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Abstract Muscle peroxisome proliferator-activated

receptor gamma co-activator 1 (PGC-1)a gene expression

is influenced by the Gly482Ser gene polymorphism, which

is a candidate genetic risk factor for diabetes mellitus and

obesity. This study investigated the effects of PGC-1 gene

Gly482Ser polymorphisms on alterations in glucose and

lipid metabolism induced by exercise training. A 12-week

intervention study was performed for 119 participants who

were more than 65 years of age and completed exercise

training at lactate threshold intensity. Total cholesterol and

low-density lipoprotein cholesterol were significantly

reduced in Gly/Gly but not in Gly/Ser and Ser/Ser partic-

ipants after exercise. The Gly/Gly genotype of the PGC-1

gene Gly482Ser polymorphism influences the effects of

moderate-intensity exercise training on low-density

lipoprotein cholesterol and total cholesterol concentrations

in older people.

Keywords Hyperlipidemia � Atherosclerosis � Diabetes
mellitus � Moderate-intensity exercise � Mitochondria

Introduction

Peroxisome proliferator-activated receptor gamma co-ac-

tivator 1 (PGC-1)a is a master regulator of energy meta-

bolism. PGC-1a acts as a strong activator of mitochondrial

biogenesis and oxidative phosphorylation through effects

on gene expression [1, 2], and increases oxidative meta-

bolism in muscle fibers [3, 4]. In addition, PGC-1a
increases lipid and glucose use via upregulation of glucose

transporter-4 and cluster of differentiation 36 (FAT/CD36)

[5–7]. Numerous studies have reported that PGC-1a
expression increases in both rodent and human skeletal

muscle following a single bout of exercise as well as with

longer-term exercise training [8–11].

Skeletal muscle is the predominant organ of energy

metabolism, not only during exercise but also under resting

conditions. Skeletal muscle mass accounts for approxi-

mately 40 % of body mass [12], and the basal metabolic

rate correlates with muscle mass [12]. More than half of the

total body glycogen is stored in skeletal muscle [13–15].

Muscle mitochondrial content, enzyme activity, and

expression of related genes and proteins have all been

observed to decrease with obesity and type 2 diabetes

[16–19]. These results suggest that muscle mitochondria

influence systemic energy metabolism, and that an increase

in muscle mitochondrial content and/or function is impor-

tant for the prevention of obesity, diabetes, and hyperlipi-

demia. Therefore, PGC-1a plays an important role in the

prevention of chronic diseases [20].

Moderate-intensity exercise training improves glucose

[21] and lipid metabolism [22, 23] as well as aerobic

capacity [24]. In a previous study, we demonstrated that the

lactate threshold (LT) intensity is a crucial determinant of

PGC-1a gene expression in human skeletal muscle [11].

Exercise-induced PGC-1a can act as a key regulator of
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systemic metabolic adaptation [20, 25]. Like many other

genes, PGC-1a gene expression is affected by genetic

polymorphisms. The PGC-1 gene is located on chromo-

some 4 (4p15.1), and the genetic variation at position 1444

in exon 8 (rs8192678) results in a Gly482Ser substitution

on the gene that influences PGC-1a and PGC-1b gene

expression levels in human skeletal muscle in elderly

people. Expression levels of these genes are higher in older

people with the Gly/Gly genotype than in those with the

Gly/Ser or Ser/Ser genotypes [26]. Gly482Ser has been

reported as not only a candidate gene polymorphism for

type 2 diabetes prevalence [27–30] but also for nonalco-

holic fatty liver disease [31, 32] and obesity [33, 34]. PGC-

1a can increase type-I skeletal muscle fibers [3, 4], and the

Gly482Ser polymorphism of the gene influences exercise-

induced skeletal muscle fiber-type transition [35]. A higher

composition of type-I skeletal muscle fibers is favorable for

the prevention of non-communicable diseases [36]. These

findings suggest that the Gly482Ser polymorphism influ-

ences metabolic adaptation to exercise training, particu-

larly changes in glucose and lipid metabolism, through

regulation of PGC-1a and PGC-1b in skeletal muscle.

This study investigated whether Gly482Ser polymor-

phism in the PGC-1 gene influences the adaptation of

glucose and lipid metabolism to exercise training.

Methods

Participants

Three hundred and twenty-eight Japanese people (112 men

and 216 women) over 65 years of age were recruited to

participate in the study. All participants were required to

pass a medical check-up to ensure that they were of suf-

ficient health to participate [24, 37]. The effects of exercise

training among different genotypes were compared in

participants who fulfilled inclusion criteria and were

accepted into the intervention part of the study. Inclusion

criteria for the intervention study were: (1) took part in the

12-week exercise training program; (2) performed exercise

tests pre- and post-intervention; (3) recorded in full their at-

home training in a logbook; and (4) provided a blood

sample pre- and post-intervention. Of the 328 potential

participants, 119 (49 men and 70 women) were included in

the study.

Fifty-four of the study participants received no medi-

cation during the study, and the remaining 65 took medi-

cation for hypertension (n = 42), hyperlipidemia (n = 22),

gastrointestinal disorders and constipation (n = 18), dia-

betes mellitus (n = 6), and other maladies (n = 47)

including allergy, inflammation, difficulty sleeping, and

osteoporosis. The prevalence of each disorder requiring

medication was compared with the genotype distribution in

all 119 participants, and no significant between-genotype

differences were detected (Table 1; Chi square test). No

participant changed his or her medication status during the

intervention.

Genotyping

Genomic DNA was obtained from ethylene-diaminete-

traacetic acid–anticoagulated white blood cells using a

blood DNA purification kit (GE Healthcare, Little Chal-

font, UK). The PGC-1 gene Gly482Ser polymorphism of

each individual was determined based on polymerase chain

reaction (PCR) restriction fragment length polymorphism

analysis, as previously described [38]. PCR products were

run on a 3 % agarose gel containing ethidium bromide after

digestion by MSP I (New England Biolab, Ispwich, MA,

USA) for at least 12 h at 37 �C and were visualized under

ultraviolet light.

Assessment of LT

Participants performed a sub-maximal, graded, bench-

stepping exercise test using a 20-cm-high bench-stepping

platform (StepWell; Combi, Tokyo, Japan) to assess their

LT intensity. During the test, participants exercised for a

total of 4 min per stage with a 2 min rest between each

stage. The initial workload was 40 steps min-1, and the

workload was increased by 20 steps min-1 for each 4-min

stage. The bench-stepping exercise test was concluded

when one of two criteria were met: (1) a rating of perceived

exertion above 15; or (2) a blood lactic acid concentration

above 2 mM/L. Heart rate was obtained over the 30 s

immediately prior to the end of each stage using a

portable heart rate monitor (Polar Accurex Plus; Polar,

Kempele, Finland). For measurement of lactic acid, a blood

sample was obtained from the earlobe immediately after

each stage using a portable blood lactate measuring device

(Lactate Pro; Arkray, Kyoto, Japan). The LT was calcu-

lated as previously described [39] and metabolic equiva-

lents at LT intensity were determined. All investigators

performed their testing regimen while blind to the

Gly482Ser polymorphism status of the participants.

Exercise training

All participants in the intervention study performed bench-

stepping exercise training at LT intensity for 12 weeks, as

previously described [24, 37]. Participants were instructed

to exercise for at least 140 min per week every week. They

performed the exercise training at their home and were

observed for at least 20 min every week. After 6 weeks of

training, participants performed an exercise test and their
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LT was evaluated to readjust their training intensity. They

then exercised at the revised intensity for the next 6 weeks.

The amount of exercise, including time spent exercising,

was noted daily in their exercise training log.

Blood analysis

Blood samples were obtained from the antecubital vein.

Sampling was carried out between 0800 and 1100 hours

after at least a 12-h fast. Blood was centrifuged and plasma

and serum were harvested immediately after collection.

Whole blood was stored at 4 �C and plasma and serum

were stored at -80 �C until analysis. Fasting glucose (FG),

glycated hemoglobin (HbA1c), immune-reactive insulin

(IRI), triglycerides (TG), total cholesterol (TC), and high-

density lipoprotein cholesterol (HDL-C) were measured

using commercially available assays (SRL, Tokyo, Japan).

For assessment of insulin resistance, the homeostatic model

assessment insulin resistance (HOMA-IR) was used:

HOMA-IR = fasting IRI (mU)/fasting plasma glucose

(mg/dL)/405). For sensitivity, the quantitative insulin sen-

sitivity check index (QUICKI) was used: QUICKI = 1/

(log[fasting IRI (mU)] ? log[fasting plasma glucose (mg/

dL)]) [40]. IRI and HbA1c were measured in 102 and 118

of the 119 participants, respectively, because we could not

take a sufficient blood volume, or we had to exclude

because of hemolysis in specimens. Low-density lipopro-

tein cholesterol (LDL-C) was calculated using Friede-

wald’s formula [41].

Statistical analysis

The statistical software program PASW Statistics 18 (SAS

Institute, Cary, NC, USA)was used for all statistical analyses.

One-way analysis of variance (ANOVA)was used to compare

baseline age, training time, height, weight, and body mass

index (BMI) among genotypes. LT was adjusted by age and

was then compared using analysis of covariance (ANCOVA)

with post hoc Bonferroni testing. Two-factor repeated-mea-

sures ANOVA was used to determine the effect of genotype

on changes in LT, body mass, and glucose and lipid profiles.

Where there was an interaction between genotype and time,

changes in variables were compared using ANCOVA with

post hoc Bonferroni testing adjusted for age, gender, training

time (min week-1), LT, and baseline values. The significance

of differences in responses to training was assessed using

Student’s paired t test to compare values at 0 and 12 weeks.

Blood values were used after log-transformation, and the

equality of variance between polymorphism groups was

confirmed using Levene’s test. In all instances, a

P value\0.05 was considered to be statistically significant.

Results

Participant characteristics and distribution

of the gene polymorphism

Participant characteristics are shown in Table 2. Distribu-

tions of the Gly482Ser polymorphism were 28.6, 47.1, and

24.4 % for Gly/Gly, Gly/Ser, and Ser/Ser, respectively.

Table 1 Conditions requiring

medication and PGC-1 gene

Gly482Ser polymorphisms

Medications (n) Gly/Gly (n = 34) Gly/Ser (n = 56) Ser/Ser (n = 29) v2 p value

No medications (54) 13 28 13 0.01 0.99

(0.24) (0.52) (0.24)

On medication (65) 21 28 16 0.01 1.00

(0.32) (0.43) (0.25)

Hypertension (42) 12 18 12 0.01 0.99

(0.29) (0.43) (0.29)

Hyperlipidemia (22) 8 8 6 0.05 0.97

(0.36) (0.36) (0.27)

Gastrointestinal disorders

and constipation (18)

7 4 7 0.36 0.84

(0.39) (0.22) (0.39)

Diabetes mellitus (6) 1 3 2 0.11 0.95

(0.17) (0.50) (0.33)

Others (47) 15 17 15 0.05 0.97

(0.32) (0.36) (0.32)

The upper number is the number of participants in each category, and the lower number is the ratio of the

number of participants with that polymorphism divided by the total number of participants with each

condition. Prevalence was compared with genotype distribution in all 119 participants using the Chi square

test
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The distribution of the Gly482Ser polymorphism was in

Hardy–Weinberg equilibrium. Gender, age, height, body

mass, and BMI did not significantly differ among geno-

types. Baseline values for FG, HbA1c, IRI, HOMA-IR,

QUICKI, TG, TC, HDL-C, and LDL-C were not signifi-

cantly different among genotypes. The Gly/Gly and Gly/

Ser genotypes had a higher LT intensity at baseline

(Table 2). Training times obtained from training logs did

not significantly differ among the genotypes.

Exercise training effects and gene polymorphism

When all genotype groups were combined, body mass,

BMI, and FG were lower, and LT intensity was higher,

after 12 weeks of exercise compared with baseline.

Although there were no differences in LDL-C and TC

concentrations before and after exercise in combined

genotypes (P = 0.808 and P = 0.566, respectively; paired

t test), an interaction between genotype and time was found

for LDL-C and TC (F = 3.981 and P = 0.021, F = 3.246

and P = 0.042, respectively; two-factor repeated-measures

ANOVA). Only participants with the Gly/Gly genotype

showed a significant reduction (Table 2). When changes in

parameters over the 12-week intervention period were

compared using ANCOVA, LDL-C concentrations in par-

ticipants with the Gly/Gly genotype significantly differed

from Gly/Ser and Ser/Ser (F = 4.956 and P = 0.009)

participants (Fig. 1). TC concentrations in participants with

Table 2 Characteristics, body

mass, aerobic capacity, and

glucose and lipid profiles before

and after exercise training

(M/F) Gly/Gly

n = 34

(16/18)

Gly/Ser

n = 56

(23/33)

Ser/Ser

n = 29

(10/19)

All participants

n = 119

(49/70)

Age (years) 0w 70 ± 6 71 ± 7 73 ± 6 71 ± 6

Height (cm) 0w 156.0 ± 8.4 155.8 ± 7.2 153.2 ± 7.6 155.2 ± 7.7

Training time (min/week) 145 ± 54 157 ± 57 165 ± 59 156 ± 57

Body mass (kg) 0w 58.9 ± 10.1 57.8 ± 10.4 55.2 ± 8.2 57.5 ± 9.8

12w 58.1 ± 9.6* 57.2 ± 10.3* 54.7 ± 8.0� 56.9 ± 9.6#

BMI (kg/m2) 0w 24.1 ± 2.5 23.8 ± 3.8 23.5 ± 2.8 23.8 ± 3.3

12w 23.7 ± 2.4* 23.6 ± 3.9* 23.3 ± 2.7 23.5 ± 3.2#

LT (METs) 0w 4.4 ± 0.9$ 4.5 ± 0.8$ 3.8 ± 1.0 4.3 ± 0.9

12w 5.1 ± 1.0* 5.4 ± 1.0* 5.0 ± 0.9* 5.2 ± 1.0#

FG (mg/dl) 0w 104 ± 14 103 ± 19 101 ± 20 103 ± 18

12w 101 ± 16* 100 ± 16* 98 ± 19* 100 ± 17#

HbA1c (%) 0w 5.6 ± 0.6 5.6 ± 0.9 5.8 ± 0.9 5.8 ± 0.8

12w 5.6 ± 0.5 5.7 ± 0.7 5.8 ± 0.6 5.7 ± 0.6

IRI (lU/ml) 0w 7.5 ± 4.5 7.6 ± 7.6 8.0 ± 7.8 7.6 ± 6.8

12w 6.5 ± 3.6 7.6 ± 4.9 7.5 ± 7.1 7.3 ± 5.1

HOMA-IR 0w 1.9 ± 1.1 2.0 ± 2.2 1.7 ± 1.4 1.9 ± 1.8

12w 1.6 ± 0.9 2.0 ± 1.4 1.8 ± 1.6 1.8 ± 1.3

QUICKI 0w 0.359 ± 0.037 0.370 ± 0.045 0.369 ± 0.039 0.367 ± 0.042

12w 0.365 ± 0.029 0.363 ± 0.042 0.370 ± 0.043 0.365 ± 0.039

TG (mg/dL) 0w 119 ± 88 99 ± 43 113 ± 53 108 ± 62

12w 127 ± 83 104 ± 43 111 ± 42 112 ± 58

TC (mg/dL) 0w 212 ± 33 214 ± 32 205 ± 24 211 ± 31

12w 205 ± 34* 217 ± 33 212 ± 30 212 ± 33

HDL-C (mg/dL) 0w 58 ± 12 63 ± 15 59 ± 15 60 ± 14

12w 58 ± 15 63 ± 16 61 ± 15 61 ± 15

LDL-C (mg/dL) 0w 130 ± 31 132 ± 30 124 ± 22 129 ± 28

12w 122 ± 27* 134 ± 32 128 ± 29 129 ± 30

Values are mean ± SD

* P\ 0.05 vs. week 0 within genotype
� P = 0.068 vs. week 0 within genotype
# P\ 0.05 vs. week 0 within total group
$ P\ 0.05 vs. week 0 for Ser/Ser genotype
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the Gly/Gly genotype also significantly differed from Gly/

Ser and Ser/Ser (F = 3.850 and P = 0.024) participants

(Fig. 2).

Discussion

This study investigated whether the Gly482Ser polymor-

phism of the PGC-1 gene influenced the effects of exercise

on systemic glucose and lipid metabolism. We found, for

the first time to the best of the authors’ knowledge, that this

gene polymorphism modulated the influence of exercise on

LDL-C and TC concentrations in this population of older

Japanese people.

Gly482Ser polymorphism of the PGC-1 gene is sus-

pected to be a genetic risk factor for diabetes [27–30].

PGC-1a strongly stimulates mitochondrial biogenesis and

increases mitochondrial function [1, 2]. The expression of

genes associated with oxidative phosphorylation is regu-

lated by PGC-1, and is lower in diabetic patients than in

non-diabetics [17–19]. An increase in PGC-1 expression

could be a crucial factor for improvement of glucose

metabolism.

We hypothesized that this gene polymorphism influ-

ences the improvements in insulin resistance and sensitiv-

ity seen with exercise training. However, our results do not

indicate that this is the case. In this study, participants were

older patients without diabetes mellitus. The treatment

guide for diabetes edited by the Japan Diabetes Society

[42] defines diagnostic criteria for diabetes mellitus and

insulin resistance as: FG C126 mg/dL, HbA1c C6.5 %,

and HOMA-IR C2.5. Baseline values for these parameters

are shown in Table 2. In the current study, only 9, 7, and 21

of the 119 participants were over the diagnostic levels for

FG, HbA1c, and HOMA-IR, respectively. If diabetic

patients had been recruited, these associations would have

been very different.

Moderate-intensity exercise training helps in the pre-

vention and treatment of non-communicable diseases.

However, previous exercise training studies carried out at

LT intensity have not consistently shown the LDL-C-

lowering effect of moderate exercise that we observed

[43–45]. Furthermore, Durstine et al. [46] reported in their

review that just 25 % of publications reported that exercise

training had a lowering effect on TC and LDL-C

p = 0.036

p = 0.015

Gly/Gly
(n = 34)

Gly/Ser
(n = 56)

Ser/Ser
(n = 29)

Fig. 1 Comparison of changes in plasma low-density lipoprotein

cholesterol (LDL-C) concentrations after 12 weeks of exercise

training at lactate threshold (LT) intensity. Log-transformed values

were used for the statistical analysis. Changes in LDL-C concentra-

tions after 12 weeks (DLDL-C) of exercise training at LT intensity

were adjusted for age, gender, training time (min week-1), and

baseline values and were compared using analysis of covariance

(ANCOVA) with Bonferroni post hoc testing. The change in LDL-C in

participants with the Gly/Gly genotype significantly differed from

changes in Gly/Ser and Ser/Ser (F = 4.956 and P = 0.009) partic-

ipants. Post-exercise training LDL-C concentrations were signifi-

cantly lower in participants with the Gly/Gly genotype than in those

with the Gly/Ser and Ser/Ser genotypes. Values are mean ± SD

p = 0.071

p = 0.044

Gly/Gly
(n = 34)

Gly/Ser
(n = 56)

Ser/Ser
(n = 29)

Fig. 2 Comparison of changes in plasma total cholesterol (TC)

concentrations after 12 weeks of exercise training at lactate threshold

(LT) intensity. Log-transformed values were used for the statistical

analysis. Changes in TC concentrations after 12 weeks (DTC) of

exercise training at LT intensity were adjusted for age, gender,

training time (min week-1), and baseline values and were compared

using analysis of covariance (ANCOVA) with Bonferroni post hoc

testing. The change in TC in participants with the Gly/Gly genotype

significantly differed from changes in Gly/Ser and Ser/Ser (F = 3.850

and P = 0.024) participants. Values are mean ± SD
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concentrations. Other meta-analyses [47] have also con-

cluded that LDL-C concentrations are unchanged by

exercise training. When all genotype groups in the current

study were combined, LDL-C concentrations were not

significantly different between before and after exercise

training (Table 2). This result aligns with those of previous

studies; however, we found that the change in LDL-C seen

with exercise at LT intensity differed among the different

PGC-1 gene Gly482Ser polymorphism genotypes. The

reduction in TC concentration was higher in participants

with the Gly/Gly genotype than in Ser/Ser participants.

Although not statistically significant, it also tended to be

higher than in those with the Gly/Ser genotype (P = 0.064;

Bonferroni test). Both LDL-C (P = 0.002) and TC con-

centrations (P = 0.049) were reduced after exercise train-

ing only in participants with the Gly/Gly genotype, and

changes in LDL-C and TC concentrations significantly

correlated (r2 = 0.763, 0.877, and 0.826 for Gly/Gly, Gly/

Ser, and Ser/Ser genotypes, respectively; all P\ 0.01).

These findings suggest that the Gly482Ser polymorphism

may account for the previously observed inconsistency in

the effects of exercise on LDL-C and TC concentrations.

Although further studies are required, it is suggested that

the Gly482Ser polymorphism may be useful for predicting

the effect of exercise intervention aimed at lowering LDL-

C and TC concentrations.

The mechanism by which exercise-induced changes in

LDL-C and TC concentrations are affected by the

Gly482Ser polymorphism is unclear; however, the LDL

receptor (LDLR) may play a role in this process. The

LDLR is systemically expressed in the human body,

including in the liver and skeletal muscle [48]. Cells take

up LDL-C via the LDLR, and LDL-C then degrades to

cholesterol in the lysosome. In the liver, cholesterol is used

for bile acid biogenesis. Part of the bile acid produced is

excreted with the feces, and this reduces LDL-C concen-

trations. Bile acid biogenesis is regulated by the rate lim-

iting enzyme cholesterol 7-a-hydroxylase in the liver, and

PGC-1a activates this enzyme [49]. Bile acid not only

facilitates cholesterol excretion but also enhances LDLR

gene expression [50]. It has not been clearly proven that

PGC-1a gene expression levels in the liver differ among

individuals with different Gly482Ser polymorphisms;

however, previous studies have demonstrated that the Ser/

Ser genotype is a risk factor for nonalcoholic fatty liver

disease [31, 32], obesity [33, 34], and reduced clearance of

non-esterified fatty acids [51]. These results suggest that

the Gly482Ser polymorphism could influence PGC-1a
gene expression in not only skeletal muscle but also in the

liver and other organs.

The Gly482Ser polymorphism presents in the coding

region of PGC-1 and changes the amino acid sequence.

Although the mechanisms regulating this change are

unclear, the Gly/Gly genotype is reported to show higher

PGC-1a and PGC-1b gene expression in human skeletal

muscle in the elderly [26]. If the gene polymorphism alone

determines PGC-1a gene expression, the difference may be

also identified in young people. Therefore, other factors

that are influenced by aging may be working with the gene

polymorphism. PGC-1a gene expression is regulated by

members of the myocyte enhancer factor 2 (MEF2) family

of transcriptional factors. PGC-1 activates MEF2 to bind to

the PGC-1a promoter region [52] and regulates its own

gene expression. It is possible that the amino acid

replacement may affect the positive feedback loop and

change the PGC-1a gene expression level.

The exercise protocol used in this study did not result in

significant improvements in HDL-C and TG concentra-

tions. Exercise-induced changes in HDL-C have been

shown to depend on the amount of time spent exercising

[44]. In this study, participants exercised for 145–165 min

per week (this is consistent with an HDL-C concentration

of approximately 42–46 mg/dL [44]), and the time spent

training was not enough to increase HDL-C concentrations.

A limitation of the study was the small sample size. If

patients with hypertriglyceridemia or low HDL-C had been

recruited, then it is suggested that the observed differences

would have been more prominent.

In conclusion, the results of the study suggest that, in

general, exercise training for 12 weeks at LT intensity

(mean training time of 145–165 min week-1) had little

effect on LDL-C and TC concentrations in this population.

The Gly/Gly genotype of the PGC-1 gene Gly482Ser

polymorphism may enhance the ability of exercise to lower

LDL-C and TC concentrations in older people.
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