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Abstract This review provides a summary of the physio-

logical significance of the TRPV2 ion channel.While TRPV2

was initially characterized as a noxious heat sensor, we found

that TRPV2 can also act as a mechanosensor in embryonic

neurons or adult myenteric neurons. Here, we summarize the

newly characterized functions of TRPV2, including the

research progress that has been made toward our under-

standing of TRPV2 physiology, and discuss other recent data

pertaining to TRPV2. It is thought that TRPV2 may be an

important drug target based on its broad expression patterns

and important physiological roles. The possible associations

between diseases and TRPV2 are also discussed.

Keywords TRPV2 � Mechanical stimulus � Axon
outgrowth � Mechanosensor � Thermosensor

Introduction

Members of the transient receptor potential (TRP) super-

family are widely expressed throughout numerous tissues.

The channels are activated by various stimuli such as tem-

perature, light, chemical and physical stimuli. TRP channels

were originally identified in Drosophila photoreceptors [1],

from which the first channel was cloned [2]. The TRP chan-

nels are expressed in a range of species from yeast to humans.

Most TRP channels act as polymodal receptors. For example,

some TRP channels expressed in the nociceptive sensory

neurons of the dorsal root ganglion (DRG) generate pain [3].

Such TRP channels represent leading targets for the cure of

acute and chronic pain [3–5]. Given this importance, the

recent advances in our understanding of TRPV1 and TRPA1

have been impressive; these include the characterization of

channel structure [6, 7], identification of ligands, and modu-

lation of channels and intracellular signaling related to pain

[3]. Beyond pain sensation, TRP channels have other impor-

tant functions, or are involved in pathological processes such

as diabetes, cancer and other genetic disorders [8]. TRP

channels have a common membrane structure with six trans-

membrane segments (S1–S6) containing a TRP domain and a

loopbetweenS5 andS6,whichdefines the pore and selectivity

filter (Fig. 1a) [9]. Similar to other voltage-gated potassium

channels, TRP tetramers form the functional non-selective

cation channels (Fig. 1b). The N- and C-terminal cytoplasmic

domains are important for channel gating [9]. TRP channels

are classified by their amino acid sequence identity and sim-

ilarity, but not by their functional roles. The mammalian TRP

channel superfamily is classified into six subfamilies with

high sequence similarity (Fig. 1c). The six subfamilies [10]

are TRPV (vanilloid), TRPA (ANKTM1), TRPC (canonical),

TRPM (melastatin), TRPML (mucolipin), and TRPP (poly-

cystin). A seventh family, TRPN (NompC) is present in

invertebrates and some vertebrates, although this subfamily is

absent in mammals [9]. In this review, we focus on the unique

characteristics of TRPV2 as a mechanosensor, thermosensor

and lipid sensor.

TRPV2 ion channel

The first identified member of the TRPV family was

osmotic avoidance abnormal family member 9 (OSM-9)

from Caenorhabditis elegans (C. elegans) [9, 11]. This
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protein was shown to have specific functions for

mechanosensation, olfaction and olfactory adaptation. C.

elegans has five TRPV channels including OSM-9. In

Drosophila, the TRPV channels Nanchung and Inactive are

involved in sensory perception [12]. In 1997, TRPV1 was

the first TRPV family member identified in mammals using

a Ca2?-imaging-based expression cloning method [13].

TRPV1 was shown to be highly expressed in sensory

neurons, and pungent compounds such as capsaicin could

evoke TRPV1 activation [13, 14]. Based on these studies, it

was hypothesized that TRPV1 was related to pain sensation

and, indeed, TRPV1KO mice showed impaired pain sen-

sation [15]. TRPV1 is highly expressed in sensory neurons

with small diameters which give rise to unmyelinated

C-fibers. Given the burning qualities of capsaicin-induced

pain, it suggested that capsaicin and heat may evoke

painful responses through a common molecular mecha-

nism. As hypothesized, TRPV1 can be activated by heat at

[43 �C, a temperature threshold that is consistent with that

of heat-evoked pain [13].

Another molecule with 49 % shared identity to TRPV1

was also isolated and later named TRPV2 [3, 16, 17]. In

contrast to TRPV1, TRPV2 is not activated by vanilloids

such as capsaicin, protons or thermal stimuli near 43 �C;
this is likely attributed to the structure of the ankyrin repeat

domains of TRPV2 which are clearly different from those

of TRPV1 [18]. However, TRPV2 can be activated by

higher temperatures with a threshold of [52 �C. TRPV2
currents showed similar properties to TRPV1 such as an

outwardly rectifying I–V relationship and relatively high

Ca2? permeability (PCa/PNa = 2.9). While translocation of

TRPV2 from the cytosol to the plasma membrane by IGF-1

stimulation has been reported [17], this phenomenon is

under debate [19]. In contrast to the expression of TRPV1,

TRPV2 is expressed in medium- to large-diameter neurons

which give rise to myelinated Ad- or Ab-fibers in the DRG

[16]. The temperatures at which TRPV2 is activated are

more noxious than those that activate TRPV1. This may

explain the expression of TRPV2 in myelinated fibers.

However, TRPV2KO mice did not display phenotypes

which would suggest altered heat sensation [20]. Therefore,

further research is required to determine the importance of

TRPV2 in the detection of noxious heat stimuli using

TRPV2KO mice. TRPV2 expression was not only found in

sensory neurons but also in motor neurons and in many

non-neuronal tissues [9, 21–23]. These observations indi-

cate that TRPV2 has numerous physiological roles in

addition to nociception. For example, we demonstrated that

TRPV2 activation regulates the formation of neural circuits

in a membrane stretch-dependent manner [21].

Fig. 1 The overview of TRP channels. a The TRP channels have six

transmembrane topology in their monomer molecules. The pore

region is located between S5 and S6. b Tetrameric channels form the

functional TRP channels. c The classification of TRP channels

modified from another review [10]
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Regulation of axon outgrowth by TRPV2
mechanosensitivity

We have previously demonstrated that TRPV2 expression

begins at embryonic day 10 (E10) in mouse DRG sensory

and motor neurons [21]. Given that mouse embryos are

maintained in a constant temperature environment, we

hypothesized that TRPV2 has other functions during the

developmental process. Therefore, we examined embryonic

stage-specific events which might involve TRPV2, such as

cell proliferation, apoptosis, cell migration, and axon out-

growth. While TRPV2 was not found to be related to cell

proliferation, apoptosis or cell migration, we did identify a

role for TRPV2 in the enhancement of axon outgrowth in

developing neurons [21]. We further sought to identify the

activators of TRPV2within developing neurons. Since it was

suggested that TRPV2 can be activated bymembrane stretch

in cardiomyocytes [24], we hypothesized that membrane

stretch resulting from axon outgrowth might endogenously

activate TRPV2. To examine this hypothesis, we prepared

HEK293T cells expressing mouse TRPV2 and applied arti-

ficial membrane stretch (?3 %) to the cells using a pulse-

motor-driven stretch machine called STREX [25] during

Ca2?-imaging experiments. The membrane stretch-evoked

increase in intracellular Ca2? ([Ca2?]i) was observed only in

transfected (TRPV2-expressing) cells, indicating that

TRPV2 can be activated by weak membrane stretch. Con-

sistent with the HEK293T results, most embryonic DRG and

motor neurons showed a stretch-evoked [Ca2?]i increase,

whereas dominant-negative TRPV2 significantly inhibited

this increase [21]. Thus, we demonstrated that developing

neurons can sense membrane stretch via TRPV2, and the

subsequent activation enhances axon outgrowth (Fig. 2).

Moreover, we showed that Ca2? influx through TRPV2 is

necessary for enhancing axon outgrowth. We also demon-

strated regulation of axon outgrowth byTRPV2 in vivo using

chick embryos [21]. More recently, it has been reported that

phosphorylation of TRPV2 by NGF-ERK signaling resulted

in the activation of intracellular, but not membranous,

TRPV2 as well as enhanced axon outgrowth [26].

Mechanosensitivity of TRPV2 regulates intestinal
motility

We also analyzed the expression of TRPV2 in the mouse

intestine [22]. TRPV2-immunoreactive (IR) cells were co-

stainedwith the neuronalmarker PGP9.5; however, TRPV2-

IRwas not observed in GFAP (glial fibrillary acidic protein)-

IR enteroglia or KIT-IR ICCs (interstitial cells of Cajal).

These results indicated that TRPV2 was expressed in neu-

rons, but not in enteroglia or ICCs. About half of the PGP9.5-

IR sensory neurons were TRPV2-positive. Furthermore,

most of the nNOS (neuronal nitric oxide synthase)-IR neu-

rons were TRPV2 positive. It has been reported that nNOS-

IR neurons are inhibitory circular muscle motor neurons,

inhibitory longitudinal muscle motor neurons and descend-

ing interneurons. In the inhibitorymotor neurons, even slight

pressure could evoke TRPV2-mediated current responses,

suggesting that enteric neurons expressing TRPV2 might be

responsive to weak intestinal distortion. These results

strongly suggested that intestinal TRPV2 [22] is also

mechanosensitive, similar to its role in the DRG and spinal

cord [21]. We examined nitric oxide (NO) production in

specimens from the small intestine that were stimulated by a

TRPV2 agonist using an enzymatic Griess reaction, and

confirmed that TRPV2 activation induces NO release from

inhibitory motor neurons which relaxes intestinal tone

(Fig. 3) [22]. Furthermore, we also revealed that TRPV2

contributes to transit within the gastrointestinal tract in vivo.

Thus, TRPV2 might be a good molecular target for devel-

oping a cure for irritable bowel syndrome.

TRPV2 in glial and immune cells

In addition to neurons, glial cells are also important for the

maintenance of brain function. Astrocytes provide meta-

bolic support and eliminate waste products, such as neu-

rotransmitters, from the extracellular synaptic space [27].

These glia also regulate blood flow, depending on neuronal

activity [28, 29]. Astrocytes are also essential for bidirec-

tional communication with neurons, and thus can modulate

neuronal activity [30–33]. We have shown that astrocytes

in the brain express functional TRPV2 [23], and astrocytic

TRPV2 is activated by lysophosphatidylcholine (LPC), a

known endogenous lipid ligand of TRPV2. In a separate

study we demonstrated that another thermo-TRP member,

TRPV4, was only expressed in a specific subtype of

astrocytes [32, 34]. This astrocytic TRPV4 responded to

Fig. 2 TRPV2 activation by membrane stretch promotes axon

outgrowth in developing sensory and motor neurons. TRPV2 is

expressed in both axon shafts and growth cones as shown by red

images. The TRPV2 is activated by membrane stretch derived from

endogenous axon outgrowth shown by black arrows. The activation

of TRPV2 caused high Ca2? influx and further axon outgrowth
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arachidonic acid, and modulated neuronal excitability

through the release of gliotransmitters [32]. During the

generation of arachidonic acid at postsynaptic sites, LPC is

simultaneously generated, which could affect the excitation

of astrocytes through TRPV2 activation. Therefore, astro-

cytic TRPV2 might be activated in response to increased

lipid metabolism at synaptic sites.

Microglial cells also express TRPV2 [35]. Microglia are

present throughout the central nervous system (CNS), and

are activated by numerous pathogens. The characteristics of

microglial cells are very similar to those of macrophages.

Using TRPV2KO mice, it was clearly shown that TRPV2 is

involved in the phagocytosis ofmacrophages [36]. It has also

been reported that an inflammatory peptide, fMetLeuPhe,

could induce membrane-translocation of TRPV2, and

TRPV2 is expressed in immune-related tissues such as the

spleen [9, 36, 37]. TRPV2 expression is also found in mast

cells and lymphocytes [38–40]. One study of mast cells

revealed that physical stimuli which lead to cellular

degranulation are associated with TRPV2 activation and

Ca2? entry [39]. Thus, these studies highlight the importance

of TRPV2 function in numerous immune cell types.

Circulatory function of TRPV2

TRPV2 is also expressed in endothelial cells and the

smooth muscle of arteries and veins [41, 42]. It has been

reported that hypotonic swelling of aortic myocytes

induced Ca2? influx through TRPV2 activation [43]. Fur-

thermore, it was recently reported that TRPV2-deficient

neonatal cardiomyocytes did not form intercalated discs

and showed an extracellular Ca2?-dependent increase in

intracellular Ca2? and insulin-like growth factor (IGF-1)

secretion in response to stretch stimulation [44]. Moreover,

the elimination of TRPV2 from the mouse heart resulted in

severe cardiac dysfunction through myocardial conduction

defects [44]. Hence, TRPV2 is a critical determinant in the

maintenance of cardiac structure and function. Several

lines of evidence indicate that TRPV2 acts as a

mechanosensor within circulatory organs [43]. However,

the mechanisms involved in TRPV2 channel opening by

membrane stretch or hypotonic swelling have not been

identified. Ankyrin repeats, which are present at the

N-terminal region of TRPV2, are thought to be important

for mechanosensory function based on the loss of TRPV4

heat-sensitivity by the deletion of its ankyrin repeats [45].

Ankyrin repeats interact with several cytoskeletal proteins

[18]; therefore, the interaction between TRPV2 and the

cytoskeleton may be necessary for mechanosensory func-

tion. Additionally, it is also possible that membrane stretch

or cellular swelling produces an endogenous lipid ligand

that activates TRPV2. As described above, LPC is gener-

ated during arachidonic acid formation and, when mem-

brane stretch occurs, it induces the generation of

arachidonic acid. Therefore, it is highly possible that LPC

affects TRPV2 activation [23].

TRPV2 in the pancreas

TRPV2 is highly expressed in MIN6 cells, a b-type
insulinoma cell line. Under unstimulated conditions,

TRPV2 is mainly localized within the cytoplasm. In con-

trast, application of exogenous insulin induces the

translocation of TRPV2 from the cytoplasm to the plasma

membrane [46]. This translocation evokes Ca2? entry

through TRPV2, resulting in insulin secretion. TRPV2 is

also expressed in mouse b-cells prepared from pancreatic

islets, but not in a-cells [46]. In addition to insulin, glucose

can also induce the translocation of TRPV2 from the

cytoplasm to the plasma membrane, and knockdown of

TRPV2 reduces insulin secretion. In b-cells, the expression
level of TRPV2 in the plasma membrane is also affected by

a-Klotho, a known regulator of calcium homeostasis [47].

It was shown that a-Klotho regulates the translocation of

TRPV2 from the cytoplasm to the plasma membrane in b-
cells, and acts upstream of insulin secretion [48]. These

results indicate that pancreatic TRPV2 is an important key

regulator of glucose homeostasis.

Fig. 3 TRPV2 activation by peristalsis relaxes intestinal muscle tone.

The inhibitory motor neurons (yellow) express TRPV2 in the intestine

(beige) as shown by red images. The TRPV2 is activated by

membrane stretch derived from peristalsis shown by black arrows.

The activation of TRPV2 caused high Ca2? influx and NO release.

The NO release relaxes muscle tone, and contributes to transit within

the gastrointestinal tract
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Conclusion

In this review, we focused on the physiological importance

of TRPV2 ion channels as mechanosensors, thermosensors

and lipid sensors. TRPV2 is broadly expressed in numerous

organ systems (Table 1) where it displays tissue-specific

physiological functions. For example, TRPV2 is involved

in axon outgrowth, consistent with its cellular localization

in the axon shafts and growth cones in embryonic DRG

sensory and spinal motor neurons. We have previously

demonstrated that TRPV2 has two distinct roles, depending

on developmental stage: during embryonic development it

regulates axon outgrowth as a mechanosensor [21] and in

adults it regulates thermosensation and/or nociception

where it functions as a heat sensor [16]. This was the first

characterization of an embryonic stage-specific physio-

logical role for a thermo-TRP channel. We also reported

that TRPV2 functions as a mechanosensor in the intestine

where it contributes to transit within the gastrointestinal

tract [22]. Combined, these results demonstrate that the

same channel can have many distinct functions depending

on its location. As described above, TRPV2 can also act as

a lipid sensor, therefore further identification of novel

physiological roles for TRPV2 will be dependent on its

pattern of expression. Recently, many reports have indi-

cated that TRPV2 is involved in the disease progression of

bladder or prostate cancer [49, 50]. It was found that there

was a significant relationship between the overexpression

of TRP genes, including TRPV2, and the survival of

patients with glioblastoma [51]. These results demonstrate

that TRP channels contribute to the progression and sur-

vival of glioblastoma patients. Thus, future studies into the

physiological function of TRPV2 may reveal new mecha-

nisms behind several diseases.
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