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Abstract
Several lines of study have suggested that GABA in the hypothalamic feeding center plays a role in promoting food intake. 
Recent studies revealed that not only NPY/AgRP neurons in the hypothalamic arcuate nucleus (ARC) that co-express GABA 
but also other GABAergic neurons act as an orexigenic. Here, we review the progress of studies on hypothalamic GABAergic 
neurons distributed in ARC, dorsomedial hypothalamus (DMH), and lateral hypothalamus (LH). Three advanced technologies 
have been applied and greatly contributed to the recent progress. Optogenetic (and chemogenetic) approaches map input and 
output pathways of particular subpopulations of GABAergic neurons. In vivo Ca2+ imaging using GRIN lens and GCaMP can 
correlate the activity of GABAergic neuron subpopulations with feeding behavior. Single-cell RNA-seq approach clarifies 
precise transcriptional profiles of GABAergic neuron subpopulations. These approaches have shown diversity of GABAergic 
neurons and the subpopulation-dependent role in feeding regulation.
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Introduction

Feeding is regulated by hypothalamic nuclei including the 
arcuate nucleus (ARC), dorsomedial hypothalamus (DMH), 
paraventricular nucleus (PVN), ventromedial hypothalamus 
(VMH), and lateral hypothalamus (LH). ARC is recognized 
as the first-order center that senses peripheral metabolic 
signals. DMH and LH are recognized as the hunger cent-
ers, VMH as the satiety center, and PVN as the integrative 
center. GABA (gamma-aminobutyric acid)-ergic neurons are 
located primarily in ARC, DMH, and LH [1] and regulate 
energy balance positively. Infusions of GABA and GABA 
receptor agonist promote food intake, whereas GABA recep-
tor antagonist suppresses it [2]. Here, we review the progress 

of studies on hypothalamic GABAergic neurons in feeding 
regulation.

NPY/AgRP neurons in ARC​

Neuropeptide Y (NPY)/Agouti-related protein (AgRP)-
expressing neurons in ARC are GABAergic neurons [3, 
4]. These neurons play a prominent role in promoting food 
intake. They are activated by peripheral orexigenic signals 
such as ghrelin [5, 6], while inactivated by anorexigenic sig-
nals such as leptin [4, 7], insulin [8], and glucose [9], and 
release NPY, AgRP, and GABA in an activity-dependent 
manner. Intracerebroventricular injection of NPY or AgRP 
promotes feeding [10, 11]. Conversely, application of their 
antagonists or GABA receptor antagonist to the projection 
site of NPY/AgRP neurons suppress feeding [12].

Optogenetics by using light-dependent channels such as 
channelrhodopsin, halorhodopsin, and variants, and chemo-
genetics by using designer receptors such as hM3Dq and 
hM4Di have been used to activate or inhibit the activity in 
selective neurons, and allow us to analyze the link between 
the neuronal activity and behavior. Optogenetic or chemoge-
netic activation of NPY/AgRP neurons promote food intake 
[13, 14] while chemogenetic inhibition suppresses it [14].
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A study using chemogenetic activation of NPY/AgRP 
neurons in NPY, GABA, and/or melanocortin receptor 4 
(MC4R)-deficient mice revealed that ether NPY or GABA 
is needed to promote food intake in the early phase whereas 
AgRP plays a role in prolonging feeding [15].

Optogenetics could regulate membrane potential not only 
in cell bodies but also in axon terminals to generate action 
potentials and release neurotransmitters. This allows us to 
identify the neurons that receive monosynaptic transmis-
sion from channelrhodopsin-expressing presynaptic neurons. 
Moreover, this could reveal a behavior that is mediated by 
the neural circuit. Using this technique, it was determined 
that AgRP neurons monosynaptically project to the ante-
rior bed nucleus of the stria terminalis (aBNST), PVN, LH, 
the paraventricular nucleus of thalamus (PVT), the central 
nucleus of amygdala (CeA), the periaqueductal gray (PAG) 
[16], and the parabrachial nucleus (PBN) [17]. Among these 
projection sites, the aBNST, PVN, LH, and PVT were esti-
mated to participate in the core forebrain feeding circuit, 
since presynaptic activation of AgRP neurons onto these 
nuclei promoted food intake [16]. Optogenetic activation of 
presynaptic terminals of AgRP neurons onto MC4R-express-
ing neurons in PVN but not in LH or aBNST-induced inhibi-
tory postsynaptic current (IPSC) and promoted food intake, 
suggesting that AgRP neuron-derived hunger is mediated 
by MC4R neurons in PVN [18]. This study also showed 
that MC4R was not expressed in oxytocin neurons and that 
oxytocin neurons and corticotropin-releasing hormone 
(CRH)-expressing neurons in PVN did not mediate AgRP 
neuron-derived hunger [18]. This is, however, inconsistent 
with other reports. Atasoy et al. showed that food intake 
elicited by optogenetic activation of presynaptic terminal of 
AgRP was attenuated by additional optogenetic activation of 
oxytocin neurons in PVN [19]. Immunohistochemical study 
showed that MC4R is expressed in oxytocin neurons and 
CRH neurons [20] and that MC4R agonist, α-melanocyte 
stimulating hormone (α-MSH), and melanotan II (MTII) 
activates PVN oxytocin neurons [21–23].

Optogenetic activation of presynaptic terminals also clari-
fied the synaptic input onto AgRP neurons from other hypo-
thalamic feeding regulatory nucleus. Glutamatergic neurons 
that express thyrotropin-releasing hormone (TRH) or pitui-
tary adenylate cyclase-activating polypeptide (PACAP) in 
PVN but not in VMH and DMH send an excitatory synaptic 
input onto ARC AgRP neurons, whereas oxytocin, arginine-
vasopressin (AVP), or CRH neurons in PVN do not [24]. 
Chemogenetic activation of TRH or PACAP neurons in PVN 
promotes food intake via ARC AgRP neurons [24].

In vivo Ca2+ imaging with GRIN lens allows us to 
observe the activity of neurons in deep brain of free-moving 
mice. Food presentation without consumption acutely sup-
presses the neural activity of AgRP neurons of fasting mice 
[25, 26]. The suppression of neural activity was recovered 

within 10 s but not completely. Several times of food pres-
entation weakened the neural activity, reaching the silent 
state. Dummy food presentation transiently suppressed and 
immediately recovered the neural activity. These obser-
vations indicate that the fast neurotransmission (probably 
mediated by GABA) from a sensory system such as vision 
or smell play a role in regulating AgRP neurons, as well as 
nutrients and hormones from peripheral organs as a result 
of food consumption. GABAergic neurons in DMH were 
reported as one of the sources of the GABA to suppress 
AgRP neuron activity (see the section of DMH).

POMC neurons in ARC​

Approximately half of ARC POMC neurons expressed glu-
tamic acid decarboxylase (GAD) 67, GAD 65, or vesicular 
GABA transporter (Vgat), the marker of GABAergic neu-
rons, and a small potion of the neurons co-expressed vesic-
ular glutamate transporter (Vglut)2 [27–29]. Additionally, 
GAD 67-positive POMC neurons increased while Vglut2-
positive POMC neurons decreased in a postnatal developing 
period [30]. Acute and chronic calorie restriction reduced 
the expression of GAD 67 mRNA, with lesser effect on GAD 
65, whereas high-fat diet feeding or stress altered them in 
POMC neurons [31]. However, the role of GABA release 
from POMC neurons still remains to be clarified.

Direct GABAergic projection from NPY/AgRP neu-
rons to POMC neurons in ARC has been detected by elec-
tron microscopy [4]. Additionally, light-evoked IPSC was 
observed at POMC neurons in ARC from AgRP neuron 
selective channelrhodopsin-expressing mice, indicating 
that POMC neurons received functional synaptic connec-
tion from AgRP neurons [19, 32]. However, AgRP neuron-
specific inhibition of GABA release by cell type specific 
deletion of Vgat or expression of botulinum toxin did not 
alter IPSCs onto POMC neurons [33, 34], suggesting that 
GABAergic input from AgRP neurons to POMC neurons 
depends on the states of AgRP neuron activity.

Non‑NPY/AgRP, non‑POMC GABAergic 
neurons in ARC​

Although NPY/AgRP neurons and POMC neurons in ARC 
are established as the first-order neurons in sensing leptin, 
the changes in body weight and food intake in mice deficient 
of leptin receptor (LepR) selectively in these neurons were 
smaller than in conventional LepR-deleted mice or Ob/Ob 
mice, indicating the first-order neurons sensing leptin include 
new neurons other than NPY/AgRP neurons and POMC neu-
rons. The mice deficient of LepR selectively in the neurons 
expressing Vgat, which is required for GABA release, showed 
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similar increases in body weight and food intake with conven-
tional LepR-deleted mice. In contrast, the mice deficient of 
LepR selectively in the Vglut-expressing neurons showed body 
weight and food intake comparable to wild-type littermates 
[1]. These results indicate that the first-order neurons other 
than NPY/AgRP and POMC neurons are GABAergic.

The role of non-NPY/AgRP, non-POMC GABAergic 
neurons in feeding regulation was investigated by using 
several mice lines. The mice with disrupted GABA release 
from LepR neurons (LepR-Cre::Vgatflox/flox) increased body 
weight caused by increasing food intake and decreasing 
energy expenditure with lowering leptin sensitivity [35]. 
Pancreas–duodenum homeobox 1 (Pdx-1) and Rat insulin 
promoter1 (RIP) are expressed in hypothalamic neurons, 
except for arcuate NPY/AgRP and POMC neurons [36]. 
The mice disrupted GABA release from hypothalamic RIP-
expressing neurons (RIP-Cre::Vgatflox/flox) were obese and 
extremely sensitive to DIO due to dysregulation of energy 
expenditure but not food intake. Leptin-induced thermo-
genesis, but not suppression of food intake, was attenu-
ated in the mice. Most  RIP-expressing neurons in ARC 
are GABAergic, and half of them are LepR-positive [37]. 
The mice with disrupted GABA release from hypothalamic 
Pdx-1-expressing neurons (Pdx-1-Cre::Vgatflox/flox) showed 
decreased food intake and body weight in the postweaning 
period [38]. NPY-induced hyperphagia was attenuated in 
the mice [38].

GABAergic neurons in DMH

DMH has been considered an orexigenic nucleus since its 
lesion decreased food intake and body weight. In DMH, 
however, the principal neuron that promotes food intake 
has not been identified, in contrast to other feeding regula-
tory nuclei. A subpopulation of DMH GABAergic neurons 
expresses leptin receptor [1], which inhibits its activity while 
it is activated by lowering glucose [39]. These neurons pro-
jected to ARC POMC and NPY/AgRP neurons [40] and 
PVN neurons [39]. Optogenetic activation of GABAergic 
neurons in DMH showed an increase in food consumption 
partly via inhibition of PVN neurons [39]. DMH GABAergic 
neuron projecting to NPY/AgRP neurons expressed leptin 
receptor while that projecting to POMC neurons did not. 
Leptin receptor-expressing GABAergic neurons were acti-
vated in response to food presentation, which is associated 
with acute inhibition of NPY/AgRP neurons [40].

GABAergic neurons in LH

Resent studies revealed that three types of GABAergic neu-
rons in LH are associated with feeding behavior. A subpopu-
lation of GABAergic neurons in LH is melanin-concentrating 

hormone (MCH)-expressing neurons, which also expresses 
GAD67 and LepR. MCH is an orexigenic neuropeptide that 
inhibits other hypothalamic neurons [41]. Local injection 
of MCH to PVN or DMH promotes food intake and body 
weight gain [42–45]. A chronic infusion of MCH or activa-
tion of MCH receptor 1 also increases food intake and body 
weight gain, and elevates the level of insulin and leptin [46, 
47]. Conversely, the mice lacking MCH showed lean phe-
notype due to decreased food intake [48]. Antagonism of 
MCH receptor 1 leads to sustained reduction in food intake 
and body weight gain [47].

Optogenetic activation of axonal projection from Pdx-
1-expressing neuron in LH, which also expressed MCH, to 
PVN promote feeding, whereas it was abolished by disrup-
tion of GABA release by deletion of Vgat [49].

Optogenetic activation of Vgat-positive GABAergic neu-
rons in LH produces appetitive and consummatory behavior 
[50]. In this report, it is also shown that the Vgat-positive 
GABAergic neurons were distinct from MCH or orexin 
neurons. However, it is still not clear whether MCH neu-
rons do not express Vgat. Additionally, in vivo Ca2+ imag-
ing revealed that the GABAergic neurons from a distinct 
population that encodes appetitive behavior while others do 
consummatory behavior [50].

Single‑cell RNA‑seq analysis in hypothalamic 
GABAergic neurons

Single-cell RNA-seq technique is quite useful for distin-
guishing the hypothalamic neurons, since the hypothalamus 
lacks anatomical characteristics, such as distinct layering 
or repetitive organization observed in cortical or cerebral 
neurons. Romanov et al. applied this technique to neural 
populations of PVN, anterior hypothalamic nucleus (AHA), 
SCN, DMH, VMH, and ARC [51]. This analysis found 15 
clusters of GABAergic neurons, which expressed Gad1, 
Gad2, and Slc32a1. The 15 clusters included the neurons 
expressing AgRP/NPY, somatostatin, corticotropin-releas-
ing hormone (CRH), and POMC. Notably, four out of 15 
GABAergic neuron clusters showed dopaminergic transcript 
tyrosine hydroxylase, Slc18a2 (encoding vesicular mono-
amine transporter 2, VMAT2) and, in some cases, Slc6a3 
(encoding dopamine transporter 1, DAT), suggesting that 
these neuron clusters co-express dopaminergic and GABAe-
rgic phenotypes. The GABAergic (Slc17a6-positive) neu-
rons in the ARC and the median eminence were classified 
into 18 clusters by using single-cell RNA-seq [37]. This 
analysis firstly observed two subtypes of the AgRP neurons, 
somatostatin (SST)-positive and -negative ones. Addition-
ally, AgRP-negative SST neuron subpopulation showed a 
similar transcriptional profile as that of AgRP neurons, and 
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chemogenetic activation of SST neurons in ARC promoted 
food intake, similarly to activation of AgRP neurons [37].

These studies showed the diversity of GABAergic neu-
rons in hypothalamus, and demonstrated that the single-cell 
RNA-seq is a useful method for exploring new subpopula-
tions of neurons.

Perspectives

In the past 5 years, the optogenetic approach has successfully 
illustrated the neural circuit of GABAergic neurons, particu-
larly GABAergic NPY/AgRP neurons, in feeding regulation. 
This approach allows us to observe the functional synaptic 
contact among the neurons of interest and to illustrate the 
precise neural circuit (Fig. 1). However, the “optogeneti-
cally” functional contact is not equal to the “physiologically” 
functional connection, as suggested from the study of synap-
tic projection from NPY/AgRP neurons to POMC neurons 
in ARC [34]. In vivo Ca2+ imaging is an effective tool for 
exploring the neurons that mediate specific behaviors. These 
new techniques identified an orexigenic GABAergic neuron 
subtype that expresses neither NPY nor AgRP. Intriguingly, 

GABAergic neuron subtype that suppresses feeding has not 
been found by now. In this regard, it remains to be clarified 
whether or not the GABAergic neurons project to orexigenic 
GABAergic neurons.
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