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Abstract The inferior colliculus (IC) is a critical nexus

between the auditory brainstem and the forebrain. Parallel

auditory pathways that emerge from the brainstem are

integrated in the IC. In this integration, de-novo auditory

information processed as local and ascending inputs con-

verge via the complex neural circuit of the IC. However, it

is still unclear how information is processed within the

neural circuit. The purpose of this review is to give an

anatomical and physiological overview of the IC neural

circuit. We address the functional organization of the IC

where the excitatory and inhibitory synaptic inputs interact

to shape the responses of IC neurons to sound.
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Abbreviations

IC Inferior colliculus

CN Cochlear nuclei

SOC Superior olivary complex

NLL Nucleus of the lateral lemniscus

VCN Ventral CN

DCN Dorsal CN

LSO Lateral superior olive

ILD Interaural level difference

MSO Medial superior olive

ICC Central nucleus of the IC

MGB Medial geniculate body

LG Large GABAergic

VGLUT Vesicular glutamate transporter

Ri Input resistance

SR Sustained regular

MNTB Medial nucleus of the trapezoid body

LNTB Lateral nucleus of the trapezoid body

DNLL Dorsal NLL

VNLL Ventral NLL

Introduction

The IC is located in themidbrain and is believed to be the first

integration center in the auditory pathway. Almost all audi-

tory information is conveyed, integrated, and processed in

the IC before being sent to a higher auditory center. Inside the

IC neural circuit, auditory information is transformed. The

general rules of this transformation have not been fully

established, because of incomplete knowledge of the neural

circuit in the IC.Here, we discuss the functional organization

of the IC to aid our understanding of how the IC processes

auditory information. This review focuses on the mam-

malian auditory system (other clades are discussed else-

where [1, 2]) We first describe the anatomical and synaptic

organization of the IC neural circuitry, then discuss two

critical physiological aspects of information processing by

the IC neural circuit: the diverse membrane properties of

postsynaptic neurons and the convergence of excitatory and

inhibitory synaptic inputs.
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An overview of the mammalian auditory pathway

Sound is transformed into neural signals in the cochlea, in

which the frequency of sound is analyzed (Fig. 1a).

Auditory information, for example the spectrum, timing,

and location of sound is analyzed in parallel in the lower

brainstem nuclei, i.e., cochlear nuclei (CN), superior oli-

vary complex (SOC), and nuclei of the lateral lemniscus

(NLL, Fig. 1a). For example, T-stellate neurons in the

ventral cochlear nucleus (VCN) can convey sound spectra

over a wide range of sound intensity [3]. Fusiform cells in

the dorsal cochlear nucleus (DCN) code sound intensity

and spectrum in a complex frequency response area and are

believed to be the analyzers of spectral cues that are cre-

ated by the head and pinnae and are necessary for sound

location [3]. Neurons in the lateral superior olive (LSO)

code interaural level differences (ILD) whereas those in the

medial superior olive (MSO) code interaural time differ-

ence. Both are necessary for analysis of sound location in

space [4]. The dorsal NLL (DNLL) is one of the major

sources of GABAergic input to the IC [5]. All of these

brainstem structures project to the IC [6]. These projections

include both the excitatory and inhibitory inputs to IC

(Fig. 1a). These basic patterns of connection from the

Fig. 1 The neural circuit of the inferior colliculus. a Schematic

diagram of main inputs to the IC of mammals. Red, blue, and green

arrows indicate glutamatergic, GABAergic, and glycinergic projec-

tion. DNLL dorsal nucleus of the NLL, INLL intermediate nucleus of

the NLL, VNLL ventral nucleus of the NLL. b A model of synaptic

organization of the ICC. Each functional module is denoted by a

different shade and represents a different excitatory brainstem input

(red, ipsilateral MSO; blue, contralateral DCN; green, contralateral

LSO). Inhibitory inputs (ipsilateral LSO, yellow spheres; DNLL, blue

spheres) terminate in particular domains and avoid others. The

distribution of some modules is highly related to the tonotopic map

(stacked laminae inside the ICC), because some inputs are absent at

the ends of the frequency ranges. Within each lamina, disc-shaped

neurons (shown in a red lamina) extend their dendrites. Adapted, with

permission, from Ref. [6]. c Schematic diagram of neural circuitry in

which LG neurons (blue cells) are involved. Inside the ICC, more

ventral and medial domains receive dense ascending inputs from the

DCN whereas the more lateral domain receives dense inputs from the

SOC and NLL. LG neurons receive glutamatergic (red) inputs from

local and ascending sources. Because local excitatory neurons

innervate LG neurons located in different synaptic domains and

those located in the same domain, an LG neuron may mix information

from multiple synaptic domains. LG neurons may control specific

local circuitry in the thalamus, because LG neurons innervate stellate

neurons and a subpopulation of tufted neurons in the MGB (color

figure online)
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lower auditory nuclei to the IC are well-preserved among

the mammalian clade [7].

Functional structure of the IC

The IC is subdivided into the central nucleus (ICC) and a

surrounding cortex (Fig. 1b). Most of the ascending fibers

from the lower auditory brainstem nuclei terminate in the

ICC (Fig. 1a) [6]. The IC cortex receives inputs mainly

from the ICC [8] and descending fibers from the cerebral

cortex [9, 10], which suggests the IC cortex is involved in

attention to sound. Interestingly, some neurons in the IC

cortex can detect changes in the auditory scene [11]. In

addition to the auditory inputs, the lateral cortex of the IC

receives visual [12, 13] and somatosensory information

[14], which suggests it may also be involved in multimodal

integration.

The ICC has a characteristic anatomical organization

characterized by fibrodendritic laminae that contain

functional zones in different parts of the same layer [15–

18]. Disc-shaped neurons have oriented dendrites that

form fibrodendritic laminae with flattened plexuses of

afferent axons [15] (Fig. 1b). These laminae are the basis

of the tonotopic organization of the ICC, and the neurons

in the same lamina share a similar best frequency [17,

19]. Although the fibrodendritic laminae that receive

inputs share similar frequency tuning, the distribution of

afferent inputs from the lower brainstem auditory nuclei

is not homogeneous within a lamina. For example, DCN

axons terminate in the more dorsomedial parts of the

ICC laminae [20] whereas LSO axons terminate on the

ventrolateral parts [21] (Figs. 1b, c). This distribution of

ascending inputs on the laminae organizes ICC layers

into synaptic domains, each of which receives a specific

combination of ascending inputs from different brainstem

nuclei [6, 18, 22] (Fig. 1b). Thus, in the same lamina,

neurons that receive a different combination of afferent

inputs will, accordingly, have a substantial differences in

their responses to sound [18, 19, 23]. Fibrodendritic

laminae and synaptic domains overlap each other and

subdivide the ICC into local functional zones (Fig. 1b).

In contrast to the ICC, the IC cortex is organized in

several layers each of which has distinct input and out-

put connections. The functional organization of the IC

cortex is less well known than that of the ICC, but a

recent imaging study showed that layer 1 of the dorsal

IC cortex has region-specific frequency selectivity [24].

Layer 2 of the IC lateral cortex contains a periodic

module composed of small GABAergic neurons (the

GABA module, [25]) that have distinct intrinsic mem-

brane properties [26] in GAD67-GFP knock-in mice

[27].

Synaptic organization of local circuit in the IC

A unique feature of the IC is that it sends both excitatory

and inhibitory projections [28, 29] to the medial geniculate

body (MGB, Fig. 1a). IC neurons are either glutamatergic

or GABAergic [26, 30], although many kinds of neuro-

modulator are also expressed in the IC [31–34]. Tec-

tothalamic GABAergic neurons have large somata and a

distinctive synaptic structure [29]. Large GABAergic (LG)

neurons are covered by numerous axosomatic and axo-

dendritic excitatory terminals. LG neurons are found in a

variety of mammalian species (rats, mice, rabbits, bats, and

monkeys; unpublished data), suggesting the IC GABAergic

neural circuitry is widely preserved among mammals.

Calyx-like or endbulb-like synapses have not been found in

the IC, and LG neurons have been shown to receive con-

verging inputs from multiple axons from different sources

[35–38]. The excitatory axosomatic terminals on LG neu-

rons are positive for vesicular glutamate transporter

(VGLUT) 2 but not for VGLUT1 [29], and originate from

neurons which express VGLUT2 in the brainstem (DCN,

SOC, NLL) and in the IC itself [37, 38]. For example, a

single IC excitatory neuron can form an axonal plexus

parallel to and within a fibrodendritic lamina and make

axosomatic contacts with 10–30 LG neurons within the

plexus over a distance of several hundreds of microns.

Therefore, the fibrodendritic lamina is the field of con-

vergence for local and ascending axonal inputs. Along a

single fibrodendritic lamina, the density of terminals from

each ascending source is not homogenous but separated

into separate synaptic domains as described above

(Fig. 1b). The local excitatory neurons may affect the LG

neurons located in neighboring synaptic domains as well as

in its own. This suggests that an LG neuron mixes

ascending auditory information that it receives directly

from ascending fibers with information received by neu-

rons in the neighboring domains (Fig. 1c).

Diverse physiological properties of IC neurons

Previous whole-cell recording studies in the IC in vitro and

in vivo showed there were neurons with distinctive firing

properties (modeled discharge patterns are shown in

Fig. 2a). They were classified into 6–8 types on the basis of

the responses to depolarizing and hyperpolarizing currents

(Fig. 2a) in mice, rats, and bats [26, 39–41]. It has been

suggested that different expression patterns of potassium

and calcium channels create these different firing types [26,

39]. IC neurons are also diverse in their input resistances

(Ri, Table 1). In-vivo recordings from mature animals

revealed that Ri ranged from 30 to 450 MX (bat, ICC) [41]
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and from 39 to 615 MX (mouse, IC cortex) [42]. The Ri

values in slice recordings were higher than those in vivo

(Table 1), probably because of the immaturity of the tissue

(see age in Table 1). Ri was reported to be inversely cor-

related with somatic size (Table 1) [42] whereas firing

types were not well correlated with morphology [26, 43].

Importantly, neurons with different membrane properties

were heterogeneously mixed in the IC. No relationship was

observed between neuronal membrane property and spatial

distribution (except for GABA module neurons [26]).

Thus, a synaptic domain in the ICC is likely to contain a

mixture of neurons with different intrinsic membrane

properties. Interestingly, recent studies using tetrode

recordings showed that the correlation of the temporal

responses with sound was usually low for closely located

ICC neurons [19, 23] and the degree of the correlation of

their frequency tuning depended on distance between

neurons [19]. These results suggested there might be a

Fig. 2 Firing types and synaptic responses of IC neurons. a Illustra-

tion of representative discharge patterns of IC neurons in response to

current. Upper and lower traces are responses to depolarizing and

hyperpolarizing current (gray traces), respectively. These traces were

modeled by MATLAB (Mathworks, Natick, MA, USA). Scale bars,

20 mV, 50 ms. b–e Synaptic responses of mouse IC neurons to sound.

Adapted, with permission, from Refs. [53, 54]. These are recordings

are from different neurons. b The synaptic responses of an IC neuron

to contralateral (left) and ipsilateral (right) sound. Gray boxes indicate

the timing of sound presentation. Red and blue traces are excitatory

and inhibitory conductance, respectively. The excitatory and

inhibitory conductances were separated under the voltage clamp by

recording the sound-evoked currents at the reversal potentials of the

inhibitory and excitatory inputs, respectively. The responses to

different sound intensities ranging from 0 to 80 dB sound pressure

level (SPL) are presented. c, d Spike (upper black traces) and

synaptic responses to contralateral sound of IC neurons. The spike

responses were recorded in gigaseal condition before break-in. Note

that the time courses of the excitatory conductance are different.

e Spike and synaptic responses of an IC neuron to binaural sound of

which the interaural level differences (ILD) were varied. The ILD

value is shown as negative when contralateral sound was stronger.

The spike trace was the response to the sound with ILD of -40 dB

(asterisks). The ILD tuning curve (right panel) of spike responses was

more sharply tuned to contralateral side than to that of excitatory

inputs (color figure online)

Table 1 The input resistance

(Ri) of IC neurons
Cell type Ri (MX)a No. of cells Species Age Preparation Ref.

Sustained-regular (SR) 393.45 ± 190.1 10 Rat P8–17 Slice [39]

Onset 643.71 ± 243.8 8 Rat P8–17 Slice [39]

Rebound 229.6 ± 88.0 19 Rat P10–19 Slice [62]

SR-GABA 413.0 ± 239.6 69 Mouse P12–31 Slice [26]

SR-nonGABA 280.7 ± 120.4 19 Mouse P12–31 Slice [26]

All types 106 ± 51 103 Mouse P21–37 In vivo [40]

Small (\15 lm) 214 ± 91 68 Mouse P21–79 In vivo [42]

Medium (15–25 lm) 144 ± 53 35 Mouse P21–79 In vivo [42]

Large ([25 lm) 82 ± 38 12 Mouse P21–79 In vivo [42]

a Ri is given as mean ± standard deviation. When the original value was given with the standard error, the

standard deviation was calculated from the standard error
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decorrelation in a synaptic domain that could increase

coding capacity [44, 45]. Variability in the intrinsic

membrane properties may contribute to decorrelation of the

neural responses in the IC local circuit.

Compared with the neurons in the brainstem, the IC

neurons have higher Ri (Tables 1 and 2). Neurons with

extremely low Ri are seen in the brainstem nuclei (indi-

cated with b in Table 2, i.e., VCN octopus neurons and

MSO principal neurons) but not in the IC. Those low Ri

neurons are highly specialized for coincidence detection

over a sub-millisecond timescale [46]. For these neurons,

extremely short membrane time constant makes EPSP

brief, so that firing requires highly coincident synaptic

summation. The high Ri of the IC neurons might make

them less incapable of reproducing the temporal structure

of their inputs with high fidelity compared with lower

auditory brainstem neurons, and they are more likely to act

as temporal integrators [47]. This notion is consistent with

the observation that temporal synchronization to ampli-

tude-modulated sound is degraded in the IC [48].

Integration of excitatory and inhibitory synaptic
inputs shapes tuning to sound in an IC neuron

As shown above, anatomical studies have suggested that

the synaptic inputs from different sources converge on an

IC neuron. Reflecting their locations in different synaptic

domains, IC neurons will receive synaptic inputs with

different temporal patterns. Intracellular studies (cats,

guinea pigs, and bats) have shown that interaction of

excitatory and inhibitory inputs affects neural responses of

IC neurons [49–52]. Recent in-vivo whole-cell recording of

mice, rats, and bats have shown that virtually all the IC

neurons receive excitatory and inhibitory synaptic inputs

(Figs. 2b–e) [53–59]. Analysis of synaptic responses to

binaural stimuli showed that many IC neurons receive

inputs from several sources (Fig. 2b; note that contralateral

and ipsilateral sounds evoked both excitatory and inhibi-

tory responses) [54, 56, 59]. The excitatory inputs are

temporally diverse and contribute substantially to the

temporal pattern of action potential firing (Figs. 2c–e) [53,

55, 60]. Furthermore, the balance and timing of the exci-

tatory and inhibitory inputs are crucial in shaping the spike

responses [53, 55–59, 61]. Because the sound-evoked

excitatory and inhibitory synaptic inputs temporally over-

lap (Figs. 2b–e), their relative size and timing affects spike

generation profoundly [53, 58, 61] and determines the

sound selectivity of the neuron [55–57, 61]. In binaural

responses, nonlinear synaptic summation is also critically

involved in shaping the selective responses to different

binaural stimuli [54, 56, 59]. Nonlinear summation of

monaural responses is observed for synaptic inputs; this

sharpens selectivity to interaural level differences (ILD).

Furthermore, extracellular and intracellular recordings

from the same neuron showed that the ILD curve of spike

responses was more sharply tuned than that of the synaptic

responses (Fig. 2e). These observations suggest that the

sound responses of IC neurons were determined by the

complex interaction of synaptic inputs and postsynaptic

processes that reflect the intrinsic membrane properties.

Table 2 Ri of auditory

brainstem neurons
Nucleus Cell type Ri (MX)a No. of cells Species Age Ref.

VCN Bushy 40.2 ± 9.8 24 Mouse P29–39 [63]

VCN T-stellate 81.5 ± 36.7 21 Mouse P29–39 [63]

VCN D-stellate 60 ± 17 11 Mouse P16–18 [64]

VCN Octopusb 6 ± 6 10 Mouse P16–19 [65]

DCN Fusiform 93.2 ± 49.5 21 Mouse P15–25 [66]

DCN Cartwheel 55.7 ± 18.6 5 Mouse P16–24 [67]

DCN Vertical 163.7 ± 53.8 27 Mouse P16–23 [68]

DCN Stellate 996 ± 749 29 Mouse P15–32 [69]

MSO Principalb 10 ± 9 18 Gerbil P17 [70]

LSO Principal 23.4 ± 19.0 7 Mouse P23 [71]

MNTB Principal 80.6 ± 23.4 10 Gerbil P19–22 [72]

LNTB Principal 56.5 ± 33.7 50 Gerbil P18–22 [72]

VLL Globular 108.3 ± 36.2 7 Gerbil P25\ [73]

DLL Principal 137 ± 26 7 Gerbil P23–26 [5]

MNTB medial nucleus of trapezoid body, LNTB lateral nucleus of trapezoid body
a Ri is given as mean ± standard deviation. When the original value was given with the standard error, the

standard deviation was calculated from the standard error
b The neurons with extremely low Ri in the brainstem
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Concluding remarks

The mammalian IC is an auditory center that transforms its

afferent inputs into excitatory and inhibitory outputs within

local functional zones. IC is characterized by a complex

neural circuitry in which IC neurons with a variety of

physiological properties reside in functional zones that

receive different combinations of afferent inputs from

different sources. This generates neurons with a great

variety of responses to sound. This complexity and diver-

sity makes it challenging to elucidating the function of the

IC. To truly understand the function of the IC, we require

more basic knowledge to distinguish the unique phenotypes

of IC neurons in vitro and in vivo. It will be also an

important to investigate common and different interspecies

features of the physiological characteristics of IC neurons,

because most current knowledge of the cellular physiology

on IC neurons is based on recordings from rodents.
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