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Abstract
We aimed to identify the neurotransmitters and brain regions involved in exercise efficiency in mice during continuous com-
plicated exercises. Male C57BL/6J mice practiced treadmill running with intermittent obstacles on a treadmill for 8 days. 
Oxygen uptake  (VO2) during treadmill running was measured as exercise efficiency. After obstacle exercise training, the 
 VO2 measured during treadmill running with obstacles decreased significantly. Obstacle exercise-induced c-Fos expressions 
and dopamine turnover (DOPAC/dopamine) in the septum after obstacle exercise training were significantly higher than that 
before training. The dopamine turnover was correlated with exercise efficiency on the 3rd day after exercise training. Further-
more, the training effect on exercise efficiency was significantly decreased by injection of dopamine receptor antagonists into 
the septum and was associated with decreased c-Fos expressions in the septum and hippocampus of the mice. These results 
suggest that dopaminergic function in the septum is involved in exercise efficiency during continuous complicated exercises.
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Introduction

Exercise efficiency is defined as high performance with 
low energy expenditure [1–3] and is enhanced by relevant 
exercise training. Higher exercise efficiency during certain 
intensity movements increases enjoyment during exercise 
and promotes motivation for further spontaneous exercise, 
which is needed to prevent the development of locomotive 
syndrome or sarcopenia. Exercise efficiency involves adap-
tations of the skeletal muscle metabolism, respiratory–car-
diovascular system, hemodynamics and motor skills [4–16].

Motor learning is involved in improvements in exercise 
techniques, which are possible after training for a certain 
period of time. Motor skills contribute to the ability to per-
form complicated exercises and are adapted earlier than 
other parameters [17], such as hypertrophy, hormonal sen-
sitivity, and gene expression. Procedural memory also con-
tributes to improvements in exercise techniques. The basal 
ganglia, cerebellum, and motor cortex have central roles in 
procedural memory [18]. Moreover, disorders of the basal 
ganglia in patients with Parkinson’s disease and Hunting-
ton’s disease hamper the ability to learn motor techniques 
[19]. Biomechanical mechanisms in motor skills, includ-
ing somatosensory recognition both in “closed skills” and 
“open skills”, were systematically reviewed in previous lit-
erature [20–22]. However, biochemical mechanisms in the 
brain for improvement of combined (closed and open skills) 
continuous exercises have not been understood. Biochemi-
cal neuromodulators such as dopamine and serotonin have 
physiological roles in physical behavior, arousal, movement, 
and motivation. Clarifying the brain mechanisms involved 
in complicated continuous exercises will provide valuable 
information for sports performance, rehabilitation, and 
movement therapy.

Although several studies have demonstrated that some 
exercises activated various neurons in the brains of rodents 
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[23–25], no reports have indicated biochemical and physi-
ological associations between motor skills and exercise 
efficiency. Therefore, the aim of the present study was to 
identify responsive biochemical alterations and brain regions 
involved in exercise efficiency during continuous compli-
cated exercises in mice. In this study, we creatively devel-
oped a continuous complicated exercise model for mice, 
using a treadmill with obstacles. Moreover, we regarded 
oxygen consumption during continuous complicated exer-
cise as a marker of exercise efficiency in our model.

Methods

Animals

All experiments were performed using 8-week-old male 
C57BL/6J mice (Slc Inc., Shizuoka, Japan). They were 
housed individually in plastic cages at 24 ± 1 °C with a 
12-hour light/12-hour dark cycle (lights on from 0800 to 
2000) and were freely fed a laboratory diet (Oriental Yeast, 
Tokyo, Japan) and water. This study was performed with 
approval from the Animal Study Committee of Tokushima 
University, and all regulations of our institution involving 
proper animal care and handling were followed during our 
experiments.

Measurement of oxygen uptake and treadmill 
running with intermittent obstacles

We used the Mousebelt-2000 (Arco System Inc., Chiba, 
Japan) as the belt-type treadmill chamber for mice. Oxy-
gen uptake  (VO2) during treadmill running (15 m/min) was 
measured with the ARCO-2000 mass spectrometer (Arco 
System Inc., Chiba, Japan) to determine exercise efficiency, 
which defined the same exercise performance with lower 
oxygen cost as an efficient movement. Before and after 
obstacle exercising training,  VO2 during treadmill running 
(15 m/min) was measured to determine exercise efficiency; 
the same exercise performance with lower oxygen cost was 
defined as an efficient movement.

One trial took a total of 14 min (0 m/min for the first 
2 min, 10 m/min for the next 2 min, 15 m/min for the next 
10  min), and the stimulation electrode was constant at 
0.7 mA. All treadmill running experiments were performed 
between 1300 and 1730, and we measured  VO2 on the first 
and last trial day. During the 1st  day, mice ran on the tread-
mill without intermittent obstacles; the next day, they ran 
with intermittent obstacles. Three sponges were shaped into 
a regular triangular prism (length, 10 mm; height, 50 mm), 
and they were arranged at random intervals on the belt 
chamber as the intermittent obstacles (Fig. 1a). For the next 
10 days, mice performed treadmill running with intermittent 

obstacles as motor training once per day; however, they had 
2 rest days during the middle of the 10 days. During the last 
trial day, they performed treadmill running with intermittent 
obstacles. Some mice did not undergo exercise training and 
were part of the control group.

Immunohistochemistry

We examined the brain region where the neural activity 
changed before and after exercise training. Immunostaining 
was performed to assess the differences in c-Fos expressions 
in several brain regions of the mice before and after obsta-
cle exercise training. Ninety minutes after the last trial, the 
mice were anesthetized with a cocktail of ketamine (100 mg/
kg; Daiichi-Sankyo, Tokyo, Japan) and xylazine (25 mg/kg; 
Sigma, St. Louis, MO, USA) and transcardially perfused 
with isotonic phosphate-buffered saline (PBS). This was 
followed by fixation with 4% paraformaldehyde in 0.1 M 
phosphate buffer before brain excision. The whole brain 
was removed and post-fixed for 24 h. For the following 4 
days, the brains were soaked in a 20% sucrose solution. The 
tissue was embedded in the OCT compound (Sakura Fine-
Technical, Tokyo, Japan), immediately frozen, and stored at 
− 80 °C until further analysis. Then, serial 30-μm cryosec-
tions were prepared using a cryostat (Leica CM1850, Wet-
zlar, Germany).

Sections received a 1-h quenching treatment at 3%  H2O2 
in methanol. For diaminobenzidine (DAB) antibody stain-
ing of c-Fos, sections were exposed for 2 h at 25 °C to 3% 
normal donkey serum and incubated for 3 days at 4 °C with 
rabbit antibodies to c-Fos (1:1000 dilution; Cell Signaling 
Technology, MA, USA). After washing the sections with 
PBS, immune complexes were detected using the Vectastain 
ABC HRP kit (peroxidase, rabbit IgG; Vector Laboratories, 
Burlingame, CA, USA). Sections were colored using a per-
oxidase stain DAB kit (Nacalaitesque, Kyoto, Japan) and 
metal enhancer for DAB staining (Nacalaitesque). Sections 
were finally examined with a microscope (Leica DM4000B 
Wetzlar, Germany or KEYENCE BZ-X700, Osaka, Japan). 
The c-Fos expression on one side of each brain region was 
manually counted in 700 × 350-pixel areas for inconsecutive 
three sections.

Monoamine concentration in the brain

The whole brain was removed, and 1-mm-thick coronal sec-
tions of the fresh brain were dissected from six regions (stri-
atum, motor cortex, hypothalamus, hippocampus, septum, 
and cerebellum), frozen rapidly in liquid nitrogen, and stored 
at − 80 °C. Monoamine levels (dopamine [DA], 3,4-dihy-
droxyphenyl acetic acid [DOPAC], serotonin [5-HT], and 
5-hydroxy indoleacetic acid [5-HIAA]) were quantified by 
high-performance liquid chromatography (HPLC) according 
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to previously published methods with slight modifications 
[26]. DOPAC/DA and 5-HIAA/5-HT ratios were used to 
estimate the metabolic ratio.

Pharmacological treatments and injection 
procedure

Mice were anesthetized by intraperitoneal (ip) injection 
of ketamine (100 mg/kg) and xylazine (10 mg/kg), and a 

double-walled stainless steel cannula (Plastics One, Roa-
noke, VA, USA) was stereotaxically implanted into the sep-
tum bilaterally (AP + 0.5 mm, L ± 0.5 mm, and H + 3 mm 
from the bregma) according to an atlas [27] (Supplemental 
Fig. 1). We used SCH 23,390 hydrochloride (Abcam PLC, 
Cambridge, UK) as a dopamine D1 receptor antagonist (D1 
antagonist) and (S)-(-)-Sulpiride (Abcam PLC) as a dopa-
mine D2 receptor antagonist (D2 antagonist). We handled 
mice for 10 min per day during the recovery period (10 days) 

Fig. 1  Exercise efficiency 
before and after training of 
treadmill running with inter-
mittent obstacles. a Model of 
treadmill running with intermit-
tent obstacles. The belt-type 
treadmill chamber (width, 
50 mm; length, 295 mm; 
height, 60 mm) was sealed in 
a rectangular parallelepiped 
glass case, and there were air 
holes in the front and rear. The 
rear air hole was connected to a 
tube used for measuring oxygen 
uptake  (VO2). b Average  VO2 
during treadmill running with 
or without obstacles before and 
after training (n = 11). Training 
was performed with obstacle 
treadmill running. c Alteration 
of  VO2 during treadmill running 
with obstacles in each mouse 
before and after training of 
treadmill running with obstacles 
(n = 11). d Average  VO2 dur-
ing treadmill running with or 
without obstacles before and 
after training (n = 11). Training 
was performed without obstacle 
treadmill running. e  VO2 at 
rest before and after training 
(n = 11). Data are presented as 
mean ± standard error. Paired t 
test was used. Asterisk indicates 
p < 0.05 vs.  VO2 during no 
obstacle treadmill running 
before training
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after cannula implantation. After recovery, exercise training 
with obstacles was performed using the same process as 
described above, and pharmacological administration was 
performed only once before the last trial on the final day. 
Each drug was dissolved in 10% DMSO in Ringer’s solution 
and adjusted to 100 mM. One to two minutes before the last 
trial, mice were administered a 0.2-μL bilateral LS injection 
of vehicle (10% DMSO in Ringer’s solution), SCH 23,390 
hydrochloride, or (S)-(-)-Sulpiride.

Statistical analyses

The results were expressed as mean ± standard error of the 
mean (SE). Data from the two groups were analyzed using 
the Student’s paired or unpaired t test. Data from more than 
two groups were analyzed using the one-way analysis of 
variance, followed by the Bonferroni test. p values < 0.05 
were considered statistically significant.

Results

Exercise efficiency before and after treadmill 
training with intermittent obstacles

Before and after obstacles exercising training,  VO2 during 
treadmill running (15 m/min) was measured as exercise effi-
ciency, wherein the same exercise performance with lower 
oxygen cost was defined as an efficient movement. First, we 
examined whether the treadmill with intermittent obstacles 
was difficult for the mice. As a result,  VO2 during obstacle 
treadmill running was significantly higher than that without 
obstacles (Fig. 1b). After the training period,  VO2 during 
obstacle treadmill running decreased (Fig. 1b, c), while 
treadmill running training without obstacle did not lead to 
decrease in  VO2 during obstacle treadmill running (Fig. 1d). 
 VO2 at rest before and after training did not change (Fig. 1e). 
These results demonstrated that obstacle treadmill running 
created difficulty for the mice, and those 8 days of training 
improved exercise efficiency.

Changes in c‑Fos expression of each brain region 
before and after training

The immunostaining for c-Fos expressions in septum, stria-
tum and motor cortex of the mice before and after obstacle 
exercise training is shown in Fig. 2a, c, e, respectively. In 
the septum and striatum, the c-Fos expression of mice that 
underwent training was significantly higher than that of mice 
that did not undergo training (Fig. 2b, d). In contrast, c-Fos 
expression in the motor cortex of mice that underwent train-
ing was significantly lower than that of mice that did not 

undergo training (Fig. 2f). There were no differences in other 
brain regions (data not shown).

Dopamine and serotonin turnover in each brain 
region before and after training

To identify which monoamine was involved in changes in 
neural activity, we next quantified monoamine and its metab-
olites in the brain regions that had significant differences and 
the other regions, including the hypothalamus, hippocampus, 
and cerebellum, immediately after treadmill running using 
HPLC. Mice that underwent training [training (+)] showed 
significantly higher dopamine turnover (DOPAC/DA) in the 
septum than training (−) mice, but there were no signifi-
cant differences in the motor cortex or striatum (Fig. 3a–f). 
There were no significant differences involved in seroto-
nin turnover (5-HIAA/5-HT) for any regions (Fig. 3a–f). 
These results indicated that dopamine action in the septum 
increased after obstacle treadmill running training in mice.

Relationship of dopamine turnover in brain 
and exercise efficiency on the 3rd day of training

Alteration of dopamine turnover in the septum and  VO2 
during obstacle treadmill running was completed at 8 days 
of training. In contrast, these training effects had not been 
completed but we observed individual difference on the 3rd 
day of training. Therefore, we examined whether dopamine 
turnover in the septum was related to exercise efficiency 
on the 3rd day of training by checking exercise efficiency 
 (VO2 during complicated treadmill running). We measured 
dopamine turnover in the septum of the mice immediately 
after complicated treadmill running on the 3rd day of the 
training period in alternating groups. We observed that there 
was a significant inverse correlation between  VO2 during 
obstacle treadmill running and dopamine turnover in the 
septum but not in the motor cortex, hippocampus or stria-
tum (Fig. 4a–d).

Change in exercise efficiency after administration 
of a dopamine receptor antagonist to the septum

Finally, we investigated whether increased dopamine 
turnover in the septum was involved in improving exer-
cise efficiency. A dopamine receptor antagonist was 
administered to the septum bilaterally before the final 
trial. The D1 antagonist and D2 antagonist groups 
showed significantly higher  VO2 than the vehicle group 
(F2,21 = 6.421, p = 0.0067; Fig. 5a). This effect was not 
observed in no obstacle treadmill running even after 
training (F2,21 = 0.093, p = 0.9118; Fig.  5a). Addition-
ally, c-Fos expression in the septum (F2,12 = 16.751, 
p = 0.0003; Fig. 5b, c) and in the hippocampus-CA3 in 
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the D1 antagonist group (F2,12 = 8.319, p = 0.0054; Fig. 5d, 
e) significantly decreased compared to that in the vehi-
cle group. There were no significant differences between 
the D2 antagonist group and vehicle group in the septum 
or hippocampus-CA3. No differences were observed in 
the c-Fos expression in other hippocampal regions (CA1, 
CA2, and dentate gyrus) with or without the adminis-
tration of dopamine receptor antagonist (Supplemental 
Fig. 2).

Discussion

We hypothesized that dynamic biochemical stimulation at 
critical brain sites was required for continuous complicated 
exercises. Our results indicated that the dopaminergic func-
tion in the septum is involved in exercise efficiency during 
continuous complicated exercises. In this study, we used 
 VO2 as an indicator of exercise efficiency.  VO2 during exer-
cise is generally used as an indicator of energy expenditure, 

Fig. 2  Changes in c-Fos expres-
sion in each brain region before 
and after training. Representa-
tive image of c-Fos expression 
in the a septum, c striatum, and 
e motor cortex of mice before 
and after training. Scale bars 
(black) = 50 μm. The c-Fos 
expression values in the b 
septum, d striatum, and f motor 
cortex. Data are presented as 
mean ± standard error (n = 5). 
Unpaired t test was used
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and is dependent on energy demand, nutritional status, and 
motor skills [28, 29]. Since  VO2 before and after training 
were measured at the same exercise intensity (15 m/min) 
and obstacle frequency, energy demand for the work load 
during treadmill running would be identical. Motor skill 
proficiency leads to efficient exercise performance without 
excess energy expenditure. We observed significantly lower 
 VO2 during the obstacle treadmill exercise after obstacle 
treadmill training, suggesting that exercise efficiency was 
increased with improved motor skills to avoid obstacles on 
the treadmill.  VO2 of the mice at rest did not differ by train-
ing, although we did not determine the metabolic adapta-
tion in the contracting skeletal muscle, which was respon-
sible for energy expenditure during exercise. In addition, a 
previous report demonstrated that neural factors accounted 
for the larger proportion of the initial strength increments 
with resistance training [17]. Since exercise training was 
performed for a short period (8 days) in this experiment, it 

is reasonable that motor skills, but not metabolic or respira-
tory–cardiovascular functions, were necessary for alterations 
in exercise efficiency.

The results of this study suggested that the dopaminer-
gic function in the septum is involved in exercise efficiency. 
Injection of dopamine receptor antagonists into the sep-
tum did not change  VO2 during treadmill running without 
obstacle (Fig. 5a), suggesting that dopamine activity in the 
septum might not affect energy cost during running exer-
cise. The septum is located inside the lateral ventricle in 
front of the anterior commissure and it communicates with 
the hippocampus and hypothalamus. The lateral septum is 
thought to be critical for processing emotional information 
and for modulating behavioral responses to stress [30, 31]; 
however, there are few reports describing the association 
between exercise and the septum. Regarding the relation-
ship between the septum and dopamine, it has been reported 
that early social stress affects the dopamine D3 receptor of 

Fig. 3  Dopamine and sero-
tonin turnover in each brain 
region before and after training. 
Dopamine turnover (DOPAC/
DA) and serotonin turnover 
(5-HIAA/5-HT) in the a motor 
cortex, b cerebellum, c hip-
pocampus, d hypothalamus, e 
striatum, and f septum. White 
bars indicate the training (−) 
group. Black bars indicate the 
training (+) group. Data are 
presented as mean ± standard 
error (n = 5 or n = 6). Unpaired t 
test was used
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the lateral septum and is a risk factor for social dysfunc-
tion [32]. In addition, it has been reported that activation of 
glutamate and the gamma-aminobutyric acid (GABA) sys-
tem in the septum during treadmill running and wheel run-
ning increases brain wave θ power in the hippocampus [33, 
34]. However, the effect of the dopamine system on motor 
function in the septum has not yet been clarified. When we 
injected a dopamine receptor antagonist into the bilateral 
septum,  VO2 did not change during simple treadmill running 
(without obstacles) even after training (Fig. 5a), suggesting 
that dopamine stimulation in the septum was not involved in 
energy expenditure during exercise.

In addition to the septum, significant differences in c-Fos 
expression were confirmed in the striatum and motor cortex 
after training. The motor cortex comprises a “motion loop” 
that is involved in motor control with strong consciousness 
during exercise [35]. We considered that the decrease in 
c-Fos expression in the motor cortex after training compared 
with before training was due to motor control stabilization 
attributable to training. On the other hand, it was clinically 
reported that exercise has a beneficial effect on reactivity and 
movement behavior in Parkinson’s disease following admin-
istration of levodopa, a dopamine precursor, indicating that 
augmented synthesis and release of endogenous dopamine 

occurred in some brain regions [36]. The striatum is involved 
in motor learning and the formation of habitual movement 
patterns, i.e., procedural memory. Moreover, motor skills 
are mediated by the dopaminergic system in the striatum; 
the deletion is involved in the development of the Parkin-
son’s disease. However, this was not a concern in this study 
because dopamine turnover in the striatum was not altered.

In this experiment, administration of the dopamine 
D1 receptor antagonist to the bilateral septum decreased 
c-Fos expression in the CA3 area of the hippocampus with 
increased  VO2, suggesting that dopamine stimulation via 
the D1 receptor in the septum is involved in exercise effi-
ciency through the CA3 area of the hippocampus. Exercise 
increased brain-derived neurotrophic factors in CA3 neurons 
in the hippocampus [37–40]. Dopaminergic input to the sep-
tum has been implicated in modulating the pathway from the 
septum to the hippocampus and involved in learning spatial 
recognition ability. This pathway might be required to hurdle 
continuing obstacles in complicated running. Dopaminergic 
neuron is in the ventral tegmental area (VTA) and substantia 
nigra. The lateral septum receives dopaminergic projections 
primarily from the VTA [41]. This dopaminergic input has 
been implicated in modulating the pathway from the septum 
to the hippocampus [42–44]. However, in this study, we were 

Fig. 4  Correlation between 
dopamine turnover in each brain 
region and oxygen uptake  (VO2) 
in the middle of training. Dopa-
mine turnover (DOPAC/DA) in 
the a septum, b motor cortex, c 
hippocampus, and d striatum on 
the 3rd day after the beginning 
of training (n = 9). Data are 
presented as mean ± standard 
error. Regression analysis was 
performed
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unable to identify the dopaminergic neurons from the VTA 
or substantia nigra involved in exercise efficiency or verify 
which molecule stimulated the dopaminergic neurons pro-
jecting into the septum.

This study has some limitations. First, we could not clar-
ify the significance of increase in c-Fos expression in the 
striatum after training. Dopaminergic system in the striatum 
is involved in motor skill and reward similar with septum 
although dopamine turnover was not altered in striatum. 

Second, we also could not uncover the role of dopamine D2 
receptor in septum during obstacle treadmill exercise though 
the injection of D2 receptor antagonist into the septum sig-
nificantly decreased exercise efficiency. Further investigation 
is needed.

These results provide valuable information for sports per-
formance, rehabilitation, and movement therapy. However, 
our findings apply only to improving exercise efficiency 
during forced complicated exercise and cannot be applied 

Fig. 5  Change in exercise 
efficiency caused by bilateral 
administration of a dopamine 
receptor antagonist to the 
septum. a Oxygen uptake 
 (VO2) during obstacle treadmill 
running after training with or 
without injection of dopa-
mine receptor antagonists into 
bilateral septum (n = 8). The 
left panel shows  VO2 during 
obstacle treadmill running after 
training, while the right panel 
shows  VO2 during normal 
treadmill running after training. 
Representative image of c-Fos 
expressions in the b septum 
and d hippocampus-CA3. Scale 
bars = 50 μm. The c-Fos expres-
sion values in the c septum 
(n = 5) and e hippocampus-CA3 
(n = 5). Data are presented as 
mean ± standard error. One-way 
analysis of variance, followed 
by the Bonferroni test, was used
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to spontaneous complicated exercise. Therefore, it will be 
necessary to investigate whether the dopaminergic system in 
the septum is involved in improvement in exercise efficiency 
during spontaneous complicated exercise.
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