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Abstract 

“Inflammaging” refers to the chronic, low-grade inflammation that characterizes aging. Aging, like obesity, is associ-
ated with visceral adiposity and insulin resistance. Adipose tissue macrophages (ATMs) have played a major role in 
obesity-associated inflammation and insulin resistance. Macrophages are elevated in adipose tissue in aging. How-
ever, the changes and also possibly functions of ATMs in aging and aging-related diseases are unclear. In this review, 
we will summarize recent advances in research on the role of adipose tissue macrophages with aging-associated 
insulin resistance and discuss their potential therapeutic targets for preventing and treating aging and aging-related 
diseases.
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Introduction
The world has entered an aging society. In 2015, an 
estimated 617 million people (8.5%) in the world were 
age ≥ 65  years and is expected to more than double to 
≈1.6 billion (17%) in 2050 [1]. The growing health, eco-
nomic and social problems brought about by aging have 
attracted worldwide attention.

Aging is a process in which the body gradually loses its 
physiological integrity and organ function is damaged, 
leading to death. Aging is always accompanied by obe-
sity and metabolic dysfunction, including insulin resist-
ance. Recent studies have shown that aging-associated 
insulin resistance is related to immunosenescence and 
inflammaging [2–4]. ‘Inflammaging’ refers to the chronic, 
low-grade inflammation that characterizes aging. 
Inflammaging is a complex balance between pro- and 
anti-inflammatory responses, which is centered on mac-
rophage and involves multiple tissues and organs, includ-
ing adipose tissue.

Aging is also associated with important changes in the 
innate immune system. Macrophages perform important 
innate immune functions including phagocytic clearance 
of dying cells. The polarized state of macrophages can 
be classified into two subsets: classically activated (M1) 
and alternatively activated (M2). M1 macrophages highly 
express genes related to pro-inflammatory cytokines or 
oxidative stress, including genes related to TNF-alpha, 
IL-6, MCP-1, and iNOS, whereas M2 macrophages 
highly express other genes that encode arginase-1, 
Mrc1(CD206), Ym1, and IL-10, an anti-inflammatory 
cytokine [5].

In obesity, it is well known that adipose tissue mac-
rophages (ATMs) play a key role in obesity-associated 
insulin resistance. A large number of macrophages in the 
blood are collected into adipose tissue [6]. The number 
of ATMs increased from 5 to 50% of the total number of 
adipose tissue cells and transformed from M2 to M1 cells 
[7]. Many M1 ATMs surround the necrotic adipocytes 
to form crown-like structures (CLS), a hallmark of low-
grade inflammation and insulin resistance [8, 9].

There are similarities and differences between inflam-
mation in adipose tissue caused by aging and that caused 
by obesity. So far, few studies have focused on the effects 
of ATM on aging. This article will describe the change of 
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adipose tissue macrophages and its role on aging-associ-
ated insulin resistance.

Adipose tissue inflammation in obesity and aging
Adipose tissue (AT) is the largest endocrine organ in 
human. Adipose tissue is composed of a variety of cells, 
including adipocytes, pre-adipocytes, endothelial cells, 
fibroblasts, nerve cells, macrophages and lymphocytes. 
The number and phenotypes of these cells are dynamic in 
obesity and aging [10].

As we age, many changes have taken place in adipose 
tissue:

1. Fat mass tends to be preferentially distributed in the 
abdominal region. Compared with subcutaneous fat, vis-
ceral fat increased more significantly.

2. Ectopic lipid accumulation occurs not only in vis-
ceral depots, but also in bone marrow or muscle, among 
other tissues [11].

3. There are an increasing number of senescent cells in 
the adipose tissue.

4. Aberrant secretion of adipokines.
5. The aged adipose tissue is also characterized by 

reduced adipocyte size, tissue fibrosis, endothelial dys-
function, and reduced vascularization and angiogenic 
capacity [12].

Alterations in adipose tissue are major contributors 
to age-related metabolic dysfunctions and longevity 
[13–15]. There are fundamental cellular and molecular 
differences in adipose tissue inflammation between diet-
induced obesity and age-associated obesity [15].

Obesity-related AT inflammation is initiated by the 
inability of adipose tissue to buffer dietary lipids [16]. 
Excessive lipid causes adipocyte stress lipotoxicity in the 
liver and skeletal muscle increases reactive oxygen spe-
cies and activates serine threonine kinases, such as c-jun 
N-terminal kinase (JNK), IκB kinase (IKK), and protein 
kinase C (PKC). These events disrupt insulin receptor 
signaling cascades and promote insulin resistance [17]. 
Adipocyte death in obese humans will increase the stress 
of ATMs, leading to inflammation activation. A large 
number of ATMs infiltrate AT and secrete inflamma-
tory factors. In addition, as adipose tissue is an endocrine 
organ, adipocytes also can secrete adipokines. During 
obesity, adipocytes increase pro-inflammatory cytokine 
and chemokine secretion of IL-6 and TNF-alpha, where 
TNF-alpha has been shown to increase insulin resistance 
in diet-induced obese mice [18].

In Lumang’s study [19], young and old mice adipose tis-
sue were divided into ATMs〔CD11b( +)], adipose tissue 
stromal cells (ATSCs) [CD11b (−)) and adipocytes. The 
cytokines and chemokines produced by these cells were 
analyzed, respectively. Although these three components 
secrete IL-6 and MCP-1, in vitro, the levels of ATSCs and 

ATMs were significantly higher, implicating that the main 
contributors of adipose tissue inflammation during aging 
were the resident fat immune cells rather than adipocytes.

In addition, senescent cells in adipose tissue become 
a potential source of aging-associated AT inflammation. 
Recent studies have shown that visceral and groin adi-
pose tissue in mice contains large amounts of p16 (Ink 
4 a)-positive senescent cells [10]. These senescent cells 
secrete various types of pro-inflammatory cytokines, 
such as IL-6, IL-8 and TNF-alpha, known collectively 
as the aging-related secreted phenotype (SASP) [20]. 
Because the old immune system is not effective enough 
in removing senescent cells [21, 22], these pro-inflamma-
tory factors gradually accumulate with aging.

Adipose tissue inflammation is closely related to innate 
adipose immune cells during aging. The main immune 
cell types in adipose tissue include macrophages (ATMs) 
and T lymphocytes, and other immune cell types [23, 24]. 
In this review, we focus on changes and its mechanisms 
of ATMs in aging.

Adipose tissue macrophages in aging
Adipose tissue is an immunometabolically active organ 
in a constant state of flux [25]. The metabolic function of 
adipose tissue changes with increasing age. Aged adipose 
tissue becomes less sensitive to insulin, lipolytic stimula-
tion and fatty acids [13]. In animal models, inflammation 
and metabolic regulation of adipose tissue affect animal 
life span, suggesting that adipose tissue, especially white 
adipose tissue, now emerges as a pivotal organ control-
ling lifespan [26, 27].

Macrophages are the inflammatory source in adipose 
tissue. These innate immunity cells are derived from 
bone marrow hematopoietic stem cells [28]. The number 
of macrophages in adipose tissue depends on the prolif-
eration of macrophages in local adipose tissue and the 
recruitment of monocytes in blood circulation to adipose 
tissue [29].

Adipose tissue macrophages (ATMs) are the great-
est proportion of leukocytes in adipose tissue. ATMs 
were classified under the prototypical dichotomy of M1 
“classically” activated macrophages (CD11c + CD206 −) 
and M2 “alternatively” activated macrophages 
(CD11c − CD206 +). M1 macrophages have high phago-
cytic and bactericidal potential, secrete pro-inflammatory 
cytokines and activate Th1. M2 macrophages interact 
with Th2 lymphocytes to promote anti-parasitic activity, 
wound healing and tissue repair as well as produce anti-
inflammatory cytokines that prevent excessive immune 
responses. Lumeng et al. [19] reported an inflammatory 
double-negative ATMs (CD11c − CD206 − , DN) in mice. 
However, this kind of ATM phenotype has not been 
observed in humans.
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In young adipose tissue, most of ATMs are M2 cells. 
Their functions are not only anti-inflammatory, but also 
efferocytosis, lipid buffering, angiogenesis, regulation 
of iron flux. They can help maintain homeostasis of AT. 
Aging alters the balance of visceral adipose tissue mac-
rophages toward the pro-inflammatory M1 phenotype 
and DN ATMs [19]. It is likely not only the increase in 
inflammatory adipose tissue macrophages, but also the 
decreased homeostatic function of the resident M2 cells 
during aging.

The phagocytic function and antigen presenting ability 
of adipose tissue macrophages decreased with age [30]. 
Proinflammatory cytokines such as interleukin (IL-6), 
tumor necrosis factor α (TNF-alpha) and IL-1β secreted 
by M1 macrophages are elevated both in aged mice [19, 
31, 32] and older humans [33]. These cytokines can inter-
fere with insulin receptor signaling pathways, which in 
turn induce local (fat) and systemic (liver and skeletal 
muscle) insulin resistance. M1 macrophages are engaged 
in early stage of aging and age-related metabolic syn-
drome such as atherosclerosis, obesity, type II diabetes.

In mice, Lumeng [19] found that total ATM content is 
unchanged in old mice by observing young (3–4 months) 
and old (18–22  months) C57BL/6 mice. With age, the 

ratio of pro-inflammatory M1 ATMs to resident M2 
ATMs was significantly increased. A decrease in PPARγ 
expression in ATMs is associated with this change. 
CCR2-dependent chemokine pathway may also be 
related to ATM recruitment in age. In addition, non-
macrophage stromal cells and adipocytes of old mice can 
activate macrophages through paracrine effect (Fig. 1).

In humans, there are few studies on human adipose 
tissue macrophages due to the difficulty of sampling. 
Victoria [34] observed healthy Pima Indians, found 
that subcutaneous adipose tissue macrophage content 
increases steadily with age, independent of sex, ethnic-
ity, adipose tissue depot, and diagnosis of diabetes. At 
about 30 years of age, the number of ATMs in human 
will reach a peak and then drop slightly until 45 years. 
Consistent with studies in mice, adipose tissue mac-
rophage content (ATMc) per se is not a direct cause of 
insulin resistance. The expression of the macrophage 
activation marker PAI-1 was associated with insu-
lin resistance, suggesting that macrophage activation, 
rather than number, may be more important in medi-
ating the association between inflammation and lower 
insulin-mediated glucose uptake.

Fig. 1  Macrophages in young, obese and old adipose tissue. In young adipose tissue, most of ATMs are M2 cells. Their functions are not only 
anti-inflammatory, but also efferocytosis, lipid buffering, angiogenesis, regulation of iron flux. They can help maintain homeostasis of adipose tissue 
(AT). In obesity, a large number of macrophages in the blood are collected into adipose tissue. The number of ATMs increased from 5 to 50% of 
the total number of adipose tissue cells and transformed from M2 to M1 cells. Many M1 ATMs surround the necrotic adipocytes to form crown-like 
structures (CLS), a hallmark of low-grade inflammation and insulin resistance. In aging adipose tissue, the total ATM content is unchanged, but the 
ratio of M1/M2 ATMs is increasing. Aging alters the balance of adipose tissue macrophages toward the pro-inflammatory M1 phenotype
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Aged ATMs in lipolysis
Aging is a chronic and complex physiological process, 
which gradually worsens the energy homeostasis [35]. 
The dynamic balance of lipid storage and lipolysis in 
aged adipose tissue is not well controlled. Mobiliza-
tion of FFAs is dysregulated, causing visceral adiposity, 
lower exercise capacity, and cold intolerance. Adipose 
macrophages are involved in age-related reduction of 
lipolytic activity. Camell et  al. [36] showed that aged 
ATMs decrease catecholamine-dependent lipoly-
sis in a NLRP3 inflammasome-dependent manner in 
mice. Deletion of NLRP3 in aging restored catecho-
lamine-induced lipolysis through downregulation of 
growth differentiation factor-3 (GDF3) and monoam-
ine oxidase-a (MAOA) that is known to degrade nor-
epinephrine (NE). Inhibition of MAOA in macrophages 
restored lipolysis by increasing key lipolytic enzymes. 
However, in human adipose tissue, MAOA is mainly 
expressed in mature adipocytes. Gao et  al. [37] report 
that age-Induced reduction in human lipolysis is 
related to catecholamine pathway in subcutaneous adi-
pocytes, suggesting species-specific differences in aging 
mechanisms.

Mechanisms for regulation of functions of ATMs
Aging is mainly associated with adipose tissue mac-
rophage polarization, rather than ATMs recruitment and 
infiltration like obesity. However, the molecular mecha-
nisms responsible for ATM activation and polarization 
remain unknown. Here are several signaling pathways 
related to it, so far.

NF‑ΚB
NF-κB is considered to be a central transcription factor 
in the regulation of inflammatory response, because it 
controls the synthesis of most inflammatory markers and 
mediators (including TNF-alpha, IL-6, IL-1, IL-8, MCP-1, 

iNOS, COX-2 and adhesion molecules) [38], whereas 
PPAR-γ antagonizes NF-ΚB-associated activation.

Wu [31] found that the mRNA expressions of pro-
inflammatory cytokines IL-1, IL-6, TNF-alpha and 
COX-2 in visceral adipose tissue of aged C57BL mice 
were significantly higher than those of young mice, while 
the expression of anti-inflammatory PPAR-γ was lower 
than that of young mice. When peritoneal macrophages 
were cultured with the extract of aged mice adipocytes, 
it was found that they were easy to polarize to M1, which 
can produce more TNF-alpha and IL-6. He also found 
that sphingolipid ceramide was higher in old compared 
with young adipose tissue. Ceramide is involved in age-
associated up-regulation of IL-6 and TNF-alpha. Reduc-
ing ceramide levels or inhibiting NF-ΚB activation 
decreased those cytokine production, whereas the addi-
tion of ceramide has the opposite effect, suggesting that 
ceramide-induced activation of NF-ΚB plays a key role in 
adipose tissue inflammation. These observations in mice 
likely correspond to those made in obese adipose tissue 
from humans.

Endoplasmic reticulum stress
In obesity, endoplasmic reticulum stress is involved in 
adipose tissue inflammation and insulin resistance. Endo-
plasmic reticulum stress can inhibit insulin signaling by 
activating c-Jun N-terminal kinase and serine phospho-
rylation of IRS-1 [39].

In recent years, Ghosh AK [40] reported ER stress 
markers are also elevated in aging ATMs. Old ATMs 
are relatively more sensitive to ER stress compared to 
young ATMs. Endoplasmic reticulum stress inhibitors 
can inhibit the production of TNF-alpha by ATMs in old 
mice. Autophagy is programmed cell survival. But too 
much or too little autophagy can damage cells. Abnormal 
autophagy in aging adipose tissue can increase endoplas-
mic reticulum stress and local inflammation [41].

Fig. 2  Effect of aging on adipose tissue macrophages
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SIRT1
Sirtuins are a group of NAD+-dependent protein dea-
cetylases, which are considered to be the key regulators 
of natural aging and other stress-related diseases [42, 
43]. Among them, SIRT1 is an important factor involved 
in adipocyte metabolism. In mature adipocytes, SIRT1 
promotes fat mobilization through repression of PPARγ 
[44] and protects cells from TNF-alpha-induced insulin 
resistance [45]. So, in obesity-related insulin resistance 
of mice, Hui et  al. [46] found that SIRT1 in adipocytes 
is more critical than SIRT1 in other parts. Because SIRT 
signal in adipocytes is involved in regulating the expres-
sion and secretion of some adipokines, such as adi-
ponectin, MCP-1 and interleukin 4. SIRT knockout of 
rat adipocytes will accelerate the recruitment of mac-
rophages to adipose tissue and polarize into M1 type. In 
human subjects, SIRT1 level is inversely related to BMI 
and adipose tissue macrophage infiltration. Overexpres-
sion of SIRT1 effectively blunts obesity-induced adipose 
tissue macrophage infiltration [47].

SIRT1 activator can improve the health status and 
prolong the life span of mice [48, 49]. Aging can reduce 
NAD + and SIRT1 activity [50], while energy restriction 
and exercise can stimulate SIRT1 activity. Aging can 
reduce the activity of SIRT in hypothalamus, promote 
leptin resistance and increase obesity [51, 52]. However, 
the role of SIRT1 on ATMs activation and polarization in 
aging is unknown. There are few related reports, which 
are worthy of further study.

AMPK
AMPK is a central regulator of fatty acid, cholesterol, 
and glucose homeostasis through phosphorylation of 
metabolism-regulating enzymes including acetyl-CoA 
carboxylase (ACC), glycogen synthase (GS), glucose 
transporter 4 (GLUT4), HMG-CoA reductase, hormone-
sensitive lipase (HSL), and mammalian target of rapamy-
cin (mTOR) [53].

As a potent counter-regulator of inflammatory sign-
aling pathways, AMPK can inhibit pro-inflammatory 
responses in macrophages and promote macrophage 
polarization into anti-inflammatory phenotype. Anti-
inflammatory cytokines (i.e., IL-10 and TGFβ) can induce 
the rapid phosphorylation/activation of AMPK in mac-
rophages, whereas pro-inflammatory stimulus (LPS) 
resulted in AMPK dephosphorylation/inactivation. 
AMPKalpha1 is the main AMPKalpha isoform of mac-
rophages. Inhibition of AMPKalpha expression increased 
LPS-induced macrophage inflammatory cytokine pro-
duction, however, expression of a constitutively active 
AMPKalpha1 results in the opposite consequences. 
In addition, AMPK was found to reduce LPS-induced 
IκB-alpha degradation and enhanced Akt activation, 

accompanied by inhibition of GSK3-β and activation of 
CREB. Therefore, it is speculated that AMPK is the mas-
ter switch of macrophage polarization [54].

AMPK is a pro-longevity kinase [55]. AMPK activ-
ity in tissues decreased gradually during aging. Recent 
studies have shown that activating AMPK is sufficient to 
regulate longevity and extend calorie restriction-induced 
lifespan in many organisms. Salminen et al. [56] reported 
several key pro-longevity pathways regulated by AMPK, 
including inhibition of CRTC-1/CREB and NF-κB and 
mTORC1, as well as activation of SIRT1, Nrf2, FOXO1 
and ULK1. There is a low level of inflammation in the 
aging process. AMPK can reduce the inflammatory 
responses by inhibiting NF-κB signaling. AMPK does 
not directly phosphorylate NF-κB subunits, but acts on 
NF-κB by regulating downstream factors, such as SIRT1, 
PGC-1α, p53, and Forkhead box O (FoxO) factors [57].

It is known that AMPK is an important inflammatory 
suppressor, and AMPK regulates macrophage polariza-
tion in obese adipose tissue inflammation [58, 59]. The 
M1–M2 polarization of macrophages is regulated by 
AMPK. After the AMPK β1 subunit gene was knocked 
out, the activity of AMPK, the phosphorylation of acetyl-
CoA carboxylase and the content of mitochondria in 
macrophages decreased, resulting in the decrease of 
fatty acid oxidation rate. β1(−/−)macrophages showed 
increased levels of diacylglycerol and inflammatory 
markers. AMPKalpha1 knockdown macrophages could 
express and secrete more TNF-alpha and IL-6 under the 
stimulation of lipopolysaccharide (LPS) [54]. In addition, 
AMPK-specific activator inhibited LPS-induced TNF-
alpha expression in mouse macrophages. In the visceral 
adipose tissue of obese people, the decrease of AMPK 
activity is closely related to adipose tissue inflammation 
[60]. AMPK also can enhance SIRT1 by increasing NAD/
NADH ratio and decreases adipose tissue macrophage 
infiltration and inflammation [61, 62].

To date, the role of ATMs AMPK signal in aging is 
unclear. This aspect is worthy of further study.

Long‑chain saturated fatty acids
In obesity, saturated fatty acid palmitate can increase the 
retention of macrophages by increasing the expression of 
netrin-1 in obese adipose tissue, leading to insulin resist-
ance [63]. Long-chain saturated fatty acids, rather than 
unsaturated fatty acids, induce macrophages to produce 
inflammatory response through JNK signaling pathway 
[64].

. In addition to ectopic fat deposition, the level of free 
fatty acids in the elderly is increased. Increased free fatty 
acids, especially saturated fatty acids, may be the driv-
ers of insulin resistance and inflammation in the elderly. 
Ghosh [65] found that free fatty acid (FFA)-induced aging 



Page 6 of 8Lu et al. The Journal of Physiological Sciences           (2021) 71:38 

adipose tissue inflammation and insulin resistance are 
dependent on the TLR4 signaling.

Others
Local hypoxia
The aged adipose tissue is also characterized by reduced 
adipocyte size, tissue fibrosis, endothelial dysfunction, 
and reduced vascularization and angiogenic capacity 
[12]. Local hypoxia of adipose tissue may cause the accu-
mulation and inflammatory polarization of ATMs [66, 
67].

COX5B
Mitochondrial cytochrome oxidase subunit 5B (cox5b) 
can induce the production of HIF-1α. Studies have found 
that aging can reduce the content of cox5b in adipose tis-
sue [68]. With age, the decrease of Cox 5B in human vis-
ceral adipose tissue not only increases HIF-1α, but also 
increases the storage of lipid in cells, which promotes the 
expansion of adipocytes. If this hypertrophic expansion 
continues, the stress signals that promote macrophage 
infiltration will be released, as observed in obesity [69, 
70].

Conclusions and perspectives
Aging is commonly associated with low‐grade adipose 
inflammation, which is closely linked to insulin resist-
ance. ATMs play an important role in adipose tissue 
inflammation; limited reports have also shown about 
ATM in aging. The ratio of M1/M2 ATMs is increas-
ing, not the total ATM content in aging. The polariza-
tion mechanism of ATMs and its role in aging-related 
metabolic dysfunction are mainly related to factors such 
as NF-κB, endoplasmic reticulum, long-chain saturated 
fatty acids and hypoxia. Several signaling pathways, espe-
cially AMPK and SIRT1, need to be further elucidated in 
ATMs activation (Fig. 2).

The following questions will be the focus of further 
interest and investigation in the coming years:

1.	 Which inflammatory pathways are most relevant to 
ATMs in aging?

2.	 How do macrophages interact with other immune 
cells in the AT?

Perhaps most importantly, how can ATMs be modu-
lated to protect against the metabolic effects of aging.
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