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Abstract Fertilization is a highly coordinated process

whereby sperm interact with the egg-coating envelope

(called the zona pellucida, ZP) in a taxon-restricted man-

ner, Fertilization triggers the resumption of the cell cycle of

the egg, ultimately leading to generation of a new organism

that contains hereditary information of the parents. The

complete sperm-ZP interaction comprises sperm recogni-

tion of the ZP, the acrosome reaction, penetration of the

ZP, and fusion with the egg. Recent evidence suggests that

these processes involve oligosaccharides associated with a

ZP constituent (termed ZP protein), the polypeptide back-

bone of a ZP protein, and/or the proper three-dimensional

filamentous structure of the ZP. However, a detailed

description of the molecular mechanisms involved in

sperm-ZP interaction remains elusive. Recently, I found

that dicalcin, a novel ZP protein-associated protein, sup-

presses fertilization through its association with gp41, the

frog counterpart of the mammalian ZPC protein. This

review focuses on molecular aspects of sperm-ZP interac-

tion and describes the fertilization-suppressive function of

dicalcin and associated molecular mechanisms. The

amount of dicalcin in the ZP significantly correlates with

alteration of the lectin-staining pattern within the ZP and

the orientation pattern of ZP filaments, which may assist in

elucidating the complex molecular mechanisms that

underlie sperm-ZP interaction.
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Abbreviations

ZP Zona pellucida

VE Vitelline envelope

AR Acrosome reaction

Gal/GalNAc Galactose/N-acetylgalactosamine

RCA-I Ricinus communis agglutinin I

Introduction

Oocytes are surrounded by an extracellular envelope that is

called either the zona pellucida (ZP) in mammals or the

vitelline envelope (VE) in non-mammals [1]. This extra-

cellular matrix, with a thickness of several micrometers,

plays multiple roles in zygote generation and development,

including taxon-selective interaction between gametes,

induction of the acrosome reaction (AR), polyspermy

block, and protection of the developing embryo from

physical damage [2]. The ZP contains three-dimensional

filaments formed by polymerization of ZP proteins and

other components, including hyaluronan and ZP protein-

associated proteins. ZP proteins of the egg coats comprise

three to four ZP proteins, including ZP1–4 in humans,

ZP1–3 in mice, and gp120, gp69/64, gp41, and gp37 in

Xenopus laevis. ZP proteins are mainly secreted by grow-

ing oocytes and are modified post-translationally by gly-

cosylation [3]. These ZP proteins associate with other ZP

proteins via a conserved *260-amino-acid motif called the

ZP domain, creating micrometer-long filaments, pairs of

which are interconnected to form a three-dimensional

meshwork [4]. Note that following their biochemical

identification, the name of each ZP protein has still been

used interchangeably (e.g., ZPA or ZP2 or gp64/69, ZPB or
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ZP1 or gp37, ZPC or ZP3 or gp41). Here, I refer to ZPA,

ZPB, and ZPC throughout this review, as suggested by

others [5], to prevent possible confusion. Successful fer-

tilization requires the proper sperm-ZP interaction, begin-

ning with sperm recognition of the ZP. Early biochemical

studies in mice initially proposed a model of sperm-ZP

interaction wherein sperm recognize oligosaccharides

attached to ZPC [6]. However, another biochemical study

in frogs predicted an alternative model emphasizing the

binding of sperm to oligosaccharides attached to ZPA [7].

Meanwhile, recent evidence from experiments using

genetically engineered mice supports the notion that sperm

recognize an N-terminal amino acid region of ZPA and/or

the proper three-dimensional structure of the ZP [8]. Thus,

molecular mechanisms of sperm-ZP interaction are not

consistent across different experimental approaches and

species. These various models (i.e., carbohydrate-mediated

sperm-ZP interaction and ZP structure-associated interac-

tion) could both be important mechanisms for the initiation

of fertilization. Recently, I found that dicalcin, a novel ZP

protein-associated protein present in the intact egg coat of

unfertilized mature frog eggs, suppresses fertilization

through its association with gp41, the frog counterpart of

mammalian ZPC [9]. I also discovered that dicalcin regu-

lates the oligosaccharide distribution pattern within the ZP,

as well as the orientation pattern of ZP filaments, providing

novel clues critical for a more complete understanding of

fertilization.

Fertilization overview

A detailed description of the molecular events occurring

during fertilization is beyond the scope of this review, but

they are excellently summarized elsewhere [1]. Briefly, for

example in mammals, a large number of sperm (e.g., tens

of millions in humans) is deposited in the lower female

reproductive tract upon ejaculation, but only a small pro-

portion (e.g., thousands of sperm in humans) enters the

oviduct. Subsequently, even fewer reach the ampulla

region of the oviduct during the appropriate time window

for fertilization, and only one spermatozoon ultimately

fertilizes the egg. During this behavior of sperm in the

female reproductive tract, the sperm membrane undergoes

various physiological changes, called capacitation, which

confers susceptibility to further sperm alterations (for

reviews see [10, 11]). Although many factors, including

glucose, cholesterol, bicarbonate, and intracellular Ca2?

are involved in capacitation, the precise molecular mech-

anisms underlying these processes remain to be clarified.

Once capacitated, sperm are receptive to progesterone-de-

pendent activation involving Ca2? influx through the sperm

Ca2? channel, Catsper [12]. Calcium influx leads to a

vigorous swimming pattern called hyperactivation, a

movement that confers a strong thrusting power to facili-

tate progression to egg-surrounding structures, including

the cumulus layer (the outer egg-coating structure) and the

ZP (the inner one). Following a species-restricted interac-

tion with these structures, sperm then undergo an exocy-

totic event called the AR, during which a variety of lytic

enzymes and ZP-binding proteins are released. The AR

facilitates sperm-penetration of the ZP, ultimately enabling

sperm to reach the plasma membrane of oocytes and fuse

with them, thereby initiating the resumption of the arrested

cell cycle. In the external fertilization in X. laevis, sperm

initiate their motility by osmotic shock during ejaculation

into pond water [13], move toward eggs in response to a

concentration gradient of allurin, a chemoattractant secre-

ted from the oviduct and attached onto the jelly layers, an

outer coat of the oviposited frog egg [14]. Following

penetration of the jelly layers, sperm then interact with the

ZP (specifically vitelline envelope) that has undergone the

limited processing of ZPC (gp43–gp41) by oviductin, a

serine protease secreted from the oviduct during oviduct

passage [15, 16], and subsequently undergo the AR assisted

by ARISX, an AR-inducing substance [17], penetrate the

ZP and fuse with the egg plasma membrane (for a review

see [18]).

ZP properties and altered fertility

Few reports have demonstrated a potential correlation

between ZP properties and fertility in mature unfertilized

eggs, with the exception of one immunohistochemical

examination [19]. Talevi et al. found that Maclura pomi-

fera agglutinin (MPA), a Gal/GalNAc-sensitive lectin,

reacts with the fertilization-failed human ZP in varied

patterns, as follows: (1) restricted labeling to the outer

surface of the ZP (33 % of total eggs); (2) restricted

labeling of the outer layer (non-surface) of the ZP (17 %);

(3) uniform labeling (50 %) [19]. Intriguingly, these results

suggest that the distribution of oligosaccharides within the

ZP and/or the ZP ultrastructure could be related to fertil-

ization competence of mature eggs and reduced fertility

during aging [20].

Protein chemistry of dicalcin

Isolation and distribution of dicalcin

Dicalcin was originally identified in frog (Rana cates-

beiana) olfactory cilia as an intracellularly expressed Ca2?-

binding protein [21]. Since its original identification, this

protein has also been observed in other tissues, including

the egg and the lung [22]. The previous immunohisto-

chemical study using X. laevis eggs revealed that dicalcin
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is localized uniformly within the ZP as well as in the

intracellular marginal region of the egg. These findings

suggest that dicalcin is released from the egg and retained

within the ZP via its binding to ZP constituent(s). Dicalcin

lacks an N-terminal leader sequence; therefore, the secre-

tory pathway of dicalcin could be distinct from the classic

ER-Golgi pathway. N-terminal leaderless secretion has

been observed for other proteins, including interleukin-1b
and fibroblast growth factor-2 [23].

Structure of dicalcin

Dicalcin is an S100-like Ca2?-binding protein present in

the frog ZP [9, 24]. The S100 protein family comprises

small (10–14 kDa) calcium binding proteins that regulate

various extra- and intracellular processes (for reviews see

[25, 26]). The primary structure of dicalcin consists of two

S100-like regions connected by a linker region, which

features this protein as a dimeric form of S100 calcium

binding protein. Since S100 proteins are known to function

as dimers, monomeric dicalcin could exert functions sim-

ilar to those of other S100 members. Indeed, the three-

dimensional structure of dicalcin is reasonably represented

by the folding pattern of the dimeric form of S100B [27].

Extensive biochemical analyses have revealed the Ca2?

binding mechanism of dicalcin: (1) four Ca2?-binding

motifs (called EF-hands) in the dicalcin sequence are

functional, therefore dicalcin is capable of binding to four

Ca2? per protein; (2) the first and second Ca2? binding to

the higher-affinity EF-hands induce a major conforma-

tional change accompanied by an increase in the a-helical
content, as measured using circular dichroism [28].

Target proteins of dicalcin

Dicalcin displays no enzymatic activities in and of itself,

and instead, through binding to target proteins, it regulates

various cellular events. In X. laevis eggs, dicalcin interacts

with several egg proteins, including ZPC (gp41) and ZPB

(gp37) of the ZP [9]. Binding of dicalcin to ZPC and ZPB

is mediated via interaction between the protein cores, but

not via interaction between dicalcin and oligosaccharides

attached to the ZP protein. The external Ca2? concentration

surrounding the frog egg is high, so that dicalcin is retained

by ZP proteins in the ZP, as confirmed by my previous

immunohistochemical study. Through this interaction with

ZP proteins, dicalcin plays an important role in fertilization

(see below). My recent study successfully identified the

interactive amino acid regions between dicalcin and its

target ZPC [29]. In addition to the egg, dicalcin also binds

to some ciliary proteins, including annexins and a b-
adrenergic receptor kinase-like protein [30, 31], regulating

the ciliary functions of olfactory neurons such as olfactory

signaling and/or ciliary membrane repair [32].

Function of dicalcin at fertilization

Suppressive action of dicalcin on fertilization

in X. laevis

The amount of dicalcin in the ZP exerts a substantial effect

on the fertilization rate in X. laevis: preincubation of

unfertilized eggs with a dicalcin-specific antibody increases

the fertilization rate, whereas preincubation with recombi-

nant dicalcin inhibits fertilization and sperm binding to the

ZP, as well as in vitro sperm-penetration through the ZP

protein layer [9]. It should be noted that this suppressive

action occurs in unfertilized eggs at fertilization, which

precedes the polyspermy block observed post-fertilization.

Furthermore, dicalcin treatment reduced sperm binding to

the ZP only to *77 % of the control value, whereas

treatment inhibited sperm-penetration in vitro to*50 % of

that of the control, indicating that dicalcin preferentially

affects the sperm-penetration process, rather than the initial

sperm-ZP binding. Through these actions, dicalcin inher-

ently suppresses fertilization in X. laevis [9].

Regulation of the distribution pattern

of oligosaccharides within the VE by dicalcin

Carbohydrate-dependent recognition has been shown to

play an important role in the establishment of an appro-

priate sperm-ZP interaction [33]. Indeed, changes in the

staining patterns of lectins have been observed in human

ZP of fertilization-failed oocytes [19]. Furthermore, I have

discovered that pretreatment with dicalcin increases the

in vivo reactivity of the frog ZP to the Gal/GalNAc-sen-

sitive lectin, Ricinus communis agglutinin I (RCA-I).

Quantification of RCA-I immunosignals revealed that

pretreatment with dicalcin increased the intensity of the

RCA-I signal in the outermost region of the ZP and

broadened the RCA-I reactivity within the ZP of both

hemispheres (i.e., animal and vegetal) [9]. Since dicalcin

binds to ZPC, and RCA-I solely reacts with the oligosac-

charides of ZPC, dicalcin regulates the oligosaccharide

distribution pattern within the ZP through its binding to

ZPC. Dicalcin-dependent modification of RCA-I reactivity

of the ZP is unique, as there are no reported examples of

molecules that change the interactive affinity between

proteins and carbohydrates. In future studies, it would be of

interest to determine the true biological benefit of varied

levels of exposure of oligosaccharides on ZPC in the

presence of dicalcin.
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Regulation of ZP structure by dicalcin

I have identified the interactive regions between dicalcin

and ZPC, and also demonstrated that pretreatments of

unfertilized eggs with synthetic peptides corresponding to

the interactive regions of these proteins markedly affected

the fertilization rate [29]. These synthetic peptides will

allow me to control the status of the unfertilized ZP to

establish either fertilization competence or incompetence.

For example, if unfertilized eggs were treated with a pep-

tide corresponding to the ZPC-binding region of dicalcin

(named dcp11), the action of dicalcin could be enhanced,

thereby rendering the ZP fertilization incompetent. In

contrast, if unfertilized eggs were treated with a different

peptide corresponding to the dicalcin-binding region of

ZPC (named gpp2), the action of dicalcin could be inhib-

ited (or masked), enabling the ZP status to be fertilization

competent. On the basis of this consideration, I examined

the ultrastructure of ZP filaments of both fertilization sta-

tuses by scanning electron microscopy (SEM) and trans-

mission electron microscopy (TEM). SEM observation of

unfertilized eggs revealed that each ZP filament had a

globular structure with a width of *100 nm (Fig. 1a,

control); this size was thought to be greater than its actual

size, possibly because of osmium coating of the entire

lumen [34]. Surprisingly, the VE structure following dcp11

treatment was markedly distinct from that following gpp2

treatment (Fig. 1a): dcp11-treated VE (i.e., excessive

action of dicalcin) exhibited a highly flattened structure,

whereas gpp2-treated VE (i.e., deficiency of dicalcin)

resembled a rugged structure. This marked difference

suggested that ZP exhibited a well-organized and sheet-like

structure in the presence of dcp11; conversely, a randomly

disorganized structure was observed in the presence of

gpp2. Our TEM analysis revealed that ZP filaments pre-

treated with dcp11 were arranged parallel to the egg plasma

membrane, exhibiting the appearance of a ‘‘pin-stripe’’

pattern, whereas ZP filaments treated with gpp2 were

randomly organized with many filaments arranged obli-

quely relative to the egg plasma membrane, forming a

zigzag or occasionally ‘‘herring-bone’’ pattern (Fig. 1b)

[29]. These results indicate that there is a striking differ-

ence between fertilization competent and incompetent ZP.

This ultrastructural difference likely underlies the sup-

pressive action of dicalcin on sperm-binding and sperm-

penetration processes in frogs [9] as discussed below.

Possible molecular mechanisms of dicalcin

At fertilization, sperm initially recognize and bind to the

ZP in a largely species-specific manner, and subsequently

undergo hyperactivation and the exocytotic AR, both of

which are believed to be essential for penetration through

the ZP [35]. As described above, dicalcin preferentially

affected the sperm-penetration process rather than the ini-

tial sperm-ZP binding. Electron microscopy analyses

showed that the fertilization rate was high under the ran-

dom (or disorganized) nanoscale ZP structure, suggesting

that a disorganized ZP structure could induce the AR with a

high probability. How a disorganized structure promotes

AR induction is an open question. One possible explana-

tion is that sperm is likely to be trapped by this structure,

generating shearing forces on its plasma membrane and

activating mechanosensory (MS) transduction, which

results an increase in Ca2? and consequently the occur-

rence of the AR. Although the AR is known to be induced

or enhanced by several soluble factors, including proges-

terone and hyaluronan, the potential effects of physical

stress on the AR have been poorly characterized with the

exception of one study, which showed an increased AR

induction in vitro when sperm penetrated a polycarbonate

filter having a 3-lm diameter [36]. Among several MS ion

channel families, including the mechanosensitive channel

(Msc), the transient receptor potential (TRP) channel and

the degenerin/epithelial sodium channel (DEG/ENaC) [37,

38], and certain MS channels, only TRP members are

known to be expressed in sperm. While gene deletion

studies in mice showed that polycystin-1 (a distantly

classified homolog of TRP channels) possibly reinforces a

distinct set of AR pathways, these mice are still fertile. In

the sea urchin, polycystin-1 binds to its cognate polycystin-

2 to form a functional complex that is involved in the AR;

however, the molecular mechanisms whereby these pro-

teins induce the AR remain unknown. The properties of

MS channels have been most studied in Msc of bacteria.

The MscL (mechanosensitive channel of large conduc-

tance) protein, a prototype Msc in Escherichia coli, is

activated to open within a range of *100 mmHg, equal to

*13 nN/lm2 [39]. Hyperactivated sperm are considered to

generate *45 pN at maximum, which is converted to

2.2 pN/lm2, assuming that the surface area of the acroso-

mal cap (the cylinder with a radius of 0.25 lm radius and a

height of 2 lm) is 20.4 lm2 [40]. Applying these results to

sperm, the maximum force of sperm (*2.2 pN/lm2) is

thought to be 1/2000 of that (*13 nN/lm2) necessary to

activate the MS channel, and therefore sperm hyperactivity

alone is not sufficient to open the MS channel. Notably, the

composition and viscosity of the sperm membrane are

modified during capacitation such that the stretch tension

on the membrane, but not the pressure, could vary at pas-

sage through the ZP. Interestingly, depletion of cholesterol

in mouse muscle cells uncouples the cytoskeleton from the

lipid bilayer and increases the tension to the MS channel,

allowing it to open at a lower threshold [41]. Further

characterization of the membrane tension of capacitated

sperm may provide novel insights into the stress-induced
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AR mechanism. Alternatively, a shearing force could

activate sperm membrane proteins that are not considered

to sense membrane tension, with the assistance of extra-

cellular oligosaccharides attached to the ZP meshwork,

resulting in AR induction. Indeed, recent studies in

endothelial cells have shown that G protein-coupled

receptors, such as the bradykinin B2 receptor (B2R) and a1-
adrenergic receptor (a1-AR) [42, 43], sense fluid shear

stress in the endothelial cell membrane of the coronary

artery. In these examples, the degree of cellular responses

to ligands changes in the presence of oligosaccharides of

the extracellular endothelial surface layer (ESL) [44]. The

interactions between receptor proteins and extracellular

oligosaccharides in the ESL have been shown to be

specific, such as the interaction between lectin and

oligosaccharides, which specifies the cellular response

among diverse cardiac functions (e.g., oxygen usage,

constriction), vessel tone, and release of multiple bioactive

agents [45, 46]. Assuming that this specific interaction is

also the case in sperm, this working model could become a

fundamental mechanism underlying species-restricted AR.

Although receptors for progesterone and hyaluronan have

not been reported to be modulated by force, hyaluronidase

treatment has been shown to change the ligand-gated

properties of B2R and a1-AR in the endothelial cells [43],

suggesting that activating properties of sperm membrane

protein(s) (e.g., progesterone or hyaluronan receptors, TRP

channels) could be modulated by oligosaccharides within

the ZP, and could be activated by lower shearing forces,

thereby initiating AR signaling (for reference, see Fig. 2).

This working model appears to support my observed results

quite well: the three-dimensional structure and oligosac-

charides of the ZP were both involved in successful sperm-

penetration through the ZP, and may integrate currently

Fig. 1 Dicalcin- and gp41-

derived peptides induce distinct

nanoscale ZP meshworks.

a SEM analysis of the VE

treated with dcp11 and gpp2.

Upper low magnification SEM

images of paraffin-sectioned VE

treated with peptides (dcp1 as a

control, dcp11 and gpp2; 4 lM;

n = 3; for a detailed description

of the peptides, see [25]). Scale

bar 1 lm. Lower higher

magnification images. Scale bar

100 nm. b TEM analysis of the

VE treated with dcp11 and

gpp2. Upper low magnification

images of the VE treated with

peptides (dcp1 as a control,

dcp11 and gpp2; 4 lM; n = 3).

Scale bar 500 nm. Lower higher

magnification images. Scale bar

30 nm. Reproduced from Miwa

et al. (2015) [29] with

permission from the publisher
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incompatible molecular models of fertilization, including

carbohydrate-mediated sperm-ZP interaction and ZP

structure-mediated interaction.

Biological significance of dicalcin at fertilization

Dicalcin suppresses fertilization by regulating the distri-

bution pattern of oligosaccharides within the ZP and the

three-dimensional ultrastructure of ZP filaments. The true

biological benefit of dicalcin-induced fertilization sup-

pression is unfortunately unknown at present. However,

several mechanisms are also known to impede fertilization,

including fertilization inhibition by oviductin [47], osteo-

pontin [48], and glycodelin-A [49]. There is also a female

sperm reservoir in the mammalian oviduct in which the

more competent sperm are arranged (for a review see [50]),

which suggests that sperm-selection mechanisms could be

involved in ensuring that only the most competent sperm

can reach the egg plasma membrane [51]. On this basis, I

speculate that dicalcin binds to ZPC and regulates ZP

properties, forming a functional barrier that creates a

challenging microenvironment for sperm to reach the egg

plasma membrane, which may favor selection of more

competent sperm. In conclusion, dicalcin is a key regula-

tory protein involved in mediating fertilization competence

of the egg coat in X. laevis.
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