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REVIEW

Understanding vestibular-related 
physiological functions could provide clues 
on adapting to a new gravitational environment
Hironobu Morita1*, Hiroshi Kaji2, Yoichi Ueta3 and Chikara Abe1

Abstract 

The peripheral vestibular organs are sensors for linear acceleration (gravity and head tilt) and rotation. Further, they 
regulate various body functions, including body stability, ocular movement, autonomic nerve activity, arterial pres-
sure, body temperature, and muscle and bone metabolism. The gravitational environment influences these func-
tions given the highly plastic responsiveness of the vestibular system. This review demonstrates that hypergravity or 
microgravity induces changes in vestibular-related physiological functions, including arterial pressure, muscle and 
bone metabolism, feeding behavior, and body temperature. Hopefully, this review contributes to understanding how 
human beings can adapt to a new gravitational environment, including the moon and Mars, in future.
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Background
The vestibular organ, which is located in the bony laby-
rinth of the inner ear, comprises two components; 
namely, the otoliths, which perceive linear acceleration 
and head tilt, and the semicircular canals, which perceive 
angular acceleration. The vestibular organ detects accel-
eration changes and converts them into neural signals, 
which are sent to the central nervous system to reflex-
ively regulate physiological functions, including body 
stability (vestibulo-spinal reflex) [1], ocular movements 
(vestibulo-ocular reflex) [2, 3], sympathetic nerve activ-
ity (vestibulo-sympathetic reflex) [4–6], arterial pres-
sure (vestibulo-cardiovascular reflex), food intake [7], 
and body temperature [5, 8–10]. There have been recent 
reports on vestibular-related muscle and bone metabo-
lism [11–14] and increasing attention on the various ves-
tibular system functions. The vestibular system is known 

to be highly plastic, i.e., its sensitivity might be altered 
upon exposure to a different gravitational environment. 
Given the aforementioned vestibular functions, plastic 
alteration of the vestibular system might be involved in 
spaceflight-associated (especially microgravity-associ-
ated) medical problems, including gravity sickness, bal-
ance disorder, orthostatic hypotension, muscle atrophy, 
and bone loss. Understanding the underlying mecha-
nisms of these medical problems and establishing effec-
tive countermeasures is necessary for allowing space 
exploration requiring longer distances and time peri-
ods under a microgravity environment. In this review 
article, we focus on topics regarding vestibular-related 
physiological functions and their plastic alterations upon 
exposure to different gravitational environments, i.e., 
hypergravity and microgravity.

Arterial pressure control and orthostatic 
hypotension
Gravity changes, i.e., in its magnitude or direction, are 
the most common and important disturbances to the car-
diovascular system in beings living on the ground. These 
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disturbances involve hydrostatic pressure changes that 
result from the gravity change. For example, a supine-
to-standing posture change results in the longitudinal 
axis direction of the circulatory system and the grav-
ity direction coinciding with each other. Consequently, 
the hydrostatic pressure of the lower body increases, the 
veins expand, and about 500 mL of blood accumulates in 
the lower body (Fig. 1a) [15]. Further, the blood volume 
in the thoracic cavity is reduced by 20% within 15  s of 
standing and there is a reduction in heart filling, cardiac 
output, and arterial pressure. Given the quick correction 
of these changes by the circulatory control mechanism, 

standing does not result in decreased arterial pressure 
in healthy individuals. However, more than 30% of older 
adults present orthostatic hypotension [16]. Further, 40% 
of astronauts returning from space have been reported to 
experience orthostatic hypotension [17]. The underlying 
mechanism has been reported to involve decreased cir-
culating blood volume, baroreflex dysfunction, myocar-
dial atrophy, etc. [18–21]. Further, recent reports have 
revealed an involvement of the vestibular system dys-
function [22, 23].

During voluntary rear-up behavior in rats, the 
arterial pressure is maintained by baroreflex and 

Mean venous pressure (mmHg)
10                                 2       98

Mean arterial pressure (mmHg)
98                               100     98

40
 c

m
13

0 
cm

Arterial/venous
Pressure (mmHg)

70/ –20

100/ 2

194/
106Fo
ot

w
ar

d 
flu

id
 sh

ift

Intravascular pressure
= driving pressure ＋ hydrostatic pressure

Hydrostatic pressure at the head
= –400 mm 13.6 (Hg)
≈ –30 mmHg

Hydrostatic pressure at the foot
= 1300 mm 13.6 (Hg)
≈ 96 mmHg

Standing

Sympathetic
nerve

Negative Feedback

Negative Feedforward

[Sensor]
Vestibule

[Sensor]
Baroreceptor

Set point Arterial pressure
[Controller]

Central nervous
system

[Plant]
Cardiovascular

system

a

b

Fig. 1 a Arterial and venous pressure change after supine-to-standing posture change. At the standing posture, the hydrostatic pressure of the foot 
increases to 96 mmHg while the venous pressure increases to 106 mmHg. Since the vein is more compliant, it dilates and 500 mL of blood is shifted 
to the lower body. b Block diagram of arterial pressure control at the standing posture. Revised Fig. 5 in reference 5



Page 3 of 11Morita et al. J Physiol Sci           (2020) 70:17  

vestibulo-cardiovascular reflex [8]. Figure  1b presents 
a simple block diagram that represents the role of both 
reflexes [5]. The gravity directional change that accom-
panies the rear-up behavior induces a downward blood 
shift and a decrease in the arterial pressure. Simultane-
ously, this gravity change triggers the vestibular system 
and reflexively increases the sympathetic activity and 
arterial pressure (vestibulo–cardiovascular reflex) [4, 5]. 
This reflex is a type of feedforward control that quickly 
operates before the arterial pressure changes due to the 
blood shift upon gravity directional changes, and subse-
quently prevents falling of the arterial pressure. However, 
since the adjustment is based on gravity change rather 
than arterial pressure change, a control error occurs. The 
baroreceptor reflex corrects this control error, which is a 
feedback control system. Therefore, the vestibular system 
and baroreceptor reflexes maintain arterial pressure in a 
cooperative and interactive manner [5, 8].

Animal experiments allow examination of the role of 
the vestibular system in arterial pressure control by com-
paring the arterial pressure response to postural changes 
in animals with an intact vestibular system to that in 
animals with a lesioned vestibular system. However, it is 
impossible to use invasive and irreversible methods, such 
as vestibular lesion (VL), in humans. Therefore, there is a 
need for a non-invasive and reversible vestibular block-
ing method that can be used in place of VL. An effec-
tive alternative is galvanic vestibular stimulation (GVS), 
which stimulates vestibular afferents using surface elec-
trodes placed on the bilateral mastoid processes of the 
temporal bone. Animal studies have reported that GVS 
attenuates gravity change-induced vestibulo-cardiovas-
cular reflex similarly to VL [24]; therefore, it confirmed 
its effectiveness. This method has been used to confirm 
that the magnitude of the vestibulo-cardiovascular reflex 
at 60º head-up tilt is about 15 mmHg [9, 23]. Further, a 
study has reported a correlation between the degree of 
arterial pressure fall at the onset of 60º head-up tilt and 
the deterioration of otolith function as estimated by a 
subjective visual vertical study [25].

The vestibular system is known to be highly plastic 
with its function changing under different gravitational 
environments. We have previously reported a reduction 
in the sensitivity of vestibulo-cardiovascular reflex in 
rats reared in hypergravity environments [26–29]. This 
decrease is not due to the excessive gravity itself; rather, 
it is considered to result from use-dependent plasticity 
caused suppression of daily activities in the hypergravity 
environment and reduction of daily input to the vestib-
ular system. In a 1g environment, rats rear up approxi-
mately 400–500 times a day; however, in a hypergravity 
environment, rats rear up only a few times a day. Fur-
ther, their head movements, which indicate input to the 

vestibular system, are 10–20% of those under a 1g envi-
ronment [28, 29]. Moreover, rats reared under restricted 
behavior in a narrow cage present a similar suppression 
of vestibulo-cardiovascular reflex that is comparable to 
that in a hypergravity environment [29].

Similar findings have been reported by human stud-
ies. In elderly people with reduced daily physical activity, 
the arterial pressure drops by about 20 mmHg upon 60º 
head-up tilt regardless of the presence or absence of GVS 
[9]. This indicates that an almost lack of ability of elderly 
individuals to regulate the vestibulo-cardiovascular 
reflex; further, reduced vestibular function is involved in 
the orthostatic hypotension often seen in elderly people.

In a microgravity environment, rotational acceleration 
and linear acceleration are maintained; however, there is 
a loss of input to the otolith due to head tilt. Specifically, 
input to the semicircular canal is maintained, but input 
to the otolith is reduced. Under these circumstances, 
there might be use-dependent plastic alterations to the 
vestibular otolith system with a reduction of the ability to 
adjust the vestibulo-cardiovascular reflex. A reduction in 
the ocular counter-rolling response, which is an otolith-
driven reflex, has been reported upon return from long-
term spaceflight [3]. Recently, Hallgren et  al. reported a 
significant correlation between decreased otolith func-
tion and reduced arterial pressure response upon head-
up tilt upon returning from spaceflight, which suggests 
that a deconditioned otolith system causes orthostatic 
intolerance [22]. Specifically, we previously estimated the 
magnitude of vestibulo-cardiovascular reflex upon return 
from spaceflight and found that it was non-operational 
and that it gradually recovered over the next 2  months 
[23] (Fig. 2). 

Further, we have previously reported that GVS pre-
vents hypergravity-induced plastic alterations of the 
vestibulo-cardiovascular reflex [28]. This could be due 
to GVS complementing the hypergravity-induced reduc-
tion in the phasic vestibular input. If the same occurs in 
microgravity, then incorporating GVS with training in 
the International Space Station might be a new counter-
measure against vestibular deterioration.

Muscles and bones
Microgravity is well known to induce muscle atrophy 
and bone loss in astronauts [30–32]. A previous study 
suggested that microgravity-induced muscle wasting 
and osteopenia are partly due to enhanced bone resorp-
tion and reduced calcium absorption in the intestines 
[4]; however, the effects of gravity change on osteoblastic 
bone formation and osteoclastic bone resorption remain 
unclear [33]. A recent study reported that the micrograv-
ity-induced effect on syncytin-A expression stimulated 
osteoclast formation independently of receptor activation 
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of nuclear factor-kappa B ligand (RANKL), a crucial bone 
resorption factor, in mouse monocytic RAW264.7 cells 
[34]. Regarding osteoblasts, microgravity suppresses 
cell metabolism by impairing the cell mitochondrial 
energy state in human osteoblasts; further, it represses 
rat osteoblast differentiation by affecting primary cilia, 

which partly sense mechanical stress [35, 36]. Moreover, 
spaceflight has been reported to result in enhanced bone 
resorption by inducing osteocyte death and the subse-
quent bone mass deterioration and microstructure in 
mice [37].

Fig. 2 a Arterial pressure (AP) and mean AP (MAP) responses to 60º head-up tilt (HUT) with (lower panel) and without (upper panel) galvanic 
vestibular stimulation (GVS). The magnitude of vestibulo-cardiovascular reflex can be estimated by the AP response difference between that 
without and that with GVS. b Sum of differences in Δ AP between the initial response (within the first 20 s) to HUT without and with GVS [(without 
GVS) − (with GVS)], at Pre (2–4 months before launch), Post-1 (1–4 days after return), Post-2 (11–15 days after return), and Post-3 (2 months ± 12 days 
after return). Data are shown as mean ± standard error of the mean for six participants. *P < 0.05 vs. Pre. Revised Figs. 1 and 3 in reference 23.
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Further, gravitational unloading induces muscle atro-
phy and decreases the contraction capacity of anti-grav-
ity muscles in rodents and humans [9]. Hypergravity 
enhances the mass of anti-gravity muscles and inhibits 
ovariectomy-induced osteopenia in rodents [38, 39]. 
Tominari et  al. recently reported that hypergravity and 
microgravity have contrasting effects on bone and mus-
cle in mice [40], which suggests that animal models kept 
in hypergravity environment could be used to investigate 
the microgravity influences on muscles and bones.

Gravity change induces plastic alteration of the vestibu-
lar system that links the motor and sympathetic nervous 
systems, which are crucial muscle and bone regulators. 
Several studies have reported that labyrinthectomy or VL 
reduces bone mass with partial involvement in the sym-
pathetic nervous system in rodents, which indicates that 
the vestibular system regulates bone metabolism [11, 12, 
41]. Regarding the vestibular system role in skeletal mus-
cles, labyrinthectomy induces changes in muscle fiber 
morphology and function in ferrets. Further, the vestibu-
lar system modulates muscle fiber size and transcription 
factor expression in rats [14, 42]. Clinical studies have 
reported a relation between benign paroxysmal posi-
tional vertigo with the vestibular dysfunction and osteo-
porosis, high bone turnover, and vitamin D deficiency in 
patients with osteoporosis [43–45]. Taken together, these 
findings indicate that vestibular system regulates both 
skeletal muscles and bones.

There have been reports indicating muscle–bone inter-
action based on the clinical relationships between sarco-
penia and osteoporosis, as well as the common effects of 
numerous factors, including genetic, mechanical stress, 
endocrine factors, nutrition, and inflammation, on both 
skeletal muscles and bones [46–48]. In astronauts, micro-
gravity-induced muscle wasting recovers faster than 
osteopenia [49]. Therefore, we speculated that gravity 
change influences muscle–bone interactions by affect-
ing muscle-derived factors (myokines) that link muscle to 
bone, which might have a partial involvement in micro-
gravity-induced changes in muscle and bones. We inves-
tigated the hypergravity effects on muscles and bones in 
mice using the gondola-type centrifuge in a 3g environ-
ment with or without VL [13]. We found that a 4-week 
exposure to hypergravity in a 3g environment increased 
the anti-gravity muscle weight and fiber size, as well as 
the expression of muscle differentiation genes, including 
MyoD. Moreover, it increased the body weight-adjusted 
trabecular bone mass. VL and inhibition of the sympa-
thetic nervous system using an adrenergic β blocker, pro-
pranolol, antagonized the hypergravity-induced muscle 
and bone changes. These findings suggest that gravity 
change affects muscles and bones through the vestibu-
lar and subsequent sympathetic outflow in mice [49]. We 

performed similar experiments in mice using hypergrav-
ity in a 2g environment for 2 weeks [50]. We found that 
it enhanced osteoblast differentiation partly through the 
vestibular system, which suggests that the vestibular sys-
tem might contribute to the adaptive response of bone 
tissues during gravity change [50]. However, the effects of 
hypergravity, such as 2 or 3g, on bone and muscle mass 
are still currently unclear [13, 40, 50].

Comprehensive DNA microarray analysis of mouse 
anti-gravity muscle samples indicated that the gene for 
FK506 binding protein 5 (FKBP5) is responsible for the 
hypergravity-induced muscle mass increase through 
the vestibular system in mice [51]. Numerous myokines 
secreted from skeletal muscles have positive or negative 
effects on bones [47] and might be involved in the effects 
of gravity changes on muscles and bones through the ves-
tibular system. Although follistatin is a known antagonist 
of myostatin, a crucial myokine that links muscle to bone, 
hypergravity enhances follistatin expression in anti-grav-
ity muscle and its subsequent secretion to the blood-
stream through the vestibular system in mice. Further, 
there seems to be an association between follistatin and 
hypergravity-induced bone mass increase (Fig.  3) [52]. 
Taken together, these findings indicate that vestibular 
system plasticity might be crucial for the microgravity-
induced effects on muscles and bones through various 
factors, including follistatin and FKBP5. However, the 
factors through which gravity change and mechanical 
stress modulate muscles and bones seem to be slightly 
different [53]. Further studies are required for detailed 
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Fig. 3 Role of follistatin in the effects of gravity change on muscle 
and bone. Follistatin suppresses the action of myostatin, an inhibitor 
of skeletal muscle mass and a stimulator of bone resorption. 
Hypergravity enhances follistatin expression in skeletal muscles 
through the vestibular system in mice. Circulating follistatin induced 
by gravity change might be involved in hypergravity-enhanced bone 
mass by inhibiting myostatin-induced bone resorption
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clarification of the underlying mechanisms of micrograv-
ity-induced effects on muscles and bones. Controlling 
the vestibular system and clarifying the critical factors 
that maintain muscles and bones in response to grav-
ity change might be useful to prevent microgravity- or 
immobilization-induced muscle wasting and osteopenia.

Gravity sickness and hypophagia
Approximately 60–80% of astronauts suffer from space 
motion sickness during the first 2–3 days in microgravity 
[54]. The more appropriate term for it would be gravity 
sickness because symptoms similar to space motion sick-
ness occur immediately after returning to the ground or 
being exposed to hypergravity. These symptoms, which 
affect the performance of astronauts, are important prob-
lems that should be solved. Responses in different grav-
ity environments indicate certain biological changes. 
Transient hypophagia and subsequent weight loss are 
common biological responses to centrifugation-induced 
hypergravity [7, 55, 56]. Feeding is controlled by the cen-
tral nervous system via various neuropeptide-contain-
ing neurons of the hypothalamus [7, 57, 58]. It has been 
reported that there are neural inputs from the vestibular 
system to the hypothalamus [59]. Morita et al. reported, 
in mice, a marked increase in fos immunoreactivity in the 
paraventricular nucleus (PVN) after a 90-min exposure 
to 2g hypergravity, which was abolished by VL [56]. Since 
the reduced food intake is fully or partially ameliorated 
by the VL, the vestibular system is also, at least partially, 
involved in the hypergravity-induced hypophagia [7]. 
However, it was unveiled how gene expression of hypo-
thalamic feeding-regulating neuropeptides is altered in 
hypergravity-induced hypophagia and whether vestibular 
function is involved in the modulation of neuropeptide 
expression in the hypergravity environment.

We examined the gene expression of hypothalamic 
feeding-regulating neuropeptides at 3  days, 2  weeks, 
and 8 weeks after exposure to a 2g environment induced 
using centrifugation and compared the expression levels 
of various neuropeptides between sham-operated (Sham) 
or VL mice. Three anorexigenic neuropeptides [cortico-
trophin-releasing hormone (CRH), pro-opiomelanocor-
tin (POMC), and cocaine- and amphetamine-regulated 
transcript (CART)] and four orexigenic neuropeptides 
[neuropeptide Y (NPY), agouti-related protein (AgRP), 
melanin-concentrating hormone (MCH), and orexin] 
were studied using in situ hybridization histochemistry.

The summary of the results is presented in Table 1 [60]. 
After a 3-day exposure to hypergravity, the gene expres-
sion of CRH in the PVN was altered only in Sham-2g 
mice but not in VL-2g mice. CRH is known to be involved 
in the stress response and suppression of feeding behav-
ior [57, 61, 62]. Thus, it is suggested that the increased 
gene expression of CRH is a result of the stress response 
induced by the hypergravity environment. A previous 
study reported that in rats, after a 90-min exposure to 2g, 
the immunoreactivity of CRH in the PVN significantly 
increased, but it was attenuated by VL [63]. Thus, CRH-
producing neurons in the PVN may receive neuronal 
input from the vestibular system.

We believe that the changes in gene expression of the 
hypothalamic feeding-regulating neuropeptides have 
different implications at each time point. Starved state 
induced both upregulation in NPY/AgRP and orexin 
neurons and downregulation in the POMC/CART neu-
ron [58, 64, 65]. Acute hypophagia-induced starvation 
after a 3-day exposure to hypergravity may cause the 
downregulation of anorexigenic neuropeptides such as 
POMC and CART and upregulation of orexigenic neuro-
peptides such as NPY, AgRP, and orexin; whereas, after a 

Table 1 Summary of  change in  the  gene expression of  the  hypothalamic feeding- regulating neuropeptides 
after exposure to 2g hypergravity compared with sham-1g 

↑ up regulation; 

→ no significant change

↓down regulation

mRNA After 3 days exposure to hypergravity After 2 weeks exposure to hypergravity After 8 weeks exposure 
to hypergravity

sham-2g VL-2g sham-2g VL-2g sham-2g VL-2g

CRH ↑  → ↑  →  →  → 

POMC ↓ ↓ ↑  →  →  → 

CART ↓ ↓  →  →  →  → 

NPY ↑ ↑  →  →  →  → 

AgRP ↑ ↑  →  →  →  → 

MCH  →  →  →  →  →  → 

orexin ↑ ↑  →  →  →  → 



Page 7 of 11Morita et al. J Physiol Sci           (2020) 70:17  

2-week exposure to hypergravity, gene expression of the 
CRH and POMC showed a dramatic increase in Sham-2g 
mice but not in VL-2g mice. These changes may be due 
to inadequate adaptation to the different gravity rather 
than starvation or fasting, since after a 2 weeks of hyper-
gravity exposure, food consumption had recovered [7]. 
Thus, we speculate that it takes more than 2  weeks for 
the vestibular system to adapt to the different gravity. The 
gene expression of hypothalamic feeding-regulating neu-
ropeptides was not different after an 8-week exposure to 
hypergravity. It was considered that the vestibular system 
adapts to the different gravity in 8 weeks, as the vestibu-
lar system is known to be highly plastic and able to adapt 
to novel gravitational environments [26, 56].

Gravity sickness and hypothermia
Gravitational change is a stressor that is detected by the 
peripheral vestibular apparatus, including otolith organs. 
Short-term gravity changes, including microgravity and 
hypergravity, or GVS activate the sympathetic nervous 
system in rodents and humans [24, 26, 66, 67]. Therefore, 
it is possible that stress detected by the peripheral vestib-
ular organs induces hyperthermia with a similar response 
to that of other stressors, including air jet, restraint, 
social defeat, novel cage, cage switch, and handling [68]. 
However, gravitational change, especially long-term 
hypergravity loading, has been reported to induce hypo-
thermia rather than hyperthermia [10, 69, 70].

Long-term and long-lasting inescapable stress induces 
hypothermia [71]. Notably, there is a body temperature 
decrease in animals subjected to restraint or immobili-
zation stress. Further, other stress forms, including food 
deprivation [72], hypoxia [73], and rotation [74], lead to 
torpor and decreased oxygen consumption. Hypergrav-
ity-induced hypothermia could result from two synergis-
tic effects; namely, increased heat dissipation and reduced 
thermogenesis. Vasomotor control of the rodent hairless 
tail is crucial for the dissipation of excess body heat [75]. 
For example, the blood flow in rat tails increases 3- to 
4-fold when the ambient temperature exceeds a thresh-
old level of approximately 27 °C [76]. Rotation and shak-
ing stimulation have been previously reported to increase 
the tail temperature in rats and house musk shrew (Sun-
cus murinus) [77]. This indicates that increased heat dis-
sipation from the tail occurs during the stimulation of the 
peripheral vestibular organs. However, tailless rats did 
not show attenuation of hypergravity load-induced hypo-
thermia, which suggests that heat loss from the tail is not 
involved in the response [69].

Regarding heat production, brown adipose tissue 
(BAT) activation is a major cause of thermogenesis in 
rodents. The BAT mass in humans is approximately 10% 
that in mice; however, recent studies indicate that it plays 

a thermogenic role [78]. The stimulation of the peripheral 
vestibular organs seems to influence BAT activity; spe-
cifically, provocative motion reduces BAT thermogen-
esis in musk shrews [77]. A hypergravity study using rats 
reported that oxygen consumption, which was higher 
during cold stimulation, decreased by 50% during the 
loading [70], which might induce decreased BAT ther-
mogenesis. Therefore, hypergravity suppresses heat pro-
duction through the BAT, which might subsequently lead 
to hypothermia.

BAT sympathetic nerve activity has been reported to 
show a decrease dependent on the increase in the elec-
trical stimulation frequency to the vagal afferents [79]. 
In the central nervous system, the signal is transmit-
ted via the vagal afferents to the nucleus of the solitary 
tract. Subsequently, it is transmitted to the rostral raphe 
pallidus area, which contains BAT sympathetic premo-
tor neurons. This pathway is thought to be involved in 
hypothermia induced by vagal afferents stimulation. 
Electrical-stimulated vagal afferent-induced inhibition 
of BAT sympathetic nerve activity has been reported to 
be prevented by blocking ionotropic glutamate recep-
tors in the termination side of the vagal afferents in the 
nucleus of the solitary tract, as well as by nanoinjection 
of GABAA receptor antagonists in the rostral raphe pal-
lidus [79]. Contrastingly, there are no direct projections 
from the vestibular nuclear complex to the rostral raphe 
pallidus, magnus, or obscurus [80]. However, there is a 
neural projection from the vestibular nuclear complex to 
the nucleus of the solitary tract [81, 82]. Taken together, 
these findings suggested that vestibular input-induced 
neural activity inhibition in the rostral raphe pallidus area 
via the nucleus of the solitary tract might be involved in 
hypergravity-induced hypothermia.

Previous studies have reported a relationship between 
gravity sickness and reduced body core temperature. 
The vestibular system might be involved in gravity sick-
ness-induced hypothermia since otoconia deletion using 
global knockdown mice (NADPH oxidase 3 mutation) 
was reported to suppress hypergravity-induced hypo-
thermia [10]. In humans, participants experiencing nau-
sea during caloric ear stimulation exhibited increased 
tonic skin conductance in the fingers and an increased 
sweating rate on the forehead [83].

In contrast to humans, it is difficult to determine 
whether rodents experience hypergravity-induced grav-
ity sickness since they do not show an emetic response. 
In musk shrews, which are good models for gravity sick-
ness since they show emesis, it has been reported that 
the number of vomiting episodes was 14 ± 2 during a 
10-min 2g exposure. This was accompanied by intense 
fos expression in the medial vestibular nucleus, nucleus 
of the solitary tract, area postrema, and PVN. This was 
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completely reversed by VL [84] (Fig.  4). Allotriophagy, 
which is a motion sickness index, has been observed in 
rats during hypergravity load [85, 86]. Drugs for motion 

sickness appear to be effective. Rotation-induced hypo-
thermia, which involves stimulation of the semicircular 
canals rather than the otolith organs, has been reported 
to be suppressed by 5-HT3 receptor blockade [77]. Addi-
tionally, some studies have suggested the involvement of 
the vestibular efferents, which terminate on the vestibu-
lar hair cells and release acetylcholine. Shaking-induced 
hypothermia is suppressed in mice lacking the α9 cholin-
oreceptor subunit, which is predominantly expressed in 
the vestibular hair cells [74]. In humans, rotation with 
enhanced head movements, which facilitates motion 
sickness, was reported to result in decreased body tem-
perature compared to that after rotation only [87].

Although not all observed changes have been 
reported for all species, gravity sickness-induced hypo-
thermia appears to be quite common and has been 
reported in mice, musk shrews, and rats. The reason 
for and physiological significance of this hypothermic 
effect remains unclear. Unfortunately, there is no evi-
dence regarding an evolutionary advantage resulting 
from the appearance of this response. In a natural evo-
lution, it is difficult to imagine how animals, except for 
human beings, could be subjected to rotational or linear 
provocative motion. Therefore, it can be assumed that 
gravity sickness-induced hypothermia is not a product 
of evolutionary pressure; specifically, gravity sickness 
might be a disturbance created by human technology 
development. With the exclusion of pharmacologi-
cally and cold-induced hypothermia, other situations 
of hypothermia occurring in response to environmental 

Fig. 4 a Numbers of vomiting episodes during 10-min 2g exposure 
in a musk shrew with (sham) or without (VL) peripheral vestibular 
apparatus. b Representative images of fos-expressing cells in the 
nucleus of the solitary tract (NTS). c Summarized data for the number 
of fos-expressing cells in the NTS. Data are shown as mean ± standard 
error of the mean. *P < 0.05 vs. Sham. Revised Figs.1, 2, and 3 in 
reference 67.
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Fig. 5 Summary of this review
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stressors are toxic and/or septic shock [88]. A com-
mon feature between gravity sickness and toxic shock is 
nausea presence, which is a defense mechanism against 
intoxication. Rat experiments have shown that hypo-
thermia and cold-seeking behavior upon toxic shock is 
not only defensive, but also actually critical for survival 
[89, 90] with the adaptive reaction being to reduce the 
tissue demands for oxygen, which is critical for survival 
during intoxication [91]. Therefore, one could speculate 
that since both nausea and hypothermia develop dur-
ing gravity sickness, they could involve activation of the 
same defense mechanism and might be a result of natu-
ral selection to survive. Further, gravity sickness can be 
considered an adaptive response evoked by an inappro-
priate stimulus.

Conclusion
Figure  5 presents a summary of the conclusion of this 
review. The vestibular system controls various physical 
functions, including body stability, sympathetic nerve 
activity, arterial pressure, feeding behavior, body tem-
perature, and muscle and bone metabolism. However, it 
is highly plastic and its function is altered upon exposure 
to different gravitational environments. Changes in ves-
tibular-related physical control functions might involve 
use-dependent plasticity due to decreased phasic input to 
the otolith organ. Further, vestibular dysfunction can be 
ameliorated through appropriate stimulation of the ves-
tibular system.
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