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Effects of endurance training on metabolic 
enzyme activity and transporter protein levels 
in the skeletal muscles of orchiectomized mice
Kenya Takahashi1*   , Yu Kitaoka2    and Hideo Hatta1 

Abstract 

This study investigated whether endurance training attenuates orchiectomy (ORX)-induced metabolic alterations. At 
7 days of recovery after sham operation or ORX surgery, the mice were randomized to remain sedentary or undergo 
5 weeks of treadmill running training (15–20 m/min, 60 min, 5 days/week). ORX decreased glycogen concentration 
in the gastrocnemius muscle, enhanced phosphofructokinase activity in the plantaris muscle, and decreased lactate 
dehydrogenase activity in the plantaris and soleus muscles. Mitochondrial enzyme activities and protein content in 
the plantaris and soleus muscles were also decreased after ORX, but preserved, in part, by endurance training. In the 
treadmill running test (15 m/min, 60 min) after 4 weeks of training, orchiectomized sedentary mice showed impaired 
exercise performance, which was restored by endurance training. Thus, endurance training could be a potential 
therapeutic strategy to prevent the hypoandrogenism-induced decline in muscle mitochondrial content and physical 
performance.
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Background
Androgens are male sex hormones that are secreted 
predominantly from the testes. Androgen deficiency or 
insufficiency occurs under several conditions, such as 
aging and disease [1], leading to negative health conse-
quences [2]. Circulating testosterone levels are posi-
tively correlated with insulin sensitivity, maximal oxygen 
uptake, and mitochondrial gene expression [3], sug-
gesting that bioavailable androgen levels are closely 
associated with metabolic homeostasis, whole-body 
metabolism, and physical performance.

Although androgen restoration is a treatment option 
for men with hypogonadism, several adverse effects have 
been reported. For example, a study conducted in old frail 

men with a high prevalence of cardiovascular diseases 
was halted prematurely due to high rates of cardiac, res-
piratory, and dermatologic events in the treatment group 
[4]. Therefore, an alternative approach to hypoandrogen-
ism is warranted. Exercise training prevents several met-
abolic disorders, by potentially improving the metabolic 
capacity of skeletal muscles [5, 6]. However, it remains 
unclear whether endurance training is a viable strategy to 
alleviate androgen deficiency-induced metabolic impair-
ments, and whether loss of androgens impedes skeletal 
muscle adaptation to endurance training.

In this study, we examined the effects of endurance 
training on glycolytic and oxidative enzyme activities in 
the skeletal muscles of mice that underwent orchiectomy 
(ORX) surgery, which is a prevailing model of andro-
gen deficiency. Since substrate metabolism is regulated 
by transport activity at the plasma membrane, we also 
determined the protein levels of key metabolite trans-
porters. Given that androgen sensitivity is likely to differ 
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depending on the muscle phenotype [7–9], we analyzed 
the plantaris (glycolytic phenotype) and soleus (oxidative 
phenotype) muscles. Moreover, we performed respira-
tory gas analysis during exercise to evaluate whole-body 
metabolism. Given that androgen level is reported to 
associate with metabolic function [3], we hypothesized 
that enzyme activity and transport protein levels are 
declined by ORX, but restored by endurance training.

Methods
Animals
All experiments were approved by the Animal Experi-
mental Committee of The University of Tokyo (No. 2021-
1). Ten-week-old male Institute of Cancer Research (ICR) 
mice bred in the animal care facility at The University of 
Tokyo were used in this study. The animals were housed 
individually on a 12:12  h light/dark cycle (dark: 7:00 to 
19:00) in an air-conditioned room (23  °C). All mice had 
ad  libitum access to standard chow diet (Oriental Yeast, 
Tokyo, Japan) and water during the experimental period.

Experimental design
Figure 1 shows the schematic of the experiment. Before 
the experiment, all animals were familiarized with run-
ning on a treadmill (MK-680; Muromachi Kikai Co., 

Inc., Tokyo, Japan) at a speed of 20  m/min for 5  min 
for 3 days. At 10 weeks of age, the animals underwent a 
sham operation or ORX surgery, as described below. Fol-
lowing a 7-day post-surgery recovery, animals were sub-
divided into sedentary and training groups as follows: 
sham-sedentary group (n = 9), ORX-sedentary group 
(n = 10), sham-training group (n = 8), and ORX-training 
group (n = 11). Animals in the training groups performed 
60 min of treadmill running 5 days a week for 5 weeks. 
According to a previous study, the critical speed, where 
the greatest metabolic rate that results in wholly oxida-
tive energy provision is represented [10], for ICR mice 
is 24.1 ± 4.6 m/min [11]. In our previous study, we used 
treadmill running at 20 m/min for 60 min as endurance 
training for ICR mice [12]. In our preliminary study, how-
ever, we observed that animals were unable to complete 
60  min of exercise at 20  m/min,  while they were able 
to complete it  at 15  m/min after a 7-day post-surgery. 
Therefore, the running speed for the initial five training 
sessions was set at 15 m/min, followed by 20 m/min for 
subsequent training sessions. The treadmill running test 
was performed 4–7 days before tissue sampling to avoid 
exercise effects on the sedentary groups, as described 
below. Twenty-four hours after the last training ses-
sion, the animals were anesthetized using isoflurane and 

Fig. 1  Schematic overview of the experiment
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euthanized by removing blood from the inferior vena 
cava. The gastrocnemius, plantaris, and soleus muscles 
were collected, rapidly frozen in liquid nitrogen, and 
stored at − 80 °C until analysis.

ORX surgery
The animals were anesthetized via an intraperitoneal 
injection of a cocktail (5  µL/g body weight) of medeto-
midine hydrochloride (0.3 µg/g body weight), midazolam 
(4.0 µg/g body weight), and butorphanol (5.0 µg/g body 
weight). Small incisions (~ 0.5  cm) were made on both 
sides of the scrotum. The bilateral testes were removed 
from the incisions and excised, leaving the epididymal fat 
pad and seminal vesicles in place. An identical procedure 
was performed in the sham-operated groups, except that 
the testes were left intact. The incisions were closed using 
a surgical needle and a 3–0 absorbable suture. After all 
surgical procedures were completed within 10  min, ati-
pamezole hydrochloride (3.0  µg/g body weight, 5  µL/g 
body weight) was intraperitoneally administered to 
negate anesthesia.

Treadmill running test
The animals performed treadmill running at a speed of 
15  m/min for 60  min in an airtight metabolic chamber 
equipped with a treadmill (MK-680AT/02M; Muromachi 
Kikai). This treadmill running speed is considered lower 
than the critical speed for typical ICR mice [11]. O2 con-
sumption (VO2) and CO2 production (VCO2) were meas-
ured every 5 min using a metabolism-measuring system 
(MK-5000RQ; Muromachi Kikai) with an airflow rate of 
1.5 L/min. The respiratory exchange ratio (RER) was cal-
culated as VCO2/VO2. The measurement was terminated 
when the animals reached exhaustion before 60  min of 
exercise. Exhaustion was defined as the inability of the 
animals to maintain the running speed despite contacting 
the electrical grid for more than 5 consecutive seconds. 
Before and after exercise, the tail vein blood glucose and 
lactate levels were measured using GLUCOCARD Plus 
Care (Arkray, Kyoto, Japan) and Lactate Pro 2 (Arkray), 
respectively.

Muscle glycogen
The glycogen content in the gastrocnemius muscle was 
measured as previously described [13]. Briefly, the whole 
gastrocnemius muscle was heated at 100 °C in 30% (w/v) 
KOH solution saturated with Na2SO4 until completely 
dissolved. Glycogen in the solution was precipitated on 
ice for 30 min after the addition of 99% (v/v) ethanol. The 
solution was then centrifuged at 10,000×g for 10  min 
at 4  °C. After the supernatant was discarded, the glyco-
gen precipitate was dissolved in 1 N HCl and heated at 
100  °C for 2  h to hydrolyze glycogen to glucose. After 

neutralization with 1  N NaOH, glucose concentration 
was determined using a glucose CII kit (Fujifilm Wako, 
Osaka, Japan).

Muscle triglyceride (TG)
Whole gastrocnemius muscle was homogenized using 
a µT-01 bead crusher (TAITEC, Saitama, Japan) in a 
buffer containing 5% (v/v) NP-40 substitute (145-09701; 
Fujifilm Wako). The homogenate was subjected to two 
cycles of heating (100  °C for 5  min) and cooling (room 
temperature) to solubilize the lipids. After centrifugation 
at 10,000×g for 2 min, the TG content in the supernatant 
was determined using a LabAssay Triglyceride kit (Fuji-
film Wako).

Determination of enzyme activity
Whole soleus and plantaris muscles were homogenized 
in 100 times (vol/wt) of phosphate buffer (100 mM, pH 
7.6) using a μT-01 bead crusher (TAITEC). The homoge-
nates were freeze-thawed twice using liquid nitrogen to 
disrupt the plasma and mitochondrial membranes. After 
centrifugation at 1000×g for 10 min at 4 °C, the superna-
tant was recovered for the enzyme assay.

Hexokinase (HK) assay
Maximal HK activity was measured as previously 
described, with slight modifications [14]. The aliquots 
were mixed with the reaction mixture (50 mM triethan-
olamine, 5 mM EDTA, 10 mM MgCl2, 0.35 mM NADH, 
2.8 mM ATP, 2.8 mM glucose, and 2.5 U glucose-6-phos-
phatase, pH 7.6) in a 96-well microplate (195-96F; Wat-
son Bio Lab, Tokyo, Japan). The changes in absorbance at 
340 nm were determined using a microplate spectropho-
tometer (Epoch Microplate Spectrophotometer, BioTek 
Instruments, Inc.).

Phosphofructokinase (PFK) assay
Maximal PFK activity was measured as previously 
described, with slight modifications [14]. The aliquots 
were mixed with the reaction mixture (50 mM triethan-
olamine, 5  mM EDTA, 10  mM MgCl2, 0.3  mM NADH, 
2.8 mM ATP, 2.8 mM F-6-P, 2.5 U GPDH-TPI, and 1.0 U 
aldolase, pH 7.6) in a 96-well microplate. The changes in 
absorbance at 340 nm were determined.

Lactate dehydrogenase (LDH, pyruvate‑to‑lactate) assay
The activity of LDH, which involved the conversion 
of pyruvate to lactate, was measured as previously 
described, with slight modifications [15]. The aliquots 
were mixed with the reaction mixture (50 mM imidazole, 
5 mM DTT, 150 μM NADH, 4.0 mM pyruvate, pH 7.4) 
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in a 96-well microplate. The changes in absorbance at 
340 nm were determined.

Citrate synthase (CS) assay
Maximal CS activity was measured as previously 
described, with slight modifications [16]. The aliquots 
were mixed with the reaction mixture (100  mM Tris, 
100 μM DTNB, 300 μM acetyl-CoA, and 50 μM oxaloac-
etate, pH 8.3) in a 96-well microplate. The changes in 
absorbance at 412 nm/min were determined.

Cytochrome c oxidase (COX) assay
Maximal COX activity was measured as previously 
described, with slight modifications [17]. The aliquots 
were mixed with the reaction mixture (10 mM phosphate 
and 50  μM cytochrome c reduced with sodium hydro-
sulfite, pH 7.0) in a 96-well microplate. The changes in 
absorbance at 550 nm/min were determined.

β‑Hydroxyacyl‑CoA dehydrogenase (β‑HAD) assay
The maximal β-HAD activity was measured as previously 
described, with slight modifications [18]. The aliquots 
were mixed with the reaction mixture (1 M Tris, 5 mM 
EDTA, 450  µM NADH, and 100  µM acetoacetyl-CoA, 
pH 7.0) in a 96-well microplate. The changes in absorb-
ance at 340 nm/min were determined.

Total carnitine palmitoyltransferase (CPT) assay
The maximal activity of CPT (CPT-I and CPT-II) was 
measured as described previously, with slight modifi-
cations [19]. The aliquots were mixed with the reaction 
mixture (60 mM Tris, 1.5 mM EDTA, 0.25 mM DTNB, 
1.67 mM l-carnitine, and 0.025 mM palmitoyl-CoA, pH 
8.0) in a 96-well microplate. The changes in absorbance 
at 412 nm/min were determined.

Western blotting
Whole soleus and plantaris muscles were homogenized 
20 times (vol/wt) in ice-cold radioimmunoprecipitation 
assay buffer (25  mM Tris-HCl, pH 7.6, 150  mM NaCl, 
and 1% NP-40) supplemented with a protease inhibitor 
cocktail (cOmplete Mini, ETDA-free; Roche Applied Sci-
ence, Indianapolis, IN, USA) using a μT-01 bead crusher 
(TAITEC). The homogenates were rotated on ice for 
60  min and centrifuged at 1500×g at 4  °C for 20  min. 
The total protein content of the samples was determined 
using a BCA protein assay kit (TaKaRa BIO Inc., Shiga, 
Japan). Equal amounts of proteins were loaded onto 
sodium dodecyl sulfate–polyacrylamide gels and sepa-
rated via electrophoresis. Proteins were transferred onto 
polyvinylidene difluoride membranes and western blot-
ting was performed using the standard procedure, as 
previously described [20]. The primary and secondary 

antibodies used in this study are mentioned below. Blots 
were scanned and quantified using ChemiDoc XRS (Bio-
Rad Laboratories, Hercules, CA, USA) and Quantity One 
(version 4.5.2; Bio-Rad). Ponceau staining was used to 
verify the consistent loading.

Primary and secondary antibodies
Commercially available primary antibodies were used to 
detect hypoxia-inducible factor 1-α (HIF-1α; #20960-1-
AP; Proteintech Japan, Tokyo, Japan), peroxisome pro-
liferator-activated receptor γ coactivator 1-α (PGC-1α; 
#516557; Merck Millipore), mitochondrial electron trans-
port proteins (NADH:ubiquinone oxidoreductase subu-
nit B8 [NDUFB8], succinate dehydrogenase complex iron 
sulfur subunit B [SDHB], ubiquinol–cytochrome c reduc-
tase core protein 2 [UQCRC2], mitochondrially encoded 
cytochrome c oxidase 1 [MTCO1], and ATP synthase F1 
subunit alpha [ATP5F1A/ATP5A]; #ab110413; Abcam, 
Cambridge, UK), cytochrome c oxidase subunit 4I1 
(COX4I1/COXIV; #ab14744; Abcam), glucose trans-
porter 1 (GLUT1; #sc-377228; Santa Cruz Biotechnology, 
Santa Cruz, CA, USA), glucose transporter 4 (GLUT4; 
#07-1404; Merck Millipore, Tokyo, Japan), and fatty acid 
translocase/cluster of differentiation 36 (FAT/CD36; 
#18836-1-AP; Proteintech Japan). Antibodies against 
monocarboxylate transporter (MCT)-1 and MCT-4 were 
raised in rabbits against the C-terminal region of the 
respective MCT (Qiagen, Tokyo, Japan), and have been 
used in our previous studies [13, 21–23]. Rabbit anti-goat 
IgG (H&L) (#A102PT; American Qualex, San Clemente, 
CA, USA) and mouse anti-goat IgG (H&L) (#A106PU; 
American Qualex) were used as secondary antibodies.

Statistical analysis
All data are presented as the mean ± standard error of 
the mean. Two-way analysis of variance (ANOVA) was 
applied to determine the interaction and main effects 
of training and ORX on mice. When an interaction was 
significant, a comparison was made using the Tukey–
Kramer multiple comparison test to identify differences 
among the groups. The running proportion curves in 
the treadmill running test were compared using the log-
rank (Mantel–Cox) test. For the time course changes in 
RER, two-way ANOVA (time × group) followed by the 
Tukey–Kramer multiple comparison test was performed. 
All statistical analyses were performed using the Graph-
Pad Prism software (Ver. 9.0, Macintosh; GraphPad Soft-
ware, La Jolla, CA). Statistical significance was defined as 
p < 0.05. All results within the range of 0.05 ≤ p ≤ 0.1 were 
shown as tendencies.



Page 5 of 18Takahashi et al. The Journal of Physiological Sciences           (2022) 72:14 	

Results
Body and tissue weights, and food intake
There were no differences in the initial body weights 
among the groups (Fig.  2A); however, ORX resulted 
in the lower final body weight (p < 0.05, Fig.  2B). We 
also found that ORX (p < 0.05) and training (p < 0.01) 
reduced the body weight during the experimental 

period (Fig.  2C). ORX decreased food intake during 
the experimental period (p < 0.01, Fig.  2D), suggest-
ing that the lower final body weight was, in part, due 
to a decline in food consumption. ORX dramatically 
decreased seminal vesicle weight (p < 0.01, Fig.  3A), 
suggesting the successful removal of testes and a reduc-
tion in bioavailable testosterone after ORX. There was 
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a trend for lower epididymal fat weight after ORX 
administration (p = 0.10, Fig. 3B). The plantaris, soleus, 
and gastrocnemius muscle weights did not differ sig-
nificantly among the groups (Fig.  3C–E). These obser-
vations suggest that the decline in body weight after 
ORX is likely to result from a reduction in body fat 
mass caused by decreased food intake. Moreover, ORX-
induced atrophy of androgen-sensitive tissues may par-
tially account for body weight loss, as evidenced by the 
significant decrease in the seminal vesicle weight.

Treadmill running test
To elucidate the impact of ORX on whole-body metabo-
lism during exercise, we performed gas analysis during 
treadmill running 5 weeks after surgery. During this test, 
one mouse in the sham-sedentary group and five mice 
in the ORX-sedentary group reached exhaustion before 
60 min, generating significant differences in the running 
proportion curves (p < 0.01, Fig.  4A). As they could not 
complete 60  min of exercise, we excluded their respira-
tory and blood metabolite data from the statistical analy-
sis. Although the RER at 5 min of treadmill running was 
significantly higher in the ORX-sedentary group than in 
the sham-training group (p < 0.05, Fig. 4B), no significant 
differences were observed in the average RER (Fig.  4C). 
VO2/bodyweight at 55  min was significantly higher in 
the ORX-sedentary group than in the sham-training 
(p < 0.05) and ORX-training groups (p < 0.01, Fig.  4D). 
In the time course changes in VCO2/bodyweight, we 
observed a main effect of time (p < 0.01), but not a main 
effect of ORX or significant interaction (p = 0.09; Fig. 4F). 
Endurance training tended to decrease average VO2/bod-
yweight (p = 0.05, Fig.  4E), and significantly decreased 
VCO2/bodyweight (p < 0.01, Fig.  4G). The blood lactate 
and glucose levels before exercise were not significantly 
different (Fig. 4H, J). There was no significant difference 
in the post-exercise glucose concentration (Fig. 4I). Blood 
lactate levels after 60  min of exercise were significantly 
higher in the ORX-sedentary group than in the other 
groups (p < 0.01; Fig. 4K). These observations suggest that 
ORX impairs the endurance exercise performance. How-
ever, this impairment is likely to be restored by endur-
ance training.

Glycogen and TG levels
Given the impaired exercise performance of ORX-sed-
entary animals, we evaluated the basal level of muscle 
glycogen, which is a determinant factor of prolonged 
exercise performance [24]. We found that ORX reduced 
glycogen concentration in the gastrocnemius muscle at 
rest (p < 0.05, Fig. 5A), suggesting that a lower abundance 

of muscle glycogen was partially responsible for the com-
promised performance. We also determined the level of 
TG, which is another energy deposit stored in the skel-
etal muscle. No significant effect was detected on the TG 
concentration in the gastrocnemius muscle (Fig. 5B).

Glycolytic enzyme activity
To clarify the metabolic characteristics of skeletal mus-
cles, we first evaluated the glycolytic enzyme activity. 
Endurance training significantly enhanced HK activity 
in the plantaris (p < 0.01, Fig.  6A) and soleus (p < 0.01, 
Fig.  6D) muscles and PFK activity in the soleus mus-
cle (p < 0.01, Fig.  6E). In addition, endurance training 
decreased LDH activity in the plantaris (p < 0.01, Fig. 6C) 
and soleus (p < 0.01, Fig.  6F) muscles. ORX increased 
PFK activity (p < 0.05, Fig. 6B) and decreased HK activity 
(p < 0.01, Fig. 6A) in the plantaris muscle and LDH activ-
ity in the soleus muscle (p < 0.01, Fig. 6F). These observa-
tions suggest that ORX can change the glycolytic capacity 
of skeletal muscles.

Transcription factors involved in glycolytic metabolism
To explore the potential mechanisms by which glyco-
lytic enzyme activity is altered, we determined the pro-
tein levels of HIF-1α, a transcription factor that regulates 
glycolytic metabolism. Endurance training significantly 
reduced HIF-1α protein levels in the plantaris mus-
cle (p < 0.05, Fig.  7A). In soleus muscle, HIF-1α protein 
content was decreased by ORX (p < 0.05, Fig. 7B). These 
observations suggest that HIF-1α protein levels do not 
always correlate with changes in glycolytic enzyme 
activity.

Mitochondrial enzyme activity
Next, we assessed the enzyme activities of the mitochon-
dria, which are the key components for energy produc-
tion. Endurance training enhanced CS and COX activity 
in the plantaris (p < 0.01, Fig. 8A, B) and soleus (p < 0.01, 
Fig.  8E; p < 0.05, Fig.  8F) muscles, as well as β-HAD 
(p < 0.01, Fig. 8C) and total CPT activity (p < 0.05, Fig. 8D) 
in the plantaris muscle. ORX significantly reduced CS 
activity in the plantaris (p < 0.01, Fig.  8A) and soleus 
(p < 0.01, Fig.  8E) muscles and β-HAD activity in the 
soleus muscle (p < 0.01, Fig. 8G). There was no significant 
difference in the total CPT activity of the soleus muscle 
(Fig.  8H). Thus, the mitochondrial enzyme activity is 
likely to decline after ORX.

Mitochondria‑associated proteins
To better understand ORX-induced mitochondrial 
adaptation, we evaluated the protein levels of PGC-1α, 
a master regulator of mitochondrial biogenesis, and 
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mitochondrial electron transport components. In the 
plantaris muscle, endurance training increased the 
protein levels of PGC-1α, NDUFB8, SDHB, UQCRC2, 
MTCO1, COXIV, and ATP5A (p < 0.01, Fig.  9A–
G). ORX significantly decreased the protein levels 
of NDUFB8 (p < 0.01, Fig.  9B), UQCRC2 (p < 0.05, 
Fig.  9D), and COXIV (p < 0.01, Fig.  9G) in the plan-
taris muscle, providing additional support for the 
decrease in mitochondrial content. We also observed 
that ORX decreased PGC-1α protein levels in the plan-
taris muscle (p = 0.09, Fig.  9A). In the soleus muscle, 
endurance training significantly increased NDUFB8, 
MTCO1, and COXIV protein levels (p < 0.01, Fig. 10B, 
E and F) and tended to increase PGC-1α protein 
level (p = 0.06, Fig.  10A). ORX decreased the protein 
levels of NDUFB8 (p = 0.10, Fig.  10B) and COXIV 
(p = 0.10, Fig.  10F) in the soleus muscle. The protein 
levels of SDHB, UQCRC2, and ATP5A did not dif-
fer significantly (Fig.  10C, D and G). PGC-1α protein 
levels were positively correlated with CS activity in 

the plantaris (p < 0.01, r = 0.66; Fig.  11A) and soleus 
(p < 0.01, r = 0.51; Fig.  11B) muscles. Taken together, 
these results suggest that ORX reduces the mitochon-
drial content in skeletal muscle, and that changes in 
mitochondrial content can be attributed to changes in 
mitochondrial biogenesis.

Metabolite transport proteins
Given that energy metabolism is facilitated by metab-
olite transport, we assessed the protein levels of key 
metabolite transporters. Endurance training signifi-
cantly enhanced the protein levels of GLUT4 (p < 0.01, 
Fig. 12B) and MCT1 (p < 0.01, Fig. 12C) in the planta-
ris muscle. MCT4 protein level in the plantaris muscle 
was significantly decreased by ORX (p < 0.01, Fig. 12D). 
ORX tended to decrease GLUT4 protein level (p = 0.08, 
Fig.  12B) and increase FAT/CD36 protein level 
(p = 0.06, Fig.  12E) in the plantaris muscle. There was 
no significant difference in GLUT1 protein level in the 
plantaris muscle (Fig. 12A). In the soleus muscle, ORX 
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significantly increased MCT1 protein level (p < 0.05, 
Fig.  13C). MCT4 protein level tended to increase 
after endurance training (p = 0.08, Fig.  13D). GLUT1, 

GLUT4, and FAT/CD36 protein levels did not differ 
in the soleus muscle (Fig. 13A, B and E). These results 

Fig. 10  Mitochondria-associated protein levels in the soleus muscle. Protein levels of PGC-1α (A), NDUFB8 (B), SDHB (C), UQCRC2 (D), MTCO1 (E), 
COXIV (F), and ATP5A (G) in the soleus muscle. Data are expressed as the mean ± SEM (n = 8–11). Two-way ANOVA was performed to determine the 
interactions and main effects of training and ORX. **p < 0.01, (*)p ≤ 0.10: main effect of training. (†)p ≤ 0.10: main effect of ORX
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suggest that ORX induces muscle-specific changes in 
some metabolite transport proteins.

Discussion
Main findings and perspectives
The major finding of this study was that ORX-sedentary 
animals showed impaired exercise performance. We also 
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Fig. 13  Metabolite transport protein levels in the soleus muscle. Protein levels of GLUT1 (A), GLUT4 (B), MCT1 (C), MCT4 (D), and FAT/CD36 (E) in 
the soleus muscle. Data are expressed as the mean ± SEM (n = 8–11). Two-way ANOVA was performed to determine the interactions and main 
effects of training and ORX. (*)p ≤ 0.10: main effect of training. †p < 0.05: main effect of ORX
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observed that the blood lactate concentration after exer-
cise was higher in the ORX-sedentary group than in the 
other three groups. Although blood lactate level can be 
determined by several factors (glycolysis, oxidation, cir-
culation, etc.) [25], the present observation may suggest 
greater reliance on glycolytic metabolism. In addition, 
ORX decreased the glycogen content in the gastrocne-
mius muscle at rest. Enhanced glycolytic rate and small 
glycogen storage lead to rapid depletion of glycogen, 
which is a major factor responsible for fatigue [24, 26, 
27]. Therefore, it is likely that the exercise intolerance 
observed in ORX-sedentary mice results from glycogen 
depletion due to greater reliance on glycogenolysis and 
low basal glycogen levels.

Effects of ORX on glycolytic metabolism
The current observation of increased PFK activity in the 
plantaris muscle after ORX may underpin the notion that 
castrated animals rely heavily on glycogenolytic metabo-
lism during exercise. In contrast to PFK activity, HK 
activity was decreased in the plantaris muscle of orchiec-
tomized mice. PFK and HK are the rate-limiting enzymes 
in glycolysis [28]. PFK yields fructose-1,6-bisphosphate 
from fructose-6-phosphate derived from both glycogen 
and glucose, whereas HK catalyzes glucose phospho-
rylation. The maximal activity of PFK is reported to be 
much higher than that of HK [29]. These data indicate 
that PFK determines the overall glycolytic flux, especially 
glycogen breakdown rate, while HK is primarily involved 
in glucose metabolism. The partial knockout of HKII, a 
predominant isoform of HK, impairs exercise-stimulated 
muscle glucose uptake [30]. Exercise endurance capac-
ity improves along with an increase in HKII protein 
content, which is related to muscle glucose uptake dur-
ing exercise [31]. Furthermore, GLUT4 null mice exhibit 
exercise intolerance, reduced muscle glucose uptake, and 
increased muscle glycogen breakdown during exercise 
[32]. We observed that ORX significantly decreased HK 
activity and tended to decrease GLUT4 protein content 
in the plantaris muscle. Although measuring specific 
enzyme activity and protein levels is not always indica-
tive of substrate flux in vivo, the present observations of 
the decrease in HK activity and GLUT4 protein content 
in the castrated animals may have resulted in diminished 
muscle glucose uptake, thereby reducing the glucose 
availability in the working muscle, leading to accelerated 
glycogen breakdown to maintain the overall glycolytic 
flux.

In the present study, the activity of LDH, which is 
involved in the conversion of pyruvate to lactate, was 
decreased by ORX in the plantaris muscle. This result 
seems to contradict the observation that blood lactate 
levels after exercise were elevated in the ORX sedentary 

group. LDH is highly abundant, and the catalysis of this 
enzyme is a near-equilibrium reaction [29, 33], suggest-
ing that a decline in LDH activity does not affect the 
glycolytic capacity and lactate production. In addition 
to glycolytic enzyme activity, lactate transport activity 
across the plasmalemma via MCT1 and MCT4 influences 
the glycolytic capacity, as lactate efflux from the cells pre-
vents end-product inhibition of glycolysis [34]. MCT1 
is a high-affinity lactate transporter (Km = 3.5–8.3 mM) 
found greater quantity in oxidative fibers, whereas MCT4 
is a low-affinity lactate transporter (Km = 25–32  mM) 
presented abundantly in glycolytic fibers [35]. On the 
basis of affinity for lactate and tissue-specific abun-
dance, it is considered that MCT1 mainly facilitates 
lactate uptake, and that MCT4 primarily regulates lac-
tate efflux [36]. In the current study, ORX decreased 
MCT4 protein level in the plantaris muscle. Since the 
post-exercise blood lactate level in the ORX-sedentary 
group (4.2 ± 1.1  mM) was much lower than the affinity 
of MCT4, we assumed that the muscle lactate level did 
not reach the value required for lactate release from skel-
etal muscle via MCT4. MCT1 was presumably sufficient 
to export lactate out of the skeletal muscle, as MCT can 
bidirectionally transport lactate across the sarcolemma 
depending on the concentration gradient [37].

HIF-1α is a transcription factor that regulates the 
expression levels of glycolytic enzymes and proteins 
[38], including HK, PFK, LDH, GLUT1, and MCT4. 
In the current study, the activities of HK and PFK, but 
not LDH, and protein levels of GLUT1 and MCT4 did 
not change concomitantly with HIF-1α protein levels. 
Besides HIF-1α, c-Myc also regulates glycolytic metabo-
lism [39]. c-Myc mRNA expression is enhanced in cas-
trated rat ventral prostate gland [40]. Moreover, nuclear 
receptor interacting protein 1 (NRIP1/RIP140) is another 
possible regulator of glycolysis [41]. In prostate cancer 
cells, RIP140 mRNA expression increases after androgen 
treatment [42]. Furthermore, a direct DNA binding site 
of the androgen receptor (AR) that promotes the tran-
scription of glycolytic genes has been identified using 
chromatin immunoprecipitation with massively parallel 
DNA sequencing analyses [43]. Taken together, the coor-
dinated transcriptional activity of several factors may 
explain the altered glycolytic enzyme activity and protein 
content observed in castrated animals.

Effects of ORX on oxidative metabolism
Among the several parameters used as biomarkers of 
mitochondrial content, muscle CS activity is strongly cor-
related with mitochondrial content, as assessed by trans-
mission electron microscopy [44]. In the present study, 
we found that ORX decreased CS activity in the planta-
ris and soleus muscles, suggesting that ORX decreases 
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mitochondrial content in skeletal muscles. The current 
observations that ORX reduced the mitochondrial pro-
tein content in the plantaris muscle and β-HAD activity 
in the soleus muscle may provide additional support for 
this view. Under conditions of attenuated mitochondrial 
energy supply, glycolytic metabolism is activated to meet 
the energy requirement. It is, therefore, likely that the 
decline in mitochondrial content could be another factor 
contributing to the elevated blood lactate levels in ORX-
sedentary animals.

The mitochondrial content depends on the balance 
between biogenesis and degradation (mitophagy) [45]. 
Androgen action via ARs regulates mitochondrial bio-
genesis. Activated AR complexes bind to the nuclear and 
mitochondrial gene response elements [46–48]. Another 
proposed pathway of androgen action is through the 
direct interaction of AR complexes with the androgen 
response elements of mitochondrial genes. Additional 
mechanisms may involve indirect interactions with the 
androgen response element in the nucleus to activate the 
transcription of genes encoding transcription factors, 
including PGC-1α, a master regulator of mitochondrial 
biogenesis [49]. According to a previous report, ORX-
induced reduction in mitochondrial content is primarily 
attributed to altered biogenesis rather than mitophagy 
[50], as the authors observed concomitant changes in the 
mitochondrial protein content and mRNA and/or pro-
tein levels of PGC-1α. In support of this, we observed 
significant positive correlations between CS activity and 
PGC-1α protein levels in the plantaris and soleus mus-
cles. Other researchers have reported that testosterone 
treatment increases PGC-1α protein levels and mito-
chondrial protein content in mouse skeletal muscles 
[51]. Collectively, it appears that androgens, particularly 
testosterone, alter the mitochondrial content in skeletal 
muscle by modulating mitochondrial biogenesis.

Ovariectomy-induced estrogen deficiency impairs the 
mitochondrial respiratory function in rodent skeletal 
muscle [52, 53], which implies that sex hormones affect 
mitochondrial respiratory functions. To the best of our 
knowledge, the role of androgens in mitochondrial res-
piratory function has yet to be clarified. Future studies 
are required to examine the ability of androgens to alter 
the mitochondrial respiratory function.

We and others have repeatedly shown that MCT1 pro-
tein level positively correlates with lactate uptake rate, 
proportion of slow-twitch oxidative fibers, and CS activ-
ity in skeletal muscle [54–57]. In addition, we previously 
reported concomitant changes in MCT1 protein level 
and CS activity in equine skeletal muscle during train-
ing and detraining [58]. Based on these observations, it 
is considered that MCT1 facilitates the transport of lac-
tate into skeletal muscle for oxidation in mitochondria 

and that lactate uptake capacity changes together with 
muscle oxidative capacity. However, we observed here 
that ORX increased MCT1 protein level in the soleus 
muscle despite the decreased CS activity, suggesting a 
dissociation between lactate uptake and muscle oxida-
tive capacity. We also observed elevated blood lactate 
concentrations in the ORX-sedentary group after exer-
cise. Our data suggest the relative importance of muscle 
oxidative capacity compared with lactate uptake capacity 
in relation to blood lactate levels during endurance exer-
cise. We previously demonstrated that PGC-1α overex-
pression enhances MCT1 protein level in rodent skeletal 
muscles [59, 60]. In the present study, PGC-1α protein 
level in the soleus muscle was unaltered by ORX, sug-
gesting a PGC-1α independent increase in MCT1 protein 
levels. Further studies are required to clarify the factors 
and mechanisms that regulate MCT1 protein levels.

ORX and hormonal regulation of substrate metabolism 
during exercise
Hormones, such as insulin, glucagon, and catechola-
mines (adrenaline and noradrenaline), exert strong influ-
ences on substrate metabolism [61]. During exercise, 
circulating insulin levels progressively decrease with time 
owing to adrenergic inhibition of pancreatic β-cells [62]. 
Previous studies showed a strong relationship between 
glucagon/insulin ratio and hepatic glucose output [63–
65]. Although whether ORX changes glucagon/insulin 
ratio during exercise remains unclear, a previous study 
reported that ORX decreased basal glycogen concentra-
tion in the liver [66]. Hepatic glycogen was reported to 
be a key regulator of endurance capacity, because it is the 
primary storage for the maintenance of blood glucose 
level [67]. It is, therefore, possible that ORX diminishes 
glucose supply from the liver during prolonged exercise 
due to decreased basal levels of liver glycogen, which 
potentially impairs endurance performance. In addition 
to adrenergic stimulation, the decline in insulin level 
is also important for increasing adipose tissue lipolysis 
[68, 69], which leads to increased plasma fatty acid lev-
els and skeletal muscle fat oxidation during exercise [70, 
71]. Whether ORX changes hormonal secretions and 
responses, as well as substrate metabolism in other tis-
sues during exercise requires further investigation.

Muscle phenotype differences in adaptations to ORX
Given the current observation that ORX decreases mito-
chondrial enzyme activities and protein content in the 
plantaris and soleus muscles, it is likely that mitochon-
drial adaptation to ORX is not muscle phenotype-spe-
cific. In the present study, changes in glycolytic enzyme 
activities in the plantaris muscle appeared to be more 
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sensitive to ORX than those in the soleus muscle. This 
observation may be explained by the greater affinity [8] 
and/or number [9] of ARs in fast-twitch muscle fibers, 
because the plantaris muscle comprises more than 90% 
of fast-twitch fibers, whereas the soleus muscle com-
prises around 50% of slow-twitch fibers [72]. It should be 
noted that some human skeletal muscles are composed 
of more than 50% of slow-twitch fibers [73, 74]. Whether 
the present findings are also the case for human muscle 
should be clarified in the future study.

Effects of endurance training
High-intensity interval training (HIIT) is known to 
enhance the glycolytic capacity owing to increased lev-
els of HK, PFK, LDH, and MCT4 [75–79]. We previously 
reported that HIIT increased HIF-1α protein level in 
mouse skeletal muscle [80], suggesting that HIF-1α may 
be accountable, in part, for HIIT-induced alterations in 
glycolytic capacity. In the present study, we found that 
endurance training enhanced HK activity in the plantaris 
and soleus muscles and PFK activity in the soleus muscle, 
even though HIF-1α protein levels were decreased in the 
plantaris muscle and did not change in the soleus mus-
cle. These observations suggest that HIF-1α is not solely 
responsible for glycolytic adaptation to HIIT and that 
other transcriptional factors may be involved in endur-
ance training-induced changes in glycolytic enzyme 
activity and protein levels.

Mitochondria are fundamental cellular components 
that are related to health and disease [81]. In the cur-
rent study, although ORX decreased the mitochondrial 
enzyme activity and protein levels in skeletal muscles, 
which were enhanced by endurance training. In addition, 
the PGC-1α protein level after endurance training was 
increased in the plantaris muscle and tended to increase 
in the soleus muscle. These observations suggest that the 
increase in mitochondrial content after endurance train-
ing may stem, in part, from PGC-1α protein abundance, 
and that endurance training would be a viable approach 
to counteract hypogonadism-induced decline in mito-
chondrial content and the development of adverse health 
outcomes. Moreover, the increase in mitochondrial 
content contributes to endurance performance [82], as 
it enables the skeletal muscle to spare glycogen during 
exercise [27]. We found that endurance training restored 
the exercise performance and normalized post-exercise 
blood lactate levels in castrated animals. Since endur-
ance training did not decrease HK and PFK activities in 
the skeletal muscles, the effects of endurance training 
may be ascribed primarily to the increased mitochondrial 
content.

Vascular adaptations to ORX and endurance training
Skeletal muscle capillarity is also an important fac-
tor contributing to endurance performance [83]. In the 
present study, although we were unable to assess capil-
larity, the protein content of HIF-1α, which is a tran-
scription factor inducing angiogenesis [84], was declined 
by ORX. A previous report demonstrated that ORX 
decreased in vivo angiogenesis, resulting in the reduced 
capillary density and blood vessel diameter in mouse 
hindlimbs [85]. Another study reported that the critical 
power, measured in units of power rather than speed, 
was positively related to skeletal muscle capillarity in 
endurance-trained humans [86]. We, therefore, assume 
that ORX-induced decline in vascularity decreased the 
critical speed of castrated animals, resulting in impaired 
performance.

Together with mitochondrial biogenesis, endurance 
training induces angiogenesis in skeletal muscle [87, 88]. 
In the present report, however, HIF-1α protein content 
after endurance training was not restored in the soleus 
muscle and decreased in the plantaris muscle. Other 
investigators reported that accumulation of HIF-1α 
by knocking down prolyl hydroxylase domain protein 
(PHD) 2, which hydroxylates HIF-1α for ubiquitination 
and degradation, increased capillaries in mouse skeletal 
muscle without exercise training [89]. They also showed 
that endurance training increased capillary density to 
the same extent in the PHD2 knockdown and wild-type 
animals [89]. These data may suggest that HIF-1α can 
increase capillaries in the skeletal muscle, but exercise 
training-induced angiogenesis is not predominantly 
mediated through HIF-1α. Another pathway involved in 
angiogenesis is PGC-1α [90, 91]. It has previously been 
demonstrated that PGC-1α transgenic mice display the 
increased capillary density and capillary-to-fiber ratio in 
skeletal muscle together with fatigue resistance to tetanic 
muscle contraction [92], although PGC-1α overexpres-
sion also increases mitochondrial content in the skeletal 
muscle [93]. In the current investigation, PGC-1α protein 
content after endurance training significantly increased 
in the plantaris muscle, and tended to increase in the 
soleus muscle. These observations may suggest that 
endurance training enhances skeletal muscle vascular-
ity through the PGC-1α-dependent pathway, leading to 
less fatiguability. Finally, cross-sectional data showed that 
high-intensity training was more effective for increasing 
the capillary-to-fiber ratio, compared to lower intensi-
ties of exercise training [94]. It is, therefore, worth com-
paring endurance training with high-intensity training 
to develop effective training strategies for patients with 
androgen insufficiency or deficiency.
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Conclusions
This study demonstrated that endurance training 
restores ORX-induced impaired physical performance. 
This effect seems to be attributable to enhanced mito-
chondrial content, as endurance training did not nor-
malize the ORX-induced changes in glycolytic enzyme 
activity. We conclude that endurance training may be a 
potential alternative to androgen replacement therapy 
for alleviating the negative metabolic consequences of 
hypoandrogenism.
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