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Abstract The effects of chronic hypoxia (CH) on respi-

ratory muscle performance have hardly been investigated,

despite clinical relevance. Results from recent studies are

indicative of unique adaptive strategies in hypoxic di-

aphragm. Respiratory muscle tolerance of acute severe

hypoxic stress was examined in normoxic and CH di-

aphragm in the presence and absence of a nitric oxide (NO)

synthase inhibitor. We tested the hypothesis that improved

tolerance of severe hypoxic stress in CH diaphragm is NO-

dependent. Wistar rats were exposed to normoxia (sea-

level, n = 6) or CH (ambient pressure = 380 mmHg,

n = 6) for 6 weeks. Diaphragm muscle functional prop-

erties were determined ex vivo under severe hypoxic

conditions (gassed with 95 %N2/5 % CO2) with and

without 1 mM L-NG-nitroarginine (L-NNA, nNOS in-

hibitor). Fatigue tolerance, but not force, was significantly

improved in CH diaphragm (p = 0.008). CH exposure did

not affect diaphragm muscle fibre oxidative capacity de-

termined from cluster analysis of area–density plots of

muscle fibre succinate dehydrogenase activity. Acute NOS

inhibition reduced diaphragm peak tetanic force

(p = 0.018), irrespective of gas treatment, and completely

reversed improved fatigue tolerance of the CH diaphragm.

We conclude that CH exposure improves fatigue tolerance

during acute severe hypoxic stress in an NO-dependent

manner, independent of muscle fibre oxidative capacity.

Keywords Chronic hypoxia � COPD � Fatigue tolerance �
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Introduction

Chronic hypoxia (CH) induces differential structural and

functional adaptation in respiratory and limb muscles of

animal models [1–7] (e.g. weakness and increased fatigue

tolerance of the diaphragm but not of the soleus muscle [4,

6, 7], and reduced fibre cross-sectional areas in the di-

aphragm but no change in the soleus muscles [6]). Similar

changes have been observed in the diaphragm muscle of

patients with respiratory-related diseases characterised by

CH such as chronic obstructive pulmonary disease

(COPD). COPD patients have lower trans-diaphragmatic

pressure-generating capacity and improved diaphragm

muscle fatigue tolerance [8–11], or at least fatigue toler-

ance is not reduced even though the muscle is at a me-

chanical disadvantage [12]. Diaphragm fatigue tolerance is

potentially important in the context of CH-induced hyper-

ventilation but muscle weakness is associated with poor

clinical outcome. The effects of CH on respiratory muscle

performance have hardly been investigated, despite the

clinical relevance, although results from recent studies are

indicative of unique adaptive strategies in hypoxic di-

aphragm [4–6].

Nitric oxide (NO) is a potent modulator of skeletal

muscle function and homeostasis [13–17]. Physiological

levels of NO have an inhibitory effect on Ca2?-release

channels [17]. Moreover, an NO donor reduced myofibril

Ca2? sensitivity [13], and an NO inhibitor reduced markers

of tissue damage after eccentric contractions [16]. Also,

NO can modulate PGC-1a or Akt signalling to affect

metabolic components and muscle growth, respectively
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[18, 19]. Neuronal NO synthase (nNOS) and endothelial

(e)NOS expression, but not inducible-(i)NOS expression,

undergo significant alterations in rat diaphragm after CH

exposure from birth [20]. NOS activity is potentially linked

to changes in oxygen tension [21], and we have previously

reported that chronic NOS blockade reverses CH-induced

increase in diaphragm Na?–K? ATPase pump content and

prevents CH-induced functional remodelling in rat di-

aphragm [4].

We sought to examine the effects of CH exposure on

respiratory muscle tolerance of acute severe hypoxic stress

and to determine if NO is implicated in altered respiratory

muscle tolerance of severe hypoxia after CH. We tested the

hypothesis that improved tolerance of severe hypoxic stress

in CH diaphragm is NO-dependent.

Materials and methods

Animal model

All procedures described in this study were approved by

the local ethics committee and were performed under li-

cence from the Irish Government Department of Health

and Children. The animals were an unreported subset from

a previously published study [4]. Age and weight-matched

adult male Wistar rats (Harlan, UK) were exposed to nor-

moxia (sea-level, n = 6) or CH (ambient pres-

sure = 380 mmHg, n = 6) for 6 weeks in purpose-built

hypobaric chambers in which ambient pressure was

regulated. Decompression to a target pressure of

380 mmHg was achieved over a 2–3 h period. Ambient

PO2 was *80 mmHg, equivalent to an FIO2 of 10.5 %.

Food and water were available ad libitum. Chamber pres-

sure was measured continuously by use of a digital

manometer (model C9505; Comark, UK). Pressure fluc-

tuations as a result of drift were ±2 % of the target pres-

sure. Ambient CO2 was measured periodically and

was\1 %. After the treatment periods, animals were

euthanised by cervical dislocation. Blood was collected in

microcapillary tubes, in triplicate, for determination of

haematocrit as a marker of CH exposure.

Respiratory muscle function

The diaphragm muscle was excised with the lower rib and

central tendon intact and placed in gassed Krebs solution

(NaCl 120 mM, KCl 5 mM, Ca2? gluconate 2.5 mM,

MgSO4 1.2 mM, NaH2PO4 1.2 mM, NaHCO3 25 mM, and

glucose 11.5 mM; pH 7.4) at room temperature before

transfer to a tissue bath for functional assessment. Longi-

tudinal strips of muscle were mounted vertically in custom

tissue baths of Krebs solution at 30 �C, gassed with

95 %N2/5 % CO2 (ambient PO2 *40 mmHg), and con-

taining the neuromuscular blocking agent D-tubocurarine

(25 lM). The muscle strips were positioned between a pair

of platinum electrodes, with the rib fixed to an immobile

hook and the tendon tied to an isometric force transducer

with non-elastic string. The position of the force transducer

was adjusted by use of a micro-positioner, thus altering the

length of the muscle strips. Diaphragm bundles were set to

the optimum length (Lo––the length at which peak twitch

force occurs) by incrementally adjusting the position of the

force transducer and sequentially stimulating with a single

pulse until peak twitch force was reached. The muscle

remained at Lo for the duration of the experiment. The

single isometric twitch force, contraction time, half-relax-

ation time, force–frequency relationship, and fatigue were

then determined in response to electrical field stimulation.

First, a single twitch was elicited (supramaximum voltage,

1 ms duration). Twitch force, time to peak force, and half-

relaxation time (time for peak force to decay by 50 %)

were determined. Next, the force–frequency relationship

was determined by sequentially stimulating the muscle

strips at 10, 20, 30, 40, 60, 80, and 100 Hz for 300 ms at

each stimulus frequency, allowing a 2-min recovery in-

terval between each stimulus. Five minutes after the force–

frequency procedure, repeated muscle contraction was in-

duced by stimulation at 40 Hz with 300-ms trains every 2 s

for a period of 5 min. Acute pharmacological blockade of

NO synthase (NOS) was used (1 mM L-NG-nitroarginine,

L-NNA) to determine whether or not NO is implicated in

diaphragm muscle adaptation to CH. Thus there were four

groups: normoxia, CH, normoxia ? L-NNA, and CH ? L-

NNA, all studied under acute severe hypoxic conditions.

Succinate dehydrogenase activity

After chronic gas treatment, diaphragm muscles were

quickly excised and snap frozen. Transverse 10 lm
cryosections were obtained and histochemically stained

to determine succinate dehydrogenase (SDH) activity as

described elsewhere [4]. Briefly, slides were stained with

sodium succinate and nitro blue tetrazolium chloride in

phosphate buffer (pH 7.4), dehydrated in a graded series

of rinses with acetone and methanol, and imaged by use

of a BX51 Olympus microscope (Olympus Life Science

Microscopes, Munchen, Germany) and an Olympus

DP71 camera. Control and CH samples were processed

in parallel. Optical densities of individual muscle fibres

and fibre cross-sectional area (CSA) were calculated by

use of Scion ImageTM software (Maryland, USA). Area–

density plots were constructed for the normoxic and CH

groups.
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Data Analysis

Peak specific force (Fmax) was calculated in N/cm2 of

muscle CSA calculated as the blotted dry muscle bundle

weight divided by the product of Lo and the specific den-

sity, assumed to be 1.056 g/cm3. Fatigue index, force ex-

pressed as a percentage of initial force, was calculated after

5 min of repeated isometric contractions.

K-means cluster analysis was performed on SDH area–

density plots of muscles from normoxic and CH animals.

K-means clustering partitions x observations into k clusters

by iterative fine-tuning until all observations are grouped

into the cluster of the nearest mean. Three means/clusters

(k = 3) were chosen, representing small, medium, and

large fibre CSAs. Cluster centroids of normoxic and CH

diaphragm muscles were determined.

Statistical analysis

All values are expressed as mean ± SEM. After testing for

normality and equal variance in the data sets, statistical

comparisons were performed between groups by use of

Student t tests, one-way ANOVA (hypoxia), or two-way

ANOVA (hypoxia 9 drug), with Bonferroni post-hoc tests

as appropriate, by use of Graph-Pad Prism (USA).

P\ 0.05 was the criterion for statistical significance in all

tests.

Results

Body mass and haematocrit

CH exposure significantly reduced body mass gain com-

pared with age-matched normoxic controls. CH sig-

nificantly increased haematocrit (43 ± 1 vs. 75 ± 2 %,

normoxic vs. CH, n = 6 both groups; Student unpaired

t test, P\ 0.001).

Effects of CH on muscle physiology during acute

severe hypoxia

The effects of CH on diaphragm twitch force, time to peak

force, half-relaxation time, and peak tetanic force are

shown in Table 1. CH had no significant effect on the

force–frequency relationship of the diaphragm. However,

CH significantly increased fatigue tolerance during acute

severe hypoxia (Figs. 1, 2).

Effects of CH on diaphragm muscle fibre SDH

activity

A representative area–density plot for diaphragm SDH-s-

tained fibres is shown in Fig. 3a. CH did not affect di-

aphragm muscle fibre oxidative capacity determined by

cluster analysis of area–density plots (Fig. 3b).

Effects of nNOS inhibition on diaphragm function

during acute severe hypoxia

Acute NOS inhibition with 1 mM L-NNA reduced di-

aphragm muscle force irrespective of chronic gas treatment

(Table 1). L-NNA did not affect fatigue tolerance of nor-

moxic diaphragm. Conversely, NOS blockade significantly

reduced the CH diaphragm fatigue index, reversing the

increased tolerance of severe hypoxia in CH diaphragm

(Fig. 1).

Discussion

The main findings of this study are:

1 CH exposure improves diaphragm muscle fatigue tol-

erance during acute severe hypoxic stress (independent

from muscle fibre oxidative capacity);

2 NO facilitates diaphragm force during severe hypoxia

(irrespective of gas treatment); and

3 CH-induced increase in diaphragm fatigue tolerance

during severe hypoxia is NO-dependent.

Table 1 Force and contractile kinetics of normoxic and chronic

hypoxic diaphragm during severe acute hypoxic stress ± NOS

blockade

Pt (N/cm2) CT (ms) HRT (ms) Po (N/cm2)

Control (drug-free)

Normoxia 3.0 ± 0.4 27 ± 2 25 ± 2 10.0 ± 1.8

CH 3.6 ± 0.4 23 ± 1 25 ± 2 12.4 ± 1.8

L-NNA

Normoxia 3.7 ± 0.5 24 ± 1 21 ± 1 7.3 ± 2.3*

CH 3.1 ± 0.5 20 ± 1 20 ± 1 7.9 ± 1.9*

Values are mean ± SEM

Pt single twitch tension, CT contraction time, HRT half-relaxation

time, Po peak tetanic tension, CH 6 weeks of hypoxia

* Two-way ANOVA; drug: p = 0.018
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There is a general paucity of data concerning the effects

of CH on respiratory muscle function, notwithstanding the

potential clinical value of such studies. This study extends

our previous report [4] illustrating that CH exposure serves

to pre-condition the diaphragm muscle resulting in sub-

stantial improvement in fatigue tolerance during acute

severe hypoxic stress exposure ex vivo. The result is ana-

logous with ischaemic pre-conditioning of the heart [22]

and other tissues [23, 24] and may involve similar

mechanisms including modulation of NO signalling and/or

protein sensitivity to NO, and redox regulation of proteins

[25–29]. NO is an important modulator of skeletal muscle

function [13] including rat diaphragm [4, 30]. Acute

blockade of nNOS reduced diaphragm force-generating

capacity, revealing that NO facilitates diaphragm force
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Fig. 1 a Original representative trace of diaphragm fatigue obtained

during repeated muscle stimulation (40 Hz every 2 s for 5 min)

during severe hypoxic stress. Inset shows the first and last muscle

contraction superimposed to illustrate the altered amplitude and

kinetics characteristic of muscle fatigue. b Group data illustrating

force potentiation and fatigue in each group over the 5 min of

repeated muscle stimulation. Values are mean ± SEM (n = 6 per

group). *p\ 0.05 one-way ANOVA followed by Newman–Keuls

post-hoc test. CH chronic hypoxia, L-NNA NG-nitro-L-arginine
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Fig. 2 Data for diaphragm muscle fatigue index. Values are

mean ± SEM (n = 6 per group). Two-way ANOVA revealed a

significant effect of CH (p = 0.008) and drug (p = 0.027) treatment.

Asterisk indicates significant difference from normoxia; p\ 0.05. CH

chronic hypoxia, L-NNA NG-nitro-L-arginine

Fig. 3 a A representative area–density plot for diaphragm fibres histochemically stained for the oxidative enzyme succinate dehydrogenase.

b Results from cluster analysis for normoxic and CH diaphragm (n = 6 per group)
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under conditions of severe hypoxic stress. Several proteins

of the excitation–contraction coupling mechanism in

muscle (including the ryanodine receptors and SERCA

pumps, actin and troponins of the sarcomere) are impli-

cated given the evidence that they are targets for NO [13,

15, 17, 31–33]. Moreover, NO, at low concentrations in

cells, is an antioxidant serving to scavenge superoxide

anions [34–36] which may be increased under conditions of

severe hypoxia [37–39]. Acute nNOS blockade presumably

disrupts NO signalling in muscle and would seem to be

especially detrimental to diaphragm function in severe

hypoxia. Interestingly, this effect was equivalent for nor-

moxic and CH diaphragms.

The experimental approach used in our study, em-

ploying acute pharmacological intervention after gas

treatment, indicates that a dynamic, persistent, reversible,

NO-dependent facilitatory process is underpinning im-

proved CH diaphragm fatigue tolerance in severe hypoxia.

The observation strongly implicates a direct NO-depen-

dent process in diaphragm muscle fibres, whereas chronic

NOS inhibition such as that used in our previous study [4],

could relate to direct or indirect NO-dependent remod-

elling. The lack of effect of NOS blockade on normoxic

diaphragm fatigue during severe hypoxia in this study il-

lustrates a CH-specific effect. Our study suggests that it is

either a change in the CH diaphragm’s ability to produce

NO (e.g. through altered NOS isoform expression/struc-

tural remodelling) [20, 40] or a change in the sensitivity of

downstream targets of NO, including the contractile ap-

paratus and mitochondria, that is required to induce the

CH-dependent functional adaptation (e.g. structural re-

modelling of a target protein by means of carbonylation

and/or thiol oxidation; direct or indirect alterations in

mitochondrial respiration). Both nNOS and eNOS ex-

pression are down-regulated in rat diaphragm after CH

exposure from birth [20] and no change in protein nitro-

sylation is observed after CH exposure of adult rat di-

aphragm muscle [7]. These findings are suggestive of

reduced or unaltered diaphragm capability to produce NO

after CH. Since we demonstrate that blockade of NO

production acutely reverses the CH-induced improvement

in diaphragm fatigue tolerance without effect on di-

aphragm preparations from normoxic animals, our find-

ings suggest that altered sensitivity to NO in CH

diaphragm (e.g. structural modification of an NO target

protein) is required for CH-induced improved fatigue

tolerance. Furthermore, as CH does not affect diaphragm

muscle contractile kinetics or an index of diaphragm ox-

idative metabolism (i.e. SDH activity), the changes are

potentially occurring at the level of the cross-bridge [41,

42]. Chronic heart failure in rats induces oxidation of

diaphragm contractile apparatus proteins and disrupts

actin–myosin interactions similar to direct exposure of the

contractile apparatus proteins to peroxynitrite [43]. We

postulate that redox remodelling of proteins key to muscle

endurance, induced by CH, alters the sensitivity to NO. If

hypoxia per se limits the production of NO in muscle

because of reduced oxygen availability, further increases

in NOS enzyme content to increase NO production in CH

would serve to further deplete oxygen availability and be

detrimental to metabolic processes. One potential

physiological outcome would be an increase in the sen-

sitivity to NO of downstream targets relevant to function.

Of interest, there are no differences in nNOS or iNOS

expression between control and COPD patient diaphragm

muscles, but eNOS expression is reduced in the COPD

diaphragm [44]. Protein nitrotyrosine levels are also

unaffected [44], but protein carbonylation and redox re-

modelling of proteins is observed in the COPD diaphragm

[44, 45]. Potentially, a change in the redox status of the

diaphragm after CH exposure elicits structural changes in

proteins affecting intrinsic fatigue, a process that is NO

sensitive.

A limitation of the study is that we did not assess NO

concentrations in normoxic and CH diaphragm muscle

before and after exposure to acute severe hypoxic stress.

Acute severe hypoxia may have affected intracellular NO

concentrations in isolated muscle. However, the finding

that diaphragm force was significantly reduced after acute

NOS blockade in severe hypoxia (equivalent in normoxic

and CH diaphragm preparations) indicates that a substan-

tial basal NO ‘‘tone’’ was maintained in the muscle under

these conditions, and our findings strongly suggest that this

was no different for normoxic and CH diaphragms. The

NO concentration in muscle may have been reduced by

acute severe hypoxic stress and as such we may have un-

derestimated the magnitude of the effect of the NOS

blocker, L-NNA.

Summary and conclusion

In summary, CH exposure causes diaphragm muscle re-

modelling in rats with resulting increased tolerance ex vivo

of severe hypoxic stress, independent of changes in ox-

idative metabolism. CH-induced adaptation is NO-depen-

dent, given that acute pharmacological blockade of NOS

reverses improved fatigue tolerance in the CH diaphragm

but has no effect on fatigue tolerance in the normoxic di-

aphragm. We conclude that CH induces NO-dependent

functional plasticity in rat respiratory muscle. Our results

may have relevance to human respiratory disorders char-

acterised by CH, such as COPD.
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