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Abstract
Obesity-related lifestyle factors, such as physical activity behavior and dietary intake, have been shown to be associated 
with episodic memory function. From animal work, there is considerable biological plausibility linking obesity with worse 
memory function. There are no published systematic reviews evaluating the effects of obesity on episodic memory function 
among humans, and examining whether physical activity and diet influences this obesity–memory link. Thus, the purpose of 
this systematic review was to evaluate the totality of research examining whether obesity is associated with episodic memory 
function, and whether physical activity and dietary behavior confounds this relationship. A review approach was employed, 
using PubMed, PsychInfo, and Sports Discus databases. Fourteen studies met our criteria. Among these 14 reviewed studies, 
eight were cross-sectional, four were prospective, and two employed a randomized controlled experimental design. Twelve 
of the 14 studies did not take into consideration dietary behavior in their analysis, and similarly, nine of the 14 studies did 
not take into consideration participant physical activity behavior. Among the 14 studies, ten found an inverse association of 
weight status on memory function, but for one of these studies, this association was attenuated after controlling for physical 
activity. Among the 14 evaluated studies, four did not find a direct effect of weight status on memory. Among the four null 
studies, one, however, found an indirect effect of BMI on episodic memory and another found a moderation effect of BMI 
and age on memory function. It appears that obesity may be associated with worse memory function, with the underlying 
mechanisms discussed herein. At this point, it is uncertain whether adiposity, itself, is influencing memory changes, or rather, 
whether adiposity-related lifestyle behaviors (e.g., physical inactivity and diet) are driving the obesity–memory relationship.
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Introduction

Obesity has been identified as a risk factor for Alzheimer’s 
disease [1–3]. Similarly, obesity-related behaviors, such as 
diet and physical activity have also been shown to influence 
Alzheimer’s disease risk [4, 5]. There are mixed findings 
regarding the relationship between obesity and episodic 
memory function [6], or memories/representations of spe-
cific personal experiences that occur in a temporal or spatial 
context. In some studies [7, 8], but not all [9, 10], obesity 
is associated with worse episodic memory, as well as other 
memory parameters, such as visual working memory tasks 

[11]. In addition to obesity phenotype, obesity genotype has 
also been linked with reduced memory, specifically those 
with at least one copy of the obesity risk-conferring A allele 
(FTO-AC/AA) [12]. Further, obesity-induced dysregulation 
of the Sirtuin 1 (Sirt1) gene is also linked with memory 
deficits [13].

Recently, Cheke et al. [14, 15] developed a what-where-
when (WWW) paradigm (Treasure Hunt Task) that com-
prehensively evaluates episodic memory. This task evalu-
ates not only object-related recollection of the task but also 
temporal and spatial aspects of memory, both of which are 
common in everyday life. In this study [14], both obesity and 
insulin resistance were associated with reduced neural activ-
ity in key areas of the brain that subserve episodic memory 
function (e.g., hippocampus, angular gyrus, and dorsolateral 
prefrontal cortex).

As detailed below, there are several mechanisms through 
which obesity may detrimentally influence episodic memory 
performance, of which may include morphological brain 
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changes, insulin resistance, neuroinflammation, triglyc-
erides, circulating levels of glucocorticoids, and cerebral 
metabolite concentrations (Fig. 1) [16]. Notably, the major-
ity of these mechanistic insights come from preclinical (ani-
mal) studies, and such, should be interpreted accordingly.

Morphological brain changes

Related to morphological brain changes, Willette and Kapo-
giannis [17] demonstrated in a review paper that 14 out of 
22 studies reported an inverse association between adipos-
ity and temporal lobe volume, with 11 out of 28 studies 
reporting an inverse association between adiposity and hip-
pocampal volume.

Insulin resistance

Obesity-related insulin resistance has been found to mediate 
the relationship between worse memory performance and 
greater reduction in grey matter volume over a 4-year period 
[18]. Similarly, insulin sensitivity has been shown to mediate 
the relationship between BMI and working memory-related 
brain activation [19]. Indeed, Benedict et al. [20–22] demon-
strated that an 8-week intranasal insulin administration may 
improve episodic memory in young healthy adults. Insulin 
may also influence memory performance via its ability to 
stimulate neuronal glucose uptake [23], modulate expres-
sion of NMDA receptors [24] in the cell membrane [25], 
and influence levels of acetylcholine and norepinephrine [26, 
27], both of which play important roles in memory function 
[28, 29]. Acetylcholine may enhance memory encoding via 
its role in increasing theta rhythm oscillations [30], which is 
an optimal time for memory encoding [31]. Norepinephrine 
may alter information processing via β1 receptors to promote 

memory retrieval [29]. Regarding NMDA receptors, insulin 
has been shown to increase the number of active NMDA 
channels (via new channel molecules to the cell surface by 
regulated exocytosis; e.g., insulin acts via insulin recep-
tor tyrosine kinase to initiate a signaling cascade involving 
PI3K, which may induce receptor trafficking and target-
ing, thereby increasing NMDA density at the synapse) and 
increase NMDA channel opening [25].

Neuroinflammation

Regarding neuroinflammation (inflammation of nervous 
tissue) [32], research demonstrates that neuroinflamma-
tion is associated with impaired episodic memory [33, 34]. 
Pro-inflammatory cytokines, such as IL-1, may play a key 
role in influencing memory-related mechanisms, includ-
ing long-term potentiation [33]. In situ hybridization stud-
ies [35] demonstrate IL-1 receptors are located in the hip-
pocampus, with other work demonstrating that exogenously 
applied IL-1 can inhibit calcium influx [36], PKA [36], and 
release of acetylcholine [37] and glutamate [38, 39] in the 
hippocampus.

Triglycerides

Obesity-related hypertriglyceridemia may also impair epi-
sodic memory function [40]. Elevated triglycerides may 
impair long-term potentiation by blocking NMDA recep-
tor activation [40] and glutamate release [41]. Addition-
ally, hypertriglyceridemia impairs leptin’s ability to cross 
the blood–brain barrier [42], which may have downstream 
effects on memory, as leptin plays an important role in epi-
sodic memory [43]. Specifically, leptin may facilitate the 
induction of long-term potentiation by enhancing NMDA 

Fig. 1  Schematic of potential 
obesity-related mechanisms 
subserving episodic memory 
impairment
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receptor-mediated transmission [43], specifically NMDA 
receptor-mediated  Ca2+ influx [43]. Importantly, however, 
high levels of leptin could be counterproductive as high lev-
els of leptin are associated with many inflammatory condi-
tions [44].

Glucocorticoids

Elevated glucocorticoids (or cortisol, in humans), common 
in obesity [45–47], is another mechanism through which 
obesity may influence episodic memory function [48]. The 
hippocampus contains the largest density of corticosterone 
receptors, which is the principle site for glucocorticoids [49, 
50]. Elevated levels of glucocorticoids have been shown to 
be associated with reduced brain activity in the hippocam-
pus [51]. Additionally, glucocorticoid receptor antagonist 
administration (RU486) attenuated memory decline in a 
mouse model of Alzheimer’s disease [52]. Exposure to acute 
uncontrollable stress has been shown to have similar detri-
mental effects on long-term potentiation when compared to 
administration of NMDA receptor antagonism drugs [53]. 
The mechanism of this glucocorticoid effect on long-term 
potentiation, occurring within the CA1 hippocampal field 
[54] and dentate gyrus granule cell layer [55], is likely mul-
tifold. High levels of acute glucocorticoids are believed to 
produce an increase of synaptic GABA levels [55], which 
may have a direct inhibitory effect on long-term potentiation 
[56, 57]. Chronic elevations of glucocorticoids are suggested 
to induce atrophy of the size and shape neuronal dendrites 
[58]. Further, obesity is associated with increased miner-
alocorticoid receptor (MR) activity [59], which is widely 
expressed in the hippocampus [60]. In animal studies [61], 
as well as human studies [62], MR blockage improves hip-
pocampal learning in obesity, and may do so via regulation 
of hippocampal neuronal activity and associated learning 
[61, 63].

Cerebral metabolites

Cerebral metabolite concentrations have also been impli-
cated in the obesity–memory relationship. Gonzales et al. 
[64] demonstrated that elevated BMI was associated 
with worse memory performance through altered cer-
ebral metabolite concentrations, including creatine (Cr), 
a marker of membrane breakdown and turner, and myo-
inositol (mI), a marker of energy metabolism, osmotic 
regulator and indicator of gliosis. In the brain, mI serves 
as an organic osmolyte that helps to protect cells from 
damage by shrinkage or swelling because of water diffu-
sion changes [65]. Specifically, higher BMI was associated 
with elevations in mI/Cr, which in turn, was associated 
with worse memory performance [64], implicating hyper-
tonicity and neuroinflammation as mechanisms underlying 

the obesity–memory relationship. These findings are sup-
ported by neuroimaging work demonstrating that increased 
body weight is associated with elevated serum neuron-spe-
cific enolase (NSE) concentrations [66], which is a marker 
of structural neuronal damage [67, 68].

In addition to the aforementioned plausible mechanisms 
through which obesity (specifically, adiposity) may influ-
ence episodic memory function, other work demonstrates 
that obesity-related diets, such as the “Western diet” (high 
in saturated fats and simple sugars), has been shown to 
be associated with deficits in learning and memory [5, 
69, 70]. Further, some work suggests that such memory 
impairments are diet-induced, as opposed to be driven by 
adiposity changes [71]. For example, recent work demon-
strates that memory deficits are observable after as little 
as 3 days of Western diet consumption [72]. Diet-induced 
obesity has been shown to decrease dopaminergic signal-
ing [73], which may impair memory as dopamine appears 
to play an important role in memory function [74]. Similar 
to glutamate through NMDA and non-NMDA receptors, 
research demonstrates that dopamine receptor-mediated 
signals (e.g., via D1 and D2 receptors) are important in 
the production of long-lasting maintenance of long-term 
potentiation [75, 76]. For example, dopamine regulation 
of long-term potentiation may occur via the D1/cAMP/
PKA pathway, where the D1 receptor coupled to adenylate 
cyclase (AC) increases AC activity [74]. This leads to the 
formation of cAMP that activates PKA, which in turn can 
phosphorylate transcription factors (e.g., CREB) as well 
as phosphorylate both AMPA and NMDA receptors [74]. 
In addition to diet, other obesity-related behaviors, namely 
physical activity, may play a role in subserving memory 
function. Details of the potential effects of physical activ-
ity on episodic memory function have been thoroughly 
discussed elsewhere [77]. In brief, physical activity may 
directly influence cellular mechanisms of episodic mem-
ory function via alterations in neuronal excitability and 
changes in key proteins involved in memory function (e.g., 
brain-derived neurotrophic factor).

The purpose of this systematic review was to evaluate the 
totality of research examining the extent to which, indeed, 
obesity is associated with episodic memory function among 
an adult population. Additionally, we focus on whether the 
extracted studies evaluated the extent to which adipos-
ity or obesity-related diets contributed to the relationship 
between obesity and episodic memory function. Lastly, in 
the extracted articles, we also evaluate the extent to which 
physical activity was taken into consideration, as physi-
cal activity is closely linked to obesity [78], diet [79, 80], 
and memory function [81]. Evaluated within the context of 
the obesity paradox, previous work indicates that physical 
activity, regardless of weight status, is associated with better 
memory-related cognitive task performance [82].
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To our knowledge, no such comprehensive review exists. 
Thus, this review will provide an overview of the relation-
ship between obesity and episodic memory, its underlying 
mechanisms, and whether the current body of literature on 
this topic has carefully taken into consideration the effects of 
physical activity and dietary behavior on the obesity–mem-
ory link. To our knowledge, there is no published review 
specifically evaluating these three parameters. We hypoth-
esize that, based on the plausible aforementioned mecha-
nisms, the majority of work on this topic will demonstrate 
an inverse association between obesity and episodic memory 
function.

Methods

Studies were identified using electronic databases, including 
PubMed, PsychInfo, Sports Discus, and Google Scholar. We 
employed the computerized searches on December 6, 2017, 
identifying articles published prior to this date (no restric-
tion was placed on how far back the study was published). 
The search terms included obesity, overweight, body mass 
index, waist circumference, memory, and episodic memory. 
To be eligible for inclusion in this systematic review, studies 
had to be published in English, employ a cross-sectional, 
prospective, or experimental design, and be conducted 
among human adults (18+ years). The independent vari-
able had to be an obesity metric (e.g., BMI), with the out-
come variable either being the performance on an episodic 
memory task or measured neural activity during a memory 
task or in a memory-related neural structure. Notably, stud-
ies that employed an overall cognitive function assessment 
that included memory as part of this global score were not 
included (e.g., examples include [83, 84]). Outside these 
criteria, no specific exclusionary criteria were applied. Both 
authors performed the computerized searches and confirmed 
agreement with the identified studies, which included 14 
extracted studies.

Study quality assessment

Risk of bias/study quality for all studies was assessed using 
a checklist developed specifically for this study. This tool 
was based on the Cochrane Collaboration’s instrument for 
assessing risk of bias. This tool included four items with 
a yes (1) or no (0) response option. These items included:

Item 1: Was a criterion measure of obesity (i.e., not BMI) 
used? We recognize that there is not universal agreement on 
a criterion measure of obesity. A measure, such as DXA or 
waist circumference, in this study, was considered to be a 
more criterion measure than BMI.

Item 2: Were relevant covariates (i.e., both diet and exer-
cise) included and evaluated in the analysis?

Item 3: Was a prospective or intervention design used?
Item 4: Were statistically appropriate/acceptable methods 

of data analysis used?

Results

Table 1 displays the extraction table for the 14 evaluated 
articles. Among the 14 reviewed studies, 8 were cross-sec-
tional, 4 were prospective, and 2 employed a randomized 
controlled experimental design. In most of the studies, 
weight status was based on BMI. Episodic memory function 
was assessed via a word- or sentence-based learning task for 
11 of the studies; one study employed fMRI technology, and 
two studies comprehensively assessed episodic memory via 
the what-where-when task.

Twelve of the 14 studies did not take into consideration 
dietary behavior in their analysis, and similarly, nine of the 
14 studies did not take into consideration participant physi-
cal activity behavior. With regard to the study quality assess-
ment (Table 2), and out of a max score of 4, 43% (6/14) had 
a quality score of 1, 43% (6/14) had a score of 2, and 7% 
(1/14) had a score of 3, and 7% (1/14) had a score of 4. Thus, 
the majority of studies demonstrated evidence of bias.

Among the 14 studies, ten found an inverse association 
of weight status on memory function, but for one of these 
studies, this association was attenuated after controlling for 
physical activity. Among the 14 evaluated studies, four did 
not find a direct effect of weight status on memory. Among 
the four null studies, one, however, found an indirect of BMI 
on episodic memory and another found a moderation effect 
of BMI and age on memory function.

Discussion

The purpose of this study was to evaluate human-based 
studies examining the association between weight status 
and episodic memory function. The major findings of 
this review are as follows. First, relatively few published 
studies have examined the association of weight status on 
episodic memory among humans. Second, most of these 
studies demonstrated a detrimental association between 
weight status and episodic memory, which is biologically 
plausible, as discussed in the Introduction section. Third, 
most of the studies used BMI as the weight status metric; 
it would be worthwhile to examine other related metrics 
to see if body composition, or the distribution of body 
fat, differentially influences memory function. Fourth, 
very few of the studies took participant dietary or physi-
cal activity behavior into account when considering the 
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association between weight status and episodic memory 
function. One study demonstrated that the association 
between weight status and memory was attenuated after 
controlling for physical activity [85].

Some of the strongest evidence to support the obe-
sity–memory relationship comes from the three prospective 
trials examining the effects of bariatric surgery on post-oper-
ative changes in memory function. All three trials [86–88] 
showed that when compared to obese controls, bariatric sur-
gery among obese patients resulted in improved memory 
function, a finding that lasted up to 2 years post-surgery. Fur-
ther, Smith et al. [89] demonstrated that those in the DASH 
Diet + WM (weight management) group had a reduction in 
weight and an improvement in memory after the 4-month 
intervention. This finding aligns with research in animal 
work showing that surgical lipectomy in mice completely 
normalizes hippocampus-dependent memory, long-term 
potentiation, and dendritic spine density [90]. Importantly, 
however, bariatric surgery may indirectly influence memory 
as surgery leads to a variety of cardiovascular and endocrine 
changes [91] that could influence memory function [34]. 
Thus, it is likely that obesity may influence episodic memory 
function, in part through pathways related to cardiovascular 
disease risk. For example, as noted in Fig. 1, some of the 
mechanisms (e.g., hypertriglyceridemia, insulin resistance, 
inflammation) linking obesity to memory function are car-
diovascular disease risk factors.

At this point, it is uncertain as to whether the observed 
associations between weight status and episodic memory are 
adiposity driven, or moderated by physical activity behavior 
[92], dietary intake, or other lifestyle behaviors. There is, 
however, some evidence to suggest that both obesity and 
physical inactivity are independently associated with worse 
memory function [92]. This underscores the importance of 
future studies taking these lifestyle behaviors into account 
when examining the effects of weight status on memory 
function. In cross-sectional and prospective studies, this 
could be done via statistical adjustment and/or effect modi-
fication in the evaluated statistical models. For experimental 
studies, it would be worthwhile for future studies to experi-
mentally manipulate changes in weight status via physical 
activity, diet, and surgery to determine what unique, if any, 
roles these manipulations have on changes in episodic mem-
ory. This will help provide more conclusive evidence as to 
whether adiposity itself is influencing memory changes, or 
rather, whether adiposity-related lifestyle behaviors are driv-
ing the obesity–memory relationship. Further, future work 
should aim to disentangle the interrelationships between 
obesity, cardiovascular disease risk factors, and episodic 
memory function. Such work should aim to overcome the 
methodological limitations of the majority of the studies on 
this topic. Given mixed findings [93, 94], additional work 
should extend this paradigm by also considering how these 
factors influence dementia risk from Alzheimer’s disease, 
as episodic memory decline is a hallmark characteristic of 
this disease [95, 96].
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