagal-dependent res-
piratory variability using information theory-based tech-
niques and surrogate data testing. They found that the 
vagal afferent and dorsolateral pons both contribute to 
nonlinear variability in the pattern of breathing and are 
mutually dependent.

Repeated stimulation entrains respiration to the 
stimulation; however, the trajectories that return to the 
baseline state are not the same, resulting in respiratory 
variability. The stochastic noise associated with ion chan-
nel gating and synaptic neurotransmission affects the 
entrainment of respiratory rhythms to external periodic 
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inputs [104]. Periodic vagal nerve stimulation (VNS) 
entrains the respiratory rhythm similar to the Hering-
Breuer reflex; however, VNS increases respiratory vari-
ability because noise interacts with the input, leading 
to phase slips. Suppressing the activity of the KF region 
enhances entrainment and reduces rhythm variability 
during VNS, which suggests that the KF region regulates 
respiratory variability by controlling the gain of the Her-
ing-Breuer reflex [104].

Swallowing
Swallowing is a physiological perturbation of the respira-
tory rhythm [105, 106]. In humans, swallowing during 
inspiration terminates the inspiratory phase, and respi-
ration resumes with expiration, with a shorter duration 
than that of the control [107]. On the other hand, swal-
lowing during expiration interrupts the expiratory phase; 
however, in this case, respiration normally resumes with 
expiration, increasing the total duration of the expiratory 
phase [107]. In general, swallowing acts as a strong per-
turbation in the rCPG, resulting in type-0 phase resetting 
[106, 107]. All rCPG neurons appear to be affected by 
swallowing, irrespective of the type of neuron. Inspira-
tory-augmenting, inspiratory-decrementing, and expira-
tory-augmenting neurons are all inhibited [31, 108, 109], 
while a majority of expiratory-decrementing neurons 
are activated in rats [108], and inspiratory-to-expiratory 
phase-spanning neurons are activated in guinea pigs 
[109]. Lesioning the KF area with ibotenic acid eliminates 
the respiratory phase resetting caused by swallowing, 
which suggests that the KF region plays an important role 
in coordinating breathing and swallowing [110, 111]. Fur-
thermore, KF inhibition attenuates tonic postinspiratory 
vagal nerve activity and lowers the threshold for evoking 
swallowing. Therefore, the KF region plays a role in the 
airway-defensive laryngeal adductor reflex and gates the 
initiation of swallowing [112]. Since swallowing initiation 
is also inhibited by vagal feedback, dual peripheral and 
central gating mechanisms are involved in the coordina-
tion between breathing and swallowing [113].

Sighing
Sighs originate from a small ensemble of preBötC neu-
rons [33, 114]. Physiological sighing requires peptider-
gic inputs from RTN/pFRG neurons, which express the 
bombesin-like neuropeptide neuromedin B or gastrin-
releasing peptides [40, 114]. Physiological sighing is 
believed to be important in preventing the alveoli from 
collapsing (atelectasis), improving gas exchange [115, 
116], and reducing hypoxia and hypercapnia [117]. 
However, a sigh is not only an augmented breath that 
maximally inflates the lung but also signals brain state 
changes, controls arousal, and regulates homeostasis 

of  respiratory variability [118]. Vlemincx et  al. [119] 
found that sighing increases autocorrelated respiratory 
variability and relieves mental stress. They hypothesized 
that sighs serve as psychophysiological resetters, restor-
ing respiratory regulation by resetting the nonrandom 
respiratory variability when it becomes too low or too 
random [120–122]. Based on the theory of stochastic res-
onance [123], they postulated that an inappropriate level 
of respiratory variability compromises flexible and adap-
tive responsiveness or jeopardizes stability and hypoth-
esized that a sigh acts as noise to restore healthy balanced 
respiratory variability [119]. Meanwhile, because auto-
correlated respiratory variability arises from chemical 
feedback control [1, 94], the level of autocorrelated vari-
ability may reflect the relative contribution of the chemi-
cal feedback control to the total respiratory variability. 
Thus, sighing may shift respiratory control from the cor-
tical and subcortical systems to the brainstem autonomic 
control system.

Breathing controlled by the limbic system
Emotion induces various physiological responses, includ-
ing changes in heart rate, blood pressure, body tem-
perature, and respiratory patterns, by activating the 
autonomic nervous system [124]. Among the changes in 
respiratory patterns, changes in the RR have been inves-
tigated extensively. Negative emotions, such as anxiety 
[125], fear [126], and sadness [127] increase the RR. Posi-
tive emotions, such as happiness, increase the RR [126, 
127], while relief decreases the RR [125]. In addition to 
changes in the RR, each emotion appears to accom-
pany a characteristic pattern of breathing that, to some 
extent, may overlap with the pattern from other emotions 
[128]. For example, fast, deep breaths are associated with 
excitement, while rapid, shallow breaths are associated 
with concentration, fear, and panic. Discriminant analy-
ses indicate that four emotions (anger, fear, happiness, 
and sadness) can be adequately classified using heart rate 
variability, respiratory sinus arrhythmia, the mean RR, 
and respiratory variability, suggesting that distinct pat-
terns of peripheral physiological activity are associated 
with different emotions [126].

The response to an emotion in the respiratory pattern 
is affected by the personality of the subject [129]. In sub-
jects with high levels of anxiety, increases in the RR are 
more dominant responses to mental stress than changes 
in the VT [130], and changes in expiratory duration are 
dependent on anxiety scores [131]. Personality even 
affects respiratory parameters of subjects at rest [132]. 
The VT is smaller and the RR is higher in subjects with 
more anxiety and higher states on the State-Trait Anxiety 
Inventory [132].
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The RR increases during the interval between alert 
presentation and actual stimulation, irrespective of 
changes in O2 consumption [133], which implies that 
breathing is controlled by the cortical or subcortical areas 
associated with emotion during the anticipatory anxiety 
period. Masaoka et  al. [134] analyzed electroencephalo-
gram (EEG) data during the anticipatory anxiety period 
and observed positive waves in cycle-triggered averaged 
EEG signals approximately 350  ms after the onset of 
inspiration, which are known as respiratory-related anxi-
ety potentials (RAPs). A dipole tracing analysis based on 
a scalp-skull-brain head model identified the source loca-
tion of the RAPs as the right temporal pole, while in the 
most anxious subject, it was the temporal pole and the 
amygdala [134]. A blood oxygen level-dependent (BOLD) 
functional magnetic resonance imaging (fMRI) study 
[135] demonstrated that the insula is essential for dysp-
nea perception. In addition, activation of the anterior 
cingulate cortex was correlated with the Breathlessness 
Catastrophizing Scale during dyspnea anticipation [136].

The respiration–emotion relationship is bidirectional. 
Deep and slow breathing (DSB) reduces anxiety and skin 
conductance levels in alcohol-dependent young adults 
[137]. Older adults also benefit from DSB in terms of 
vagal tone and anxiety [138]. The ameliorating effects 
of DSB on anxiety are believed to be mediated by rein-
forcement of the vagal tone, which balances sympathetic 
and parasympathetic activity [139]. Philippot and Blairy 
[128] tested whether respiratory changes affect emotions. 
When subjects mimicked a breathing pattern character-
istic of joy, anger, fear, or sadness, the emotional state 
characterized by that breathing pattern was evoked, sug-
gesting that alterations in breathing patterns can induce 
emotion. Masaoka et  al. [140] showed that odors asso-
ciated with autobiographical memories can trigger DSB 
and pleasant emotional experiences.

Control of respiration during cognition
Grassmann et  al. [141] conducted a systematic review 
on respiration and cognitive loads. They found that in 
general, the cognitive load increases the RR and minute 
ventilation while not considerably impacting the VT. 
The end-tidal CO2 level decreased, which suggests that 
subjects were hyperventilated; however, oxygen con-
sumption and CO2 release were also elevated. Changes 
in respiratory variability depend on the type of cogni-
tive load [142]. Total variability in the RR decreases dur-
ing sustained attention tasks, while during an arithmetic 
load, the autocorrelated variability decreases while the 
random variability increases. In addition, the frequency 
of sighing increased during sustained attention tasks but 

after arithmetic tasks, suggesting that the need for the 
respiratory control system to reset differs depending on 
the type of load [142]. Honma et  al. [143] found that, 
compared with reading on paper, reading on a smart-
phone elicited fewer sighs and promoted brain over-
activity in the prefrontal cortex, resulting in reduced 
comprehension.

There is growing evidence that human subjects can 
adjust their respiratory cycle to the onset of cognitive 
tasks, even if the tasks are not olfactory in nature [144–
148]. Johannknecht et al. [146] found that subjects tend 
to align their respiratory cycle to the experimental para-
digm, inhaling when the stimulus is presented and exhal-
ing when submitting their responses. Respiratory timing 
affects cognitive task performance [145, 146, 148–150]. 
Zelano et  al. [150] recorded intracranial EEG (iEEG) 
signals in patients with epilepsy and found that natural 
breathing synchronized electrical activity in the pyriform 
cortex, amygdala, and hippocampus. Fear discrimination 
and memory retrieval were enhanced during the inspira-
tory phase when the oscillatory power peaked. Cogni-
tive performance was modulated during nose breathing 
but not during mouth breathing. Furthermore, Herrero 
et  al. [151] demonstrated that coherence between the 
iEEG signal and breathing increased in the frontotempo-
ral-insular network during volitionally paced breathing, 
whereas attention to breathing increased coherence in 
the anterior cingulate, premotor, insular, and hippocam-
pal cortices. They proposed that breathing can organize 
neuronal oscillations throughout the brain [151]. In addi-
tion, Kluger et  al. [152] applied phase-amplitude analy-
sis to magnetoencephalography (MEG) data from quiet 
breathing humans and demonstrated the presence of 
respiration-mediated CFCs, termed respiration-modu-
lated brain oscillations, across all major frequency bands 
in a widespread network of cortical and subcortical areas 
(Fig. 4b). Furthermore, they showed that occipital alpha 
power was coupled with respiration during near-thresh-
old spatial detection tasks and that this respiration-alpha 
coupling was maximized with a respiratory phase lag of 
− 30°, indicating that the coupling occurs before behav-
ioral consequences [147]. Time–frequency analyses 
revealed that compared with the alpha power prior to 
the presentation of undetected targets, the alpha power 
prior to the presentation of detected targets was signifi-
cantly suppressed. Based on these results and the ‘active 
sensing’ concept for the functional role of olfaction [153], 
Kluger et  al. [147] suggested that respiration actively 
adjusts the timing of sensory information sampling with 
transient oscillatory cycles of heightened cortical excita-
bility to optimize performance. These respiratory acts are 
conceivably regulated by higher brain networks, albeit 
unconsciously; however, it has been shown that a subset 
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of preBötC neurons regulates the balance between calm 
and arousal behaviors in a bottom-up fashion [154].

Respiratory variability in health and disease
Goldberger [4] presented an innovative concept: the 
output of a ‘healthy’ control system is not constant but 
instead fluctuates in a complex manner. Techniques that 
measure the complexity of the output have indicated 
that physiological control systems operate far from equi-
librium and that maintaining constancy is not the goal. 
For example, fluctuations in the heart rate of healthy 
humans are chaotic [155] and multifractal, as they can be 
decomposed into multiple scaling regions [156], whereas 
fluctuations in the heart rates of patients with chronic 
heart failure (CHF) are less chaotic [155] and monofrac-
tal [156]. Aging also decreases the complexity of heart 
rate fluctuations, as quantified by SampEn [157]. Based 
on these observations, one might predict that the com-
plex variability in respiratory signals would be greater 
in healthy individuals than in individuals with a disease. 
While this prediction is true in some cases, this is not 
always the case.

In human neonates with mild respiratory distress syn-
drome, the RR and VT exhibited increased complexity 
with increasing weight and gestational age; however, this 
complexity was observed only in terms of pattern match-
ing-based entropies and not in the ApEn and SampEn, 
which are based on conditional probabilities [158]. This 
implies that respiratory fluctuations become increasingly 
complex with maturation. On the other hand, the LTC in 
the interbreath interval (IBI) time series decreases with 
age [159], similar to the changes in the complex vari-
ability of the heart rate [157]. Furthermore, sex affects 
changes in respiratory complex variability over the course 
of aging. The scaling exponents of the IBI time series are 
significantly lower (indicating decreased correlations) in 
healthy older males than in young males, young females, 
and older females [159]. The correlation dimensions of 
respiratory movement are lowest during slow wave sleep 
(stage IV) and highest during rapid eye movement (REM) 
sleep, with both correlated with the correlation dimen-
sion of the EEG signals [160]. STCs in the VT and min-
ute ventilation, which may indicate the chemical control 
of breathing, have been observed during both non-REM 
and REM sleep, while LTCs have been observed only dur-
ing REM sleep [12]. Exercise has opposite effects on the 
complex variability of respiration and heart rate, induc-
ing a decrease in STCs in the IBI and an increase in LTCs 
of heart rate variability [161].

Various diseases affect respiratory variability. Breath-
ing variability is remarkably augmented in patients with 
anxiety disorders, such as panic disorder [162–165]. 
Ventilatory complexity is also increased in patients with 

hyperventilation disorder; however, their respiratory 
control stability, which is assessed based on the loop gain, 
is not impaired [166]. In patients with breathing pattern 
disorders, a prevalent cause of exertional dyspnea, the 
ApEn of the VT and minute ventilation during the car-
diopulmonary exercise test was significantly greater than 
that of controls [167].

The ventilatory flow of healthy, quietly breathing sub-
jects exhibits nonlinear dynamics that are indicative of 
chaos [26]. In critically ill patients, switching from assist-
controlled mechanical ventilation to inspiratory pres-
sure support reduced the CV and eliminated nonlinear 
dynamics that are detectable using the noise titration 
technique [168]. Therefore, the chaotic feature of res-
piratory variability is neurogenic and is either intrinsic 
to the rCPG, a result of respiratory control processes 
driven by perturbations, or both, with little contribution 
from lung mechanics, if any [168]. However, changes in 
lung mechanics and gas exchange affect the gross vari-
ability [169, 170] and complexity of respiratory fluctua-
tions [171–173]. The VT, RR, and minute ventilation are 
greater and the CV of the inspiratory time and minute 
ventilation are lower in patients with chronic obstruc-
tive pulmonary disease (COPD) than in healthy con-
trols [170]. The random fraction of the breath variability 
is reduced, and the nonrandom, correlated fraction is 
greater in patients with restrictive lung disease than in 
healthy controls [169]. Interestingly, small variations in 
the average resting VT led to marked increases in dysp-
nea in these patients [169]. Compared with healthy sub-
jects, the ApEn was significantly reduced in patients 
with asthma, which was correlated with the spiromet-
ric indices of airway obstruction [173]. Furthermore, 
the SampEn was significantly reduced in patients with 
COPD, which was also correlated with the spirometric 
indices of airway obstruction [171]. In addition, acute 
bronchodilation increased ventilatory complexity, as 
quantified by the noise titration technique during rest-
ing breathing in patients with stable COPD [172]. These 
changes in respiratory variability in patients with lung 
diseases may be a direct consequence of feedback from 
chemoreceptors and mechanoreceptors in the lung and 
airway. Alternatively, these changes could be due to 
alterations in autonomic function. Sympathetic nerve 
activity is increased in patients with COPD [174, 175], 
which is associated with morbidity and mortality [176]. 
Sympathetic neural overactivity may be a consequence of 
chronic hypoxia exposure [177]; however, slow breath-
ing reduces elevated sympathetic activity in patients with 
COPD [178].

The most remarkable form of respiratory variabil-
ity caused by instability in the chemical feedback loop 
is a type of periodic breathing known as Cheyne-Stokes 
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respiration (CSR). CSR is a specific form of central sleep 
apnea characterized by the waxing and waning of the 
VT in 50 ~ 90  s intervals [179]. CSR has been observed 
in patients with CHF, particularly during stages 1 and 
2 of non-REM sleep [180]. CSR has also been observed 
during the day and is more closely correlated with the 
severity of CHF [181]. The mechanism underlying CSR is 
thought to be a failure in chemical feedback control [179, 
182, 183]. In control theory, the stability of a feedback 
system is defined by the controller gain, the plant gain, 
and the loop gain (LG). The controller gain is a measure 
of how much the controller responds to a given change 
in blood gas tension ( �V̇E/�PaCO2 ), and the plant gain 
is a measure of how much the blood gas tension changes 
for a given change in ventilation ( �PaCO2/�V̇E ). The LG, 
which is the product of the controller gain and the plant 
gain, represents the ratio of the ventilatory response to 
the ventilatory disturbance. An LG of less than 1 indi-
cates stable breathing, whereas an LG of greater than 1 
in combination with a prolonged circulatory delay results 
in periodic breathing. In CHF patients, a decrease in car-
diac output can lead to prolonged circulatory delays and 
mild hypoxemia, increasing controller gain. These fac-
tors, in combination with an increase in plant gain due 
to sleep hypoventilation and the subsequent elevation of 
PaCO2, destabilize chemical feedback control, resulting 
in CSR [179]. Moreover, CHF patients tend to hyperven-
tilate and become hypocapnic during wakefulness. Sub-
sequently, the withdrawal of the wakefulness stimulus 
upon sleep leads to apnea [184, 185]. Nasal continuous 
positive airway pressure [186, 187] and inhalation of 3% 
CO2 [188] have been shown to ameliorate CSR by reduc-
ing plant gain.

Obstructive sleep apnea (OSA) is a common breathing 
disorder that involves periodic breathing with repetitive 
narrowing and closing of the upper airway during sleep 
[189]. The primary cause of OSA is an anatomically col-
lapsible upper airway; however, additional nonanatomical 
factors, such as inadequate responsiveness of the upper 
airway dilator muscles during sleep, waking prematurely 
due to airway narrowing, and a high LG, characterize 
different phenotypes of OSA [190]. During apnea, both 
the plant gain and the controller gain increase; thus, the 
increased LG at the end of the obstruction is not the 
cause but the result of the obstructive event [191]. The 
chemical LG measured while the upper airway is stable 
is moderately elevated in some OSA patients; however, 
the increase is insufficient for causing instability in the 
absence of a collapsible upper airway [192, 193].

The breathing pattern of CHF patients is typically char-
acterized by unstable respiration, such as rapid, irregu-
lar, and nonperiodic respiration with transient sighing 
or apnea, rather than CSR [194]. Respiratory instability 

is unlikely to be related to the negative feedback sys-
tem of chemical respiratory control; rather, it might be 
caused by the stimulation of afferent vagal nerve endings 
due to lung edema [195, 196]. Asanoi et al. [195] devel-
oped a quantitative measure of respiratory instability 
(RSI) based on the frequency distribution of respiratory 
spectral components and the very low-frequency com-
ponents. They found that patients who died from cardiac 
causes had a lower RSI and suggested that an RSI < 20 
predicts a higher probability of subsequent all-cause 
and cardiovascular death. Okamoto et al. [197] analyzed 
stable airflow data before the onset of sleep to quantify 
breathing irregularities using the ShEn in patients with 
relatively mild CHF, ischemic disease, or atrial fibrilla-
tion. They found that the ShEn of the airflow signals in 
these patients was significantly greater than the ShEn of 
patients without heart disease.

Future directions in translational sciences
The idea of extracting hidden information from respira-
tory signals and utilizing these data in clinical practice 
and daily life is attractive. This process could be eas-
ily carried out in intensive care units, where continu-
ous monitoring of breathing is the standard protocol. 
In intensive care units, respiratory variability may have 
predictive value for successful weaning from mechani-
cal ventilation [198]. For example, Wysocki et  al. [199] 
showed that the reduced CVs of the TV/inspiratory time 
and inspiratory time/respiratory period can be used to 
predict successful weaning cases. Additionally, El-Khatib 
et al. [200] showed that spontaneous breathing patterns 
during minimal mechanical ventilatory support are more 
chaotic in patients who failed extubation trials than in 
patients who passed them. Similarly, Engoren et al. [201] 
showed that the RR and ApEn of the VT increase upon 
spontaneous ventilation in weaning trials for patients 
who require mechanical ventilation. Nonlinear dynamics 
analyses can also be used to diagnose specific diseases. 
Miyata et al. [202] showed that the correlation dimension 
of chest movement with a brief period during wakeful-
ness may be a useful index for identifying patients with 
OSA. Raoufy et al. [203] showed that nonlinear analyses 
(LLE, LTC, and SampEn) of breathing patterns have diag-
nostic value in asthma and can be used to differentiate 
uncontrolled and controlled asthma as well as nonatopic 
and atopic asthma using receiver operating characteristic 
(ROC) curve analysis.

The gold standard technique for staging sleep is poly-
somnography; however, this method requires expen-
sive equipment with constrained sensors for recording 
and human resources for analysis. Therefore, there is 
a need for an automated sleep staging system that ide-
ally uses an inexpensive, wearable or noncontact sensor. 
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Breathing patterns in infants are considerably different 
between active sleep (equivalent to adult REM sleep) and 
quiet sleep (equivalent to adult non-REM sleep) [204]. 
Haddad et al. [205] reported that the CV of the IBI can 
be used to adequately distinguish active and quiet sleep 
stages in newborn infants. Harper et  al. [206] applied 
machine learning techniques to identify sleep stages in 
newborn infants according to cardiorespiratory variables. 
Terrill et  al. attempted to use nonlinear analyses of res-
piratory variability for sleep staging [207]. They showed 
that features extracted from recurrence plots of the IBI 
using recurrence quantification analysis [17, 208] can be 
used to classify sleep stages in infants. Recently, machine 
learning techniques have been applied not only to iden-
tify sleep stages but also to detect respiratory events 
(apnea, hypopnea, and CSR) during sleep [209–211].

Another promising research direction is an applica-
tion toward emotion recognition. Emotion is tightly 
coupled with physiological changes that are specific to 
each emotion (see "Breathing controlled by the limbic 
system" section) [126, 212]. Advances in wearable sen-
sors for measuring physiological signals and machine 
learning techniques have allowed e-health research to 
focus on emotion recognition [213–216]. Emotion rec-
ognition technology is expected to be applied in various 
fields, such as mental health conditioning, man–machine 
interfaces, marketing, and education [217–221]. Stud-
ies on determining human emotions in the engineering 
field generally use a two-dimensional model known as 
Russell’s circumplex model of affect for emotion classifi-
cation [222, 223] since it can easily be used with classifi-
cation algorithms. The circumplex model assumes that all 
affective states arise from two fundamental neurophysi-
ological systems: one related to valence (a pleasure–dis-
pleasure continuum) and another related to arousal, or 
alertness. Although only a few studies have used respira-
tion for emotion recognition to date [214], a study based 
on deep learning algorithms applied to the dataset DEAP 
[224] showed valence and arousal accuracies of 73% and 
81%, respectively [221].

Conclusions
Respiratory variability contains a veritable treasure trove 
of hidden information. The elucidation of the mecha-
nisms underlying this variability is undoubtedly impor-
tant; however, deep learning techniques and information 
theory-based quantification of complex variability have 
allowed us to use this variability for inference and deci-
sion making without knowing its precise sources and 
mechanisms. On the other hand, since the structure of 
the model is not expected to mimic the actual system 
in conventional deep learning techniques, the tech-
niques cannot be applied to elucidate the sources and 

mechanisms of respiratory variability. Rather, these tech-
niques in combination with smart sensors and devices 
should be used to improve the health and quality of life 
of everyone.
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