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Abstract
The mechanism of proton pump inhibitors (PPIs) suppressing intestinal  Mg2+ uptake is unknown. The present study aimed 
to investigate the role of purinergic P2Y receptors in the regulation of  Mg2+ absorption in normal and omeprazole-treated 
intestinal epithelium-like Caco-2 monolayers. Omeprazole suppressed  Mg2+ transport across Caco-2 monolayers. An agonist 
of the  P2Y2 receptor, but not the  P2Y4 or  P2Y6 receptor, suppressed  Mg2+ transport across control and omeprazole-treated 
monolayers. Omeprazole enhanced  P2Y2 receptor expression in Caco-2 cells. Forskolin and  P2Y2 receptor agonist markedly 
enhanced apical  HCO3

− secretion by control and omeprazole-treated monolayers. The  P2Y2 receptor agonist suppressed 
 Mg2+ transport and stimulated apical  HCO3

− secretion through the  Gq-protein coupled-phospholipase C (PLC) dependent 
pathway. Antagonists of cystic fibrosis transmembrane conductance regulator (CFTR) and  Na+-HCO3

− cotransporter-1 
(NBCe1) could nullify the inhibitory effect of  P2Y2 receptor agonist on  Mg2+ transport across control and omeprazole-treated 
Caco-2 monolayers. Our results propose an inhibitory role of  P2Y2 on intestinal  Mg2+ absorption.

Keywords Caco-2 monolayers · Intestinal  HCO3
− secretion · Mg2+ absorption · Proton pump inhibitor · P2Y2 receptor

Introduction

Although there is an abundant amount of magnesium  (Mg2+) 
within human cells, and it has vital roles in numerous bio-
logical functions [1], knowledge regarding regulatory mech-
anisms of  Mg2+ homeostasis is still minimal. Theoretically, 
plasma  Mg2+ level is regulated within a narrow range by the 
synergistic actions of intestinal absorption, bone and soft 
tissue storage, and renal excretion [1]. Since dietary intake 
is the only source of  Mg2+, intestinal absorption is vital for 
normal  Mg2+ homeostasis. However, the understanding of 

the regulatory mechanism of intestinal  Mg2+ absorption is 
still elusive. Principally, enterocyte epithelium absorbs  Mg2+ 
via both saturable transcellular and non-saturable paracellu-
lar transport [1]. Approximately 90% of total intestinal  Mg2+ 
uptake is processed through a  Mg2+ channel-independent 
paracellular passive mechanism which exclusively occurs 
in the small intestine [1–3]. The  Mg2+ channel-dependent 
transcellular active  Mg2+ uptake plays an important role dur-
ing low dietary  Mg2+ intake [3].

In the small intestine, enterocyte epithelial cells are 
equipped with acid sensors, e.g., acid-sensing ion chan-
nel (ASIC), ovarian cancer G protein-coupled receptor 1 
(OGR1), and transient receptor potential vanilloid (TRPV) 
that are implicated in mucosal defense by detecting mucosal 
protons and stimulating mucosal  HCO3

− secretion [4–9]. 
In addition to this mucosal defense, intestinal acid sensors 
also regulate ion transport across the enterocyte epithelium. 
Reiter et al. [10] reported that TRPV4 enhanced transcellu-
lar  K+ transport and paracellular permeability through  Ca2+ 
signaling in HC11 epithelial monolayers. OGR1 enhanced 
 Mg2+ absorption in intestinal epithelium-like Caco-2 mon-
olayers through protein kinase C (PKC) signaling [11, 12]. 
On the other hand, an activation of ASIC1a led to a suppres-
sion of  Mg2+ absorption across Caco-2 monolayers through 
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a  Ca2+-signaling dependent pathway [12]. In addition to acid 
sensors, the purinergic  P2Y2 receptor is also involved in 
mucosal acid sensing and defense of duodenocytes [8]. Acti-
vation of  Gq-associated  P2Y2 stimulated duodenal mucosal 
 HCO3

− secretion in a  Ca2+ signaling-dependent mechanism 
[4]. Besides  HCO3

− secretion, the  P2Y2 receptor also regu-
lates  Na+,  K+, and  Cl− transport in various epithelial tissues 
[13]. However, the role of P2Y on intestinal  Mg2+ absorp-
tion is still unknown.

PPI-induced hypomagnesemia (PPIH) has been reported 
since 2006 [14–19]. Suppression of intestinal  Mg2+ absorp-
tion is a major underlying mechanism of PPIH in chronic 
users and animal models [14, 15, 17, 19–21]. We previously 
reported that a higher apical  HCO3

− secretion contributed 
to a suppression of intestinal  Mg2+ absorption in PPIH [21]. 
Apical acidity in the small intestine [22] required for stabi-
lizing mineral solubility [23] and stimulates intestinal  Mg2+ 
absorption [11, 12, 24]. An increase in luminal pH from 
~ 5 to 7.8 led to a decrease in soluble  Mg2+ from 79.61 to 
8.71% [25]; thus, secreted  HCO3

− increases luminal pH and 
subsequently suppresses  Mg2+ absorption. Omeprazole, the 
most common PPI, significantly enhanced  HCO3

− secretion 
in human duodenum and intestinal epithelium-like Caco-2 
monolayers [12, 26]. Antagonists of mucosal  HCO3

− secre-
tion markedly increased duodenal  Mg2+ absorption in PPIH 
rats [21].  P2Y2 regulated mucosal  HCO3

− secretion [4], but 
the involvement of  P2Y2 on apical  HCO3

− secretion and 
 Mg2+ absorption in PPI-treated intestinal epithelium is 
unknown.

Therefore, the present study aimed to investigate the 
role of purinergic P2Y receptors in the regulation of  Mg2+ 
absorption in normal and omeprazole-treated intestinal-like 
Caco-2 monolayers. Caco-2 cells express P2Y receptors, i.e., 
 P2Y2,  P2Y4, and  P2Y6 [27, 28]. They are also equipped with 
apical  HCO3

− secretion transporting machineries, e.g., cystic 
fibrosis transmembrane conductance regulator (CFTR) and 
 Na+-HCO3

− cotransporter-1 (NBCe1), which are modu-
lated by parathyroid hormone (PTH) and HCl [12, 29]. In 
addition, Caco-2 monolayers have been used as a model for 
studying the regulation of intestinal  Mg2+ absorption [11, 
12, 30, 31].

Methods

Cell culture

Caco-2 cells (ATCC No. HTB-37, passage 25–40th) were 
grown in Dulbecco’s modified Eagle medium (DMEM) 
(Sigma, St. Louis, MO, USA) supplemented with 12.5% 
fetal bovine serum (FBS-Gold) (PAA Laboratories GmbH, 
Pasching, Austria), 1% l-glutamine (Gibco, Grand Island, 
NY, USA), 1% non-essential amino acid (Sigma), and 1% 

antibiotic–antimycotic solution (Gibco) and maintained in 
a humidified atmosphere containing 5%  CO2 at 37 °C. Cul-
ture medium was changed 3 times a week. For epithelial 
electrical parameter measurement and  Mg2+ flux studies, the 
monolayers were developed by seeding cells (5.0 × 105 cells/
cm2) onto permeable polyester  Snapwell™ inserts (12 mm 
diameter and 0.4 µm pore size filter) (Corning, Corning, NY, 
USA). After being maintained for 14 days, the Snapwell 
was inserted into a Ussing chamber (World Precision Instru-
ment, Sarasota, FL, USA). For  HCO3

− secretion studies, 
the cells were plated (5.0 × 105 cells/cm2) onto permeable 
polyester Transwell-clear inserts (Corning) and maintained 
for 14 days. For western blot analysis, cells were plated 
(5.0 × 105 cells/well) on 6-well plates (Corning) and main-
tained for 14 days.

In the omeprazole-treated group, Caco-2 monolayers 
were grown in a culture medium containing omeprazole 
(Calbiochem, San Diego, CA, USA), from day 7 to day 14 
of culture [31], at concentrations of 200 and 400 ng/ml that 
resembled those found in human plasma [32].

Bathing solutions

The physiological bathing solution contained (in mM) 118 
NaCl, 4.7 KCl, 1.1  MgCl2, 1.25  CaCl2, 23  NaHCO3, 12 
d-glucose, 2.5 l-glutamine, and 2 mannitol.

For the apical to basolateral total  Mg2+ transport studies, 
the apical solution contained (in mM) 40  MgCl2, 1.25  CaCl2, 
4.5 KCl, 12 d-glucose, 2.5 l-glutamine, 115 d-mannitol, and 
10 HEPES, whereas the basolateral solution contained (in 
mM) 1.25  CaCl2, 4.5 KCl, 12 d-glucose, 2.5 l-glutamine, 
250 d-mannitol, and 10 HEPES.

For apical  HCO3
− secretion experiments, the compo-

sition of the  NaHCO3-free apical solution was as follows 
(in mM): 1.25  CaCl2, 4.5 KCl, 1  MgCl2, 12 d-glucose, 
2.5 l-glutamine, 230 d-mannitol, and 10 HEPES; and the 
 NaHCO3-containing basolateral solution contained (in mM) 
25  NaHCO3, 1.25  CaCl2, 4.5 KCl, 1  MgCl2, 12 d-glucose, 
2.5 l-glutamine, 200 d-mannitol, and 10 HEPES.

All solutions were continuously gassed with humidified 
5%  CO2 in 95%  O2, maintained at 37 °C, pH 7.4, and had an 
osmolality of 290–295 mmol kg−1 water as measured by a 
freezing-point depression-based  Fiske® micro-osmometer 
(model 210;  Fiske® Associates, Norwood, MA, USA). All 
chemicals were purchased from Sigma.

Transepithelial electrical resistance

Snapwell™ inserts containing Caco-2 monolayers were 
rinsed gently, mounted in a Ussing chamber, and bathed on 
both sides with physiological bathing solution. Transepithe-
lial potential difference (PD) and short-circuit current (Isc) 
were determined by Ag/AgCl electrodes and an epithelial 



131The Journal of Physiological Sciences (2019) 69:129–141 

1 3

voltage/current clamp apparatus (model ECV-4000; World 
Precision Instrument) as previously described [33]. Tran-
sepithelial electrical resistance (TEER) was calculated from 
PD and Isc by Ohm’s law.

Mg2+ transport study

Caco-2 monolayers were rinsed and mounted in a Ussing 
chamber as described above. After being equilibrated 
in physiological bathing solution for 15 min, total  Mg2+ 
transport studies were performed by substituting the 
physiological bathing solution with apical and basolateral 

bathing solutions for  Mg2+ transport. To investigate the 
 Mg2+ channel-independent  Mg2+ transport, apical sites of 
Caco-2 monolayers from the same passage and culture plate 
were pre-incubated for 10 min with  Mg2+-channel inhibitor 
Cobalt(III)hexaammine [Co(III)hex, Table 1], which sup-
pressed  Mg2+ influx in Caco-2 epithelium and blocked  Mg2+ 
channel-dependent  Mg2+ transport. After that the apical and 
basolateral solutions were substituted with bathing solution 
for  Mg2+ transport. At 30, 60, and 120 min after solution 
replacements, 50 μl of solution was collected from the baso-
lateral side, as well as from the apical side. The  Mg2+ con-
centration and the rate of  Mg2+ flux were determined by the 

Table 1  Agonist, antagonist, or chelator used in the study of  Mg2+ transport and  HCO3
− secretion across Caco-2 monolayers

Calbiochem, San Diego, CA; Sigma, St. Louis, MO, USA; Tocris, Tocris Bioscience, Bristol, UK
CA carbonic anhydrase, CFTR cystic fibrosis transmembrane conductance regulator, MEK mitogen-activated protein kinase, NBCe1  Na+-HCO3

− 
cotransporter-1, PKA protein kinase A, PKC protein kinase C, PLC phospholipase C, PI3K phosphoinositide 3-kinase, PLC phospholipase C

Target Common name Full name Concentration used Manufacturer

Agonist
  Adenylyl cyclase Forskolin 7β-Acetoxy-8,13-epoxy-1α,6β,9α-trihydroxylabd-14-en-

11-one
10 µmol/l Sigma

 P2Y2 receptor MRS2768 Uridine-5′-tetraphosphate δ-phenyl ester tetrasodium salt 10 µmol/l Tocris
 P2Y4 receptor MRS4062 N4-Phenylpropoxycytidine-5′-O-triphosphate 

tetra(triethylammonium) salt
100 nmol/l Tocris

 P2Y6 receptor MRS2693 5-Iodouridine-5′-O-diphosphate trisodium salt 100 nmol/l Tocris
 PKC Carbachol (2-Hydroxyethyl)trimethylammonium chloride carbamate 500 µmol/l Sigma

Antagonist/chelator
 Mg2+ channel Co(III)hex Cobalt(III)hexaammine 1 mmol/l Sigma
 P2Y2 receptor Suramin 8,8′-{Carbonylbis[imino-3,1-phenylenecarbonylimino(4-

methyl-3,1-phenylene) carbonylimino]}bis-1,3,5-naph-
thalenetrisulfonic acid hexasodium salt

150 µmol/l Sigma

 PLC U-73122 1-{6-[(17β-3-Methoxyestra-1,3,5(10)-trien-17-yl)amino]
hexyl}-1H-pyrrole-2,5-dione

10 µmol/l Calbiochem

 PKC Gö 6850 2-[1-(3-Dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl) 
maleimide

1 µmol/l Calbiochem

 MEK1/2 U-0126 1,4-Diamino-2,3-dicyano-1,4-bis(2-aminophenylthio) 
butadiene

10 µmol/l Calbiochem

 PI3K LY-294002 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one 75 µmol/l Calbiochem
 PKA H89 N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesul-

fonamide
30 µmol/l Calbiochem

 Intracellular  Ca2+ BAPTA-AM 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid 
tetrakis(acetoxymethyl ester)

50 µmol/l Calbiochem

 IP3 receptor 2-APB 2-Aminoethoxydiphenylborane 100 µmol/l Calbiochem
 Voltage-gated  Ca2+ channel Nifedipine 1,4-Dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridin-

edicarboxylic acid dimethyl ester
10 µmol/l Sigma

 Membrane-bound CA IX U-104 4-[[[(4-Fluorophenyl)amino]carbonyl]amino]-benzenesul-
fonamide

45 nmol/l Sigma

 CFTR GlyH-101 N-2-Naphthalenyl-2-[(3,5-dibromo-2,4-dihydroxyphenyl)
methylene]glycine hydrazide

50 µmol/l Calbiochem

 NBCe1 DIDS 4,4′-Diisothiocyanatostilbene-2,2′-disulfonate 500 µmol/l Sigma
 Ca2+-activated  K+ channel ChTX Charybdotoxin 100 nmol/l Tocris
 Ca2+-activated  Cl− channel Benzbromarone 3-(3,5-Dibromo-4-hydroxybenzoyl)-2-ethylbenzofuran 20 µmol/l Sigma
 CA Methazolamide N-(4-Methyl-2-sulfamoyl-Δ2-1,3,4-thiadiazolin-5-ylidene) 

acetamide
1 mmol/l Sigma
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method of Thongon and Krishmanra [11]. The rate of  Mg2+ 
channel-dependent  Mg2+ transport was calculated by sub-
tracting the rate of  Mg2+ channel-independent  Mg2+ trans-
port from the rate of total  Mg2+ transport. However, Co(III)
hex might somehow interfered  Mg2+ channel-independent 
paracellular  Mg2+ transport, which was not demonstrated in 
the present study.

In some experiments the monolayers were pre-incubated 
with agonists or antagonist, as demonstrated in Table 1, for 
40 min prior to performing experiments.

Measurements of  HCO3
− secretion

Apical  HCO3
− secretion was studied by the modified method 

of Thongon et al. [12]. The Caco-2 monolayer was gently 
rinsed 3 times and incubated for 15 min in the physiologi-
cal bathing solution. Then, apical and basolateral solutions 
were substituted with bathing solutions for  HCO3

− secretion. 
The apical membrane-bound carbonic anhydrase (CA) activ-
ity was suppressed by the selective CA IX inhibitor U-104 
(Table 1). After 20 min,  HCO3

− secretion was stimulated 
by adding MRS2768 or forskolin (Table 1) and incubation 
proceeded for 5 min. After removal of the MRS2768- or 
forskolin-containing solutions, the monolayers were gently 
rinsed 3 times and further incubated for 25 min. Aliquots of 
apical solution at various time points (Fig. 5) were individu-
ally sampled. The concentration of  HCO3

− was immediately 
determined as previously described [12].

In some experiments the monolayers were pre-incubated 
with agonists or antagonist, as demonstrated in Table 1, for 
40 min prior to performing experiments.

Western blot analysis

Western blot analysis was performed as previously described 
[11]. In brief, protein samples of Caco-2 cells were prepared 
by using  Piece® Ripa Buffer (Thermo Fisher Scientific Inc., 
Rockford, IL, USA). Protein samples (35 μg each) were 
separated on 12.5% SDS-PAGE gels, and then transferred 
onto nitrocellulose membranes (Amersham, Buckingham-
shire, UK) by electroblotting. Membranes were blocked 
and probed overnight at 4 °C with 1:1000 rabbit polyclonal 
antibodies raised against human  P2Y2 receptor and CFTR 
(Santa Cruz Biotechnology, Santa Cruz, CA). Membranes 
were also re-probed with actin monoclonal antibodies (Santa 
Cruz Biotechnology) diluted at 1:5000. After 2 h incuba-
tion at 25 °C with goat anti-rabbit IgG-HRP-conjugated 
secondary antibodies (Santa Cruz Biotechnology) diluted 
at 1:10,000, blots were visualized by Thermo Scientific 
 SuperSignal® West Pico Substrate (Thermo Fisher Scien-
tific Inc.) and captured on CL-XPosure Film (Thermo Fisher 
Scientific Inc.). Densitometric analysis was performed using 
ImageJ for Mac Os X.

Statistical analysis

Results were expressed as mean ± SE. Two sets of data were 
compared using unpaired Student’s t-test. One-way analysis 
of variance (ANOVA) with Dunnett’s post test was used for 
comparison of multiple sets of data. The level of significance 
was P < 0.05. All data were analyzed by GraphPad Prism 
(GraphPad Software Inc., San Diego, CA, USA).

Results

Omeprazole modulated paracellular  Mg2+ transport

Previous  Mg2+ transport kinetic analysis demonstrated 
that omeprazole selectively impeded non-saturable pas-
sive  Mg2+ transport but not saturable active  Mg2+ trans-
port across Caco-2 monolayers [31]. By using competitive 
 Mg2+-channel inhibitor Co(III)hex (Fig. 1), we observed 
total (white bars),  Mg2+ channel-independent (gray bars), 
and  Mg2+ channel-dependent  Mg2+ transport (black bars). 
The results showed that 200 and 400 ng/ml omeprazole sig-
nificantly suppressed total (Fig. 1d) and  Mg2+ channel-inde-
pendent  Mg2+ transport (Fig. 1e) compared to the control 
group. Furthermore, we had studied the effect of omeprazole 
on  Mg2+ channel-independent  Mg2+ transport. Previously, 
it was reported that protein kinase C activator carbachol 
(CCh) could increase paracellular permeability and decrease 
TEER in Caco-2 monolayers [34, 35]. In control (Fig. 1a), 
200-ng/ml omeprazole-treated group (Fig. 1b), and 400-ng/
ml omeprazole-treated group (Fig. 1c), CCh significantly 
increased total and  Mg2+ channel-independent  Mg2+ trans-
port compared to the corresponding vehicle-treated group. 
The rates of  Mg+ channel-dependent  Mg2+ transport of all 
experiments were not changed (Fig. 1a–c, f).

We also studied TEER to confirm the permeability of 
Caco-2 monolayers. As demonstrated in Fig. 2c, Co(III)hex, 
which impeded  Mg2+ channel-dependent  Mg2+ transport, 
had no effect on TEER of control and omeprazole-treated 
monolayers when compared to its corresponding vehicle-
treated monolayers. On the other hand CCh, which increased 
 Mg2+ channel-independent  Mg2+ transport, significantly 
decreased TEER of control and omeprazole-treated (Fig. 2c) 
Caco-2 monolayers. We further observed the involvement 
of  Ca2+-activated  K+ and  Ca2+-activated  Cl− channels on 
CCh-suppressed TEER by using charybdotoxin (ChTX) and 
benzbromarone. ChTX and benzbromarone had no effect on 
CCh-suppressed TEER of control and omeprazole-treated 
Caco-2 monolayers. However, CCh might somehow mod-
ulate some ion channels or transports, which could affect 
TEER of Caco-2 monolayers. TEER of 400-ng/ml omepra-
zole-treated monolayers (458.56 ± 14.97 Ω cm2) was signifi-
cantly higher than that of vehicle-treated control monolayers 
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(362.31 ± 17.69 Ω cm2, P = 0.0003) (Fig. 2c). This series of 
experiments suggested that alteration of total  Mg2+ transport 
across Caco-2 monolayers was the result of the modulation 
of  Mg2+ channel-independent  Mg2+ transport. These results 
also agreed with a previous study [31] that omeprazole 
exclusively suppressed nonsaturable passive  Mg2+ transport 
in intestinal epithelium-like Caco-2 monolayers. In addition, 
TEER could determine the change of  Mg2+ channel-inde-
pendent  Mg2+ transport, but not  Mg2+ channel-dependent 
 Mg2+ transport. Thus,  Mg2+ channel-dependent  Mg2+ trans-
port was ignored in the rest of the experiments.

P2Y2 receptor modulated  Mg2+ transport

To observe the roles of  P2Y2,  P2Y4, and  P2Y6 activities 
on  Mg2+ transport across Caco-2 monolayers we incubated 
the monolayers with selective agonists of  P2Y2,  P2Y4, or 
 P2Y6 receptors (Table 1). In control monolayers (Fig. 3a) 
the rate of  Mg2+ transport (in nmol/h/cm2) of the  P2Y2 
agonist-treated group (81.14 ± 3.45), but not  P2Y4 or  P2Y6 
agonist-treated groups, was significantly lower than that of 
the vehicle-treated group (138.89 ± 4.85). As demonstrated 

in Fig. 3b, the rate of  Mg2+ transport (in nmol/h/cm2) 
of the  P2Y2 agonist-treated group (41.94 ± 5.91) was 
significantly lower than that of vehicle-treated group 
(106.74 ± 5.12) in the 200-ng/ml omeprazole-treated 
condition. In 400-ng/ml omeprazole-treated monolayers 
(Fig. 3c),  Mg2+ transport (in nmol/h/cm2) of the  P2Y2 
agonist-treated group (35.28 ± 2.72) was also signifi-
cantly suppressed compared to the vehicle-treated group 
(95.24 ± 4.96). When compared to the corresponding 
vehicle-treated group,  P2Y2 agonist suppressed the rate of 
 Mg2+ transport by about 41.58, 60.71, and 62.96% of con-
trol, in the 200-ng/ml omeprazole-treated, and 400-ng/ml 
omeprazole-treated monolayers, respectively. In addition, 
TEER of MRS2768 treated monolayers was significantly 
higher than that of the corresponding vehicle-treated con-
trol (Fig. 2a) or omeprazole-treated monolayers (Fig. 2b). 
We further performed a western blotting study to confirm 
the enhancing effect of omeprazole on  P2Y2 receptor 
activation in suppressing intestinal  Mg2+ absorption. As 
demonstrated in Fig. 3d, 200 and 400 ng/ml omeprazole 
significantly enhanced  P2Y2 expression when compared 
to the control cells.

Fig. 1  Effect of omeprazole on  Mg2+ transport across Caco-2 mon-
olayers. The rate of  Mg2+ transport across control (a), 200-ng/ml 
omeprazole-treated (b), and 400-ng/ml omeprazole-treated Caco-2 
monolayers (c). White bar; total  Mg2+ transport, gray bar;  Mg2+ 
channel-independent  Mg2+ transport, black bar;  Mg2+ channel-
dependent  Mg2+ transport. *P < 0.05, **P < 0.01, ***P < 0.001 

compared with its corresponding CCh-untreated group. (n = 6). The 
rate of total (d),  Mg2+-channel independent (e), and  Mg2+-channel 
dependent (f)  Mg2+ transport of control and omeprazole-treated 
Caco-2 monolayers. *P < 0.05, **P < 0.01, ***P < 0.001 compared 
with its corresponding control group (n = 6)
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Signaling pathway of  P2Y2 receptor activation 
suppressed  Mg2+ transport

This series of experiments aimed to observe the underly-
ing mechanism by which  P2Y2 receptor activation mediated 

the suppression of intestinal  Mg2+ absorption. In con-
trol (Fig. 4a) and omeprazole-treated Caco-2 monolay-
ers (Fig. 4b), MRS2768 significantly suppressed the rate 
of total  Mg2+ transport.  P2Y2 receptor antagonist, PLC 
antagonist,  IP3 receptor antagonist, and intracellular  Ca2+ 

Fig. 2  Transepithelial electrical resistance (TEER). TEER of control and 400-ng/ml omeprazole-treated Caco-2 monolayers in various experi-
ments. *P < 0.05, **P < 0.01 compared with its corresponding vehicle-treated group (n = 6). Benzb benzbromarone
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chelator markedly normalized the effect of MRS2768 on 
 Mg2+ transport. However, the antagonist of PKC, MEK1/2, 
PI3K, PKA, or voltage-gated  Ca2+ channel had no effect 
on MRS2768-suppressed  Mg2+ transport in either control 
or omeprazole-treated Caco-2 monolayers (Fig. 4a–b). In 
the TEER study,  P2Y2 receptor antagonist, PLC antagonist, 
 IP3 receptor antagonist, and intracellular  Ca2+ chelator also 
normalized the effect of MRS2768-increased TEER of con-
trol (Fig. 2a) and omeprazole-treated (Fig. 2b) monolayers. 
These results suggested that  P2Y2 receptor activation medi-
ated the suppression of intestinal  Mg2+ absorption through 
PLC,  IP3 receptor, and intracellular  Ca2+ signaling pathway.

Contribution of  HCO3
− secretion on  P2Y2 receptor 

activation suppressed  Mg2+ transport

Previously, we reported the contribution of mucosal 
 HCO3

− secretion on omeprazole-suppressed duodenal 
 Mg2+ absorption in PPIH rats [21]. Then, we further 
studied the contribution of  HCO3

− secretion on  P2Y2 
receptor activation-suppressed  Mg2+ transport in Caco-2 

monolayers. As demonstrated in Fig.  5a and b,  P2Y2 
agonist significantly suppressed  Mg2+ transport in con-
trol and omeprazole-treated monolayers. The antagonist 
of NBCe1, CFTR, and CA could relieve the inhibitory 
effect of  P2Y2 activation on  Mg2+ transport across con-
trol and omeprazole-treated monolayers (Fig. 5a–b). By 
using  HCO3

−-free bathing solution in both apical and 
basolateral sites, the  P2Y2 agonist had no effect on  Mg2+ 
transport in normal Caco-2 monolayers (Fig. 5a). In ome-
prazole-treated monolayers (Fig.  5b), the  HCO3

−-free 
condition significantly increased  Mg2+ transport when 
compared to its corresponding vehicle-treated group. 
Under the  HCO3

−-free condition, the  P2Y2 agonist also 
had no effect on  Mg2+ transport in omeprazole-treated 
Caco-2 monolayers (Fig. 5b). Moreover, the antagonist 
of CFTR, CA, and NBCe1 also normalized the effect of 
 P2Y2 activation-increased TEER of control (Fig. 2a) and 
omeprazole-treated (Fig. 2b) Caco-2 monolayers. There-
fore, apical  HCO3

− secretion was involved in  P2Y2 recep-
tor activation-suppressed  Mg2+ transport.

Fig. 3  The effect of P2Y recep-
tor agonists on  Mg2+ transport 
across Caco-2 monolayers. The 
rate of  Mg2+ transport across 
control (a), 200-ng/ml omepra-
zole-treated (b), and 400-ng/
ml omeprazole-treated Caco-2 
monolayers (c) with agonist of 
 P2Y2 receptor MRS2768,  P2Y4 
receptor MRS4062, and  P2Y6 
receptor MRS2693 pre-incuba-
tions. Representative immu-
noblotting and densitometric 
analysis of  P2Y2 expression in 
control and omeprazole-treated 
Caco-2 cells (d). ***P < 0.001 
compared with its vehicle-
treated group (n = 6)
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P2Y2 receptor activation stimulated  HCO3
− secretion

Previously, it was reported that  P2Y2 stimulated mucosal 
 HCO3

− secretion in rat duodenum [4]. The present study 
observed the effect of  P2Y2 receptor activation on apical 
 HCO3

− secretion in Caco-2 monolayers. Since forskolin 
stimulated duodenum  HCO3

− secretion in mice [36] and 
apical  HCO3

− secretion in Caco-2 monolayers [29], we 
used forskolin as positive control for the stimulation of 
apical  HCO3

− secretion. Our results showed that  P2Y2 
agonist MRS2768 and forskolin significantly increased 
the rate of apical  HCO3

− secretion by control (Fig. 6a, b), 
200-ng/ml omeprazole-treated (Fig. 6c, d), and 400-ng/
ml omeprazole-treated (Fig. 6e, f) monolayers. Under the 
 HCO3

−-free condition, the rate of basal, forskolin-stimu-
lated, and MRS2768-stimulated  HCO3

− secretions were 
suppressed in control and omeprazole-treated Caco-2 
monolayers (Fig. 6b, d, f). In the pre-stimulating condition 

(Fig. 6g), the basal  HCO3
− secretions (in µmol/h/cm2) of 

200-ng/ml omeprazole-treated (4.45 ± 0.46) and 400-ng/
ml omeprazole-treated (5.19 ± 0.49) monolayers were 
significantly higher than that of the control monolay-
ers (2.49 ± 0.41). The rate of peak  HCO3

− secretions 
(in µmol/h/cm2) in forskolin-stimulated and MRS2768-
stimulated conditions (Fig. 6h) of 200-ng/ml omepra-
zole-treated (12.48 ± 0.46 and 13.01 ± 0.57, respectively) 
and 400-ng/ml omeprazole-treated (14.12 ± 0.44 and 
14.59 ± 0.48, respectively) monolayers were significantly 
higher than those of the control monolayers (9.16 ± 0.68 
and 8.66 ± 0.57, respectively). We further observed the 
expression of CFTR protein in omeprazole-treated mon-
olayers. As demonstrated in Fig. 7a, omeprazole had no 
effect on CFTR protein expression in Caco-2 monolayers.

Fig. 4  The signaling pathway of P2Y receptor activation suppressed 
 Mg2+ transport across Caco-2 monolayers. The rate of  Mg2+ transport 
across control (a) and 400-ng/ml omeprazole-treated Caco-2 mon-
olayers (b) with agonist or antagonist pre-incubations. ***P < 0.001 
compared with its vehicle-treated group (n = 6)

Fig. 5  Contribution of  HCO3
− secretion on P2Y receptor activation 

suppressed  Mg2+ transport across Caco-2 monolayers. The rate of 
 Mg2+ transport across control (a), and 400-ng/ml omeprazole-treated 
Caco-2 monolayers (b) with agonist or antagonist pre-incubations. 
*P < 0.05, ***P < 0.001 compared with its vehicle-treated group 
(n = 6)
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Fig. 6  P2Y2 receptor agonist 
stimulated  HCO3

− secre-
tion. Time course and rate 
of apical  HCO3

− secretion 
by control (a, b), 200-ng/ml 
omeprazole-treated (c, d), and 
400-ng/ml omeprazole-treated 
Caco-2 monolayers (e, f) that 
were induced by forskolin or 
MRS2768. Basal (at 20 min; 
g) and peak forskolin- or 
MRS2768-stimulated  HCO3

− 
secretion (at 33 min; h) by 
control or omeprazole-exposed 
Caco-2 monolayers. *P < 0.05, 
**P < 0.01, ***P < 0.001 
compared with the correspond-
ing control group. †P < 0.05, 
††P < 0.01, †††P < 0.001 
compared with the pre-treated 
control group (n = 6)
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Signaling pathway of  P2Y2 receptor activation 
stimulated  HCO3

− secretion

Previously, it was found that  P2Y2 activation enhanced 
mucosal  HCO3

− secretion through PLC,  IP3 receptor, and 
intracellular  Ca2+ signaling pathway [4]. This series of 
experiments, therefore, showed the underlying signaling 
transduction pathway of  P2Y2 receptor activation that medi-
ated the stimulation of apical  HCO3

− secretion in Caco-2 
monolayers. In control (Fig. 7b) and omeprazole-treated 
monolayers (Fig. 7c), the rate of peak MRS2768-stimulated 
 HCO3

− secretion was significantly suppressed in the mon-
olayers treated with the antagonist of  P2Y2 receptor, PLC, 
PI3K receptor, CFTR, NBCe1, and CA, as well as intracel-
lular  Ca2+ chelator. These results showed that  P2Y2 recep-
tor activation mediated the stimulation of  HCO3

− secretion 
through PLC,  IP3 receptor, and intracellular  Ca2+ signaling 
pathway. We further observed the pH of apical culture media 
of Caco-2 monolayers at 24 h after culture media change. 

MRS2768 and 400 ng/ml omeprazole significantly increased 
apical pH compared to vehicle treated group (Fig. 7d). CFTR 
and NBCe1 antagonists significantly abolished MRS2768 
and omeprazole effects on apical pH.

Discussion

Intestinal  Mg2+ absorption can be processed through satu-
rable transcellular and non-saturable paracellular mecha-
nisms. Transcellular  Mg2+ transport is an active process 
that requires the activity of transient receptor potential 
melastatin 6 (TRPM6), TRPM7, and basolateral  Na+/Mg2+ 
exchanger [1, 37–39] or other transport pathways. Paracellu-
lar  Mg2+ transport is a passive mechanism modulated by the 
tight junction associated Claudin (Cldn) [11, 40]. However, 
the regulatory mechanism of intestinal  Mg2+ absorption is 
largely unknown.

Fig. 7  The signaling pathway of  P2Y2 receptor agonist stimulated 
 HCO3

− secretion. Representative immunoblotting and densitomet-
ric analysis of CFTR expression in control and omeprazole-treated 
Caco-2 cells (a). The rate of peak MRS2768-stimulated  HCO3

− 
secretion by control (b), and 400-ng/ml omeprazole-treated Caco-2 

monolayers (c) that were induced by agonist or antagonist. The pH of 
apical culture media of Caco-2 monolayers at 24 h after culture media 
change (d). *P < 0.05, **P < 0.01, ***P < 0.001 compared with the 
corresponding vehicle group (n = 6)
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Our previous study demonstrated that intestinal-asso-
ciated proton sensors ASIC1a and OGR1 could modulate 
intestinal-like  Mg2+ transport across Caco-2 monolayers 
[12]. OGR1 activation increased  Mg2+ transport across 
Caco-2 monolayers while ASIC1a activation decreased it. 
In the present study we focused on the role of the purinergic 
 P2Y1 receptor family, which was regulating trans-epithelial 
 Na+,  K+, and  Cl− transport [13], on  Mg2+ transport across 
Caco-2 monolayers. The  Gq-coupled  P2Y1 receptor family 
is composed of  P2Y1,  P2Y2,  P2Y4,  P2Y6 and  P2Y11 recep-
tors. However, Caco-2 monolayers expressed  P2Y2,  P2Y4, 
and  P2Y6 [27], which are exclusively localized in the apical 
membrane [28]. Our results suggested that only  P2Y2 was 
involved in the modulation of  Mg2+ transport across Caco-2 
monolayers. Generally,  P2Y2 receptors regulate epithelial 
ion transport through  Gq-dependent pathways which activate 
PLC and stimulate intracellular  Ca2+ mobilization [4, 13]. 
In agreement with our results,  P2Y2 receptor activation sup-
pressed  Mg2+ transport through PLC,  IP3 receptor, and the 
intracellular  Ca2+ signaling pathway. Li et al. [41] reported 
the inhibitory role of  P2Y2 receptor on Cldn-1 expression. 
Purinergic P2Y receptor agonist adenosine triphosphate 
(ATP) rapidly suppressed epithelial paracellular perme-
ability and increased epithelial TEER [42]. In addition, 
purinergic P2 receptor agonist also suppressed the activity 
of TRPM6 and TRPM7 [43, 44]. However, the role of  P2Y2 
on Cldn, TRPM6, and TRPM7 expressions and functions 
required further studies.

Duodenal mucosal bicarbonate secretion (DMBS) is 
the critical process of duodenal defense against intermit-
tent duodenal epithelial exposure to a luminal acidic envi-
ronment (pH < 2). Luminal  H+ is the potent activator of 
DMBS by stimulating a duodenal associated acid sensor, 
e.g., ASIC1a [5]. In addition, luminal uridine triphosphate, 
a  P2Y2 agonist, also stimulates DMBS [4]. Previously, api-
cal  HCO3

− secretion had been observed in Caco-2 mon-
olayers [12, 29]. Laohapitakworn et al. [29] reported that 
PTH rapidly stimulated CFTR-, CA-, and NBCe1-mediated 
apical  HCO3

− secretion in Caco-2 monolayers. Our group 
demonstrated that activation of ASIC1a stimulated an api-
cal  HCO3

− secretion CFTR-dependent mechanism [12]. In 
the present study we reported the activation of  P2Y2 recep-
tor stimulating CFTR-, CA-, and NBCe1-mediated apical 
 HCO3

− secretion in Caco-2 monolayers. Our results agreed 
with the finding of a previous report [4] that showed  P2Y2 
receptor activation mediated the stimulation of intestinal 
 HCO3

− secretion through PLC,  IP3 receptor, and the intra-
cellular  Ca2+ signaling pathway.

The underlying mechanism of PPI-suppressed intestinal 
 Mg2+ uptake is still unclear. A previous mathematically sim-
ulated study suggested that only a 1% reduction of intestinal 
 Mg2+ absorption could induce 80%  Mg2+ depletion within 
1 year of PPIs used [45]. Previous studies proposed that 

PPIs mainly affected colonic  Mg2+ absorption in PPIH mice 
[2, 20]. Our group reported that PPIs impeded duodenal 
 Mg2+ absorption in PPIH rats [21]. We hypothesized that 
a higher luminal  HCO3

− secretion could lead to a suppres-
sion of small intestinal  Mg2+ absorption in PPIH [12, 21]. 
Omeprazole markedly enhanced  HCO3

− secretion in human 
duodenum and intestinal epithelium-like Caco-2 monolayers 
[12, 26]. Secreted  HCO3

− increased luminal pH and prob-
ably decreased  Mg2+ solubility, since luminal soluble  Mg2+ 
decreased from 79.61 to 8.71% when luminal pH increased 
from ~ 5 to 7.8 [25]. Therefore, antagonists of CFTR and 
NBCe1 significantly increased duodenal  Mg2+ absorption 
in PPIH rats [21]. These findings agreed with the present 
study that omeprazole induced basal and peak-stimulated 
 HCO3

− secretion. Interestingly, in the  HCO3
−-free condi-

tion the rate of  Mg2+ transport markedly increased in ome-
prazole-treated Caco-2 monolayers, suggesting the inhibi-
tory role of secreted  HCO3

− on intestinal  Mg2+ absorption. 
However, luminal  Mg2+ solubility and precipitation in the 
PPI-treated animal model requires further study.

The present study showed higher  P2Y2 expression in ome-
prazole-treated Caco-2 monolayers. Thus,  P2Y2-activated 
 HCO3

− secretion was also significantly higher in omepra-
zole-treated monolayers. These results explained the higher 
degree of suppression of  Mg2+ absorption in  P2Y2-activated 
200-ng/ml omeprazole-treated (60.71%) and 400-ng/ml 
omeprazole-treated monolayers (62.96%) in comparison to 
control monolayers (41.58%). Moreover,  P2Y2 activation 
enhanced  HCO3

− secretion and suppressed  Mg2+ absorption 
were also mediated by PLC,  IP3 receptor, intracellular  Ca2+ 
mobilization, CFTR, CA, and NBCe1. In addition to higher 
 HCO3

− secretion, another possible mechanism of omepra-
zole-suppressed  Mg2+ absorption is phosphatidylinositol 
4,5-bisphosphate  (PIP2)-mediated TRPM6 function. Since 
TRPM6 function required an interaction with membrane-
associated  PIP2, hydrolysis of  PIP2 through activation of the 
 Gq-protein coupled PLC-dependent pathway fully inacti-
vated TRPM6 channels [46]. The higher  Gq-associated  P2Y2 
expression and function might have induced  PIP2 degrada-
tion which then inactivated TRPM6 channels in omeprazole-
treated Caco-2 monolayers. However, our results suggested 
that  Mg2+ channel-dependent  Mg2+ absorption could not be 
involved in omeprazole-suppressed  Mg2+ transport across 
Caco-2 monolayers.

Our results in the present study agreed with the previous 
study [8] that omeprazole suppressed  Mg2+ channel-independ-
ent, but not  Mg2+ channel-dependent,  Mg2+ transport across 
Caco-2 monolayers. There are two possible answers to explain 
why omeprazole had no effect on  Mg2+ channel-dependent 
 Mg2+ transport across Caco-2 monolayers. Since omeprazole 
has no effect on TRPM6 expression in Caco-2 cells [21],  Mg2+ 
channel-dependent  Mg2+ transport was maintained in the same 
fraction. Regarding our recent results, from 100% of total 
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 Mg2+ transport, the percentages of  Mg2+ channel-dependent 
 Mg2+ transport were 18.55, 19.02, and 18.58% in control, 200-
ng/ml omeprazole-treated, and 400-ng/ml omeprazole-treated 
monolayers. On the other hand, our recent method may not 
be sensitive enough to detect a very small change of  Mg2+ 
channel-dependent  Mg2+ transport of omeprazole-treated 
Caco-2 monolayers.

In conclusion, the present study reported the role of  P2Y2 
function on the modulation of intestinal  Mg2+ absorption. 
 P2Y2 agonist enhanced  HCO3

− secretion and suppressed  Mg2+ 
transport through the activation of PLC,  IP3 receptor, intracel-
lular  Ca2+ mobilization, CFTR, CA, and NBCe1. Inhibition 
of  HCO3

− secretion could restore  Mg2+ transport in  P2Y2 
agonist-treated monolayers. The higher  P2Y2 expression was 
found in omeprazole-treated Caco-2 monolayers. Therefore, 
the higher degree of  HCO3

− secretion and  Mg2+ transport 
suppression was demonstrated in  P2Y2-activated omeprazole-
treated Caco-2 monolayers. Our results propose an inhibitory 
role of  P2Y2 on intestinal  Mg2+ absorption.
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