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Vascular tortuosity: a mathematical modeling perspective

Leith Hathout • Huy M. Do

Received: 27 October 2011 / Accepted: 30 December 2011 / Published online: 18 January 2012

� The Physiological Society of Japan and Springer 2012

Abstract Although vascular tortuosity is a ubiquitous

phenomenon, almost no mathematical models exist to

describe its shape. Given that the shape of tortuous vessel

curves seems fairly uniform across orders of magnitude of

vessel size and across vast differences in anatomic substrata, it

is hypothesized that the shape of tortuosity is not purely ran-

dom but rather is governed by physical principles. We present

a mathematical model of tortuosity based on optimality

principles, and show how this model can potentially be used to

distinguish physiologic tortuosity from abnormal tortuosity

which may exist in disease states. Using the calculus of vari-

ations, a model of tortuosity has been developed which min-

imizes average curvature per unit length. The model is tested

against curves in normal vessels and in diseased vessels in a

case of Fabry’s disease. It is found that the theoretical model

provides a good fit for normal vessel tortuosity. This suggests

that blood vessels obey optimality principles, and curve in

such a way as to minimize average curvature. The model may

also be able to distinguish physiologic tortuosity from

abnormal tortuosity found in disease states.

Keywords Mathematical modeling � Vascular tortuosity �
Optimality analysis

Introduction

As every angiographer knows from experience, blood

vessels are often tortuous. This can make threading a

catheter into such a vessel challenging. However, the

phenomenon of vessel tortuosity is interesting and impor-

tant in its own right, beyond the difficulties it may pose

during an angiogram. This is because the phenomenon

seems ubiquitous to blood vessels throughout the body,

from small vessels in the retina of the eye to larger vessels

such as mesenteric and splanchnic vessels, the cervical

carotid arteries and their branches, the cerebral vasculature,

the superficial temporal artery and the coronary arteries

(Fig. 1).

Moreover, the general meandering shape of the tortu-

osity often seems fairly uniform across multiple vessels

and across different individuals, regardless of the markedly

varying anatomic structures within which these vessels are

coursing. This general uniformity suggests that the phe-

nomenon of tortuosity is not purely random or accidental

but rather is governed by certain physical principles which

bring about a similar shape to the vessel curves across great

variations in vessel size and great differences in anatomic

substrata. The aim of this paper is to test this assumption by

exploring a mathematical model of vessel tortuosity which

attempts to describe the shapes associated with tortuosity

and to uncover some of the underlying principles which

govern those shapes, and then to test this model against

actual vessel data. Such a model, of necessity, will be an

oversimplification because of the almost infinite variety of

anatomical structures which force vessels to curve this way

and that. However, since this phenomenon has not been

systematically modeled in the literature, it is useful to

begin an investigation which can later be augmented and

complexified. This is particularly true given emerging data

which suggests that the phenomenon of normal tortuosity

may be disturbed in multiple disease states.

Indeed, in recent years, several papers have appeared

suggesting that the assessment of vascular tortuosity may
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be clinically significant in a variety of settings. Mala-

mateniou et al. [2] found statistically significant decreased

tortuosity in all proximal segments of the cerebral vascu-

lature (anterior, middle and posterior cerebral arteries) in

preterm infants imaged at term-equivalent age compared to

the term-born infants. Since brain development is closely

linked to vascular development, the possibility is raised

that this phenotype may correlate with later neurodevel-

opmental dysfunction in preterm infants [3]. Conversely, in

the healthy elderly, Bullit et al. [4] have noted that

increased aerobic activity is associated with lower cerebral

vessel tortuosity values and an increase in the number of

small-caliber vessels. They hypothesize that this may be

part of the link between aerobic exercise and healthy brain

aging [4]. Witt et al. [5] have noted that decreased retinal

vascular tortuosity was predictive of an increased risk of

death from ischemic heart disease.

Most significant, though, are the applications of tortu-

osity analysis in cancer. Bullit et al. [6] have done a sig-

nificant body of work showing that malignant tumors

display abnormal and increased vessel tortuosity. This

finding is highly significant in that it represents an inde-

pendent measure of tumor angiogenesis separate from

perfusion measurements, which may remain normal despite

the presence of abnormal tortuosity. Preliminary work by

this same group suggests that early tumor detection, pre-

diction of tumor response to therapy, and detection of

tumor recurrence are all linked to increased abnormal

vessel tortuosity [7–10]. Jain also notes that tumor vessels

show increased vessel length, density, and tortuosity, and

suggests that normalizing tumor vascularity may be an

important adjunct to tumor therapy [11].

Given these new avenues of research, it becomes

important to explore models of normal vessel tortuosity.

The model used in this paper was originally developed in

the field of geophysics in the 1960s to analyze the

meandering of rivers. To the best of the authors’ knowl-

edge, this paper represents the first attempt to apply such

models to the phenomenon of vascular tortuosity. The

model is used to obtain a family of equations approxi-

mating the shape of vessel curves. Specific parameters are

extracted which characterize the shape of normal tortuos-

ity. Using these parameters, the model is then tested against

normal vessel segments to assess its accuracy in describing

the shape of vessel curves. Finally, albeit anecdotally,

vessel segments from a clinical case with known abnormal

vascular tortuosity are analyzed to assess whether the

model can detect and quantify deviations from normal

tortuosity. This is done only as an illustration of method.

Further work, of course, will be necessary to validate and

refine this initial model, as well as to test its utility in

disease states.

Materials and methods

Mathematical modeling

Since mathematical modeling is undertaken with an eye to

comparing some model-generated parameters with the

results from actual vessels, this requires the extraction of

convenient physical parameters which characterize the

shape and degree of tortuosity. In this paper, we will adopt

the convention used in geophysics in the analysis of river

meanders [12]. The main parameters of interest of a curve

will be the path length (called L) of a particle or blood cell

flowing along the curved segment, the wavelength k,

defined as in a cosine or sine wave as distance from trough

to trough or point of inflection to point inflection, and the

radius of curvature R, which defines the radius of a circle

which has as its arc the peak of the curve. To normalize for

the effect of vessel length, and give dimensionless numbers

Fig. 1 a Normal retinal fluorescein angiogram showing multiple tortuous vessels [1]. b Coronary angiogram showing tortuous coronary artery

branches. c Cerebral angiogram showing a tortuous superficial temporal artery
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which can be compared between vessels and the model,

these parameters are combined into two ratios, L/R, and L/

k, which characterize a vessel’s curvature. The latter ratio,

L/k, is known as the sinuosity of a curve. An additional

parameter of interest is x, the maximal angle which the

curve of the vessel makes with the ‘‘horizontal,’’ which in

the case of vessels is defined as the direction of vessel flow

(see Fig. 2).

For the purposes of this preliminary investigation, we

chose to model vessel tortuosity by finding an approxi-

mation to the curve which has the least average curvature

per unit length. In other words, the curve which, as it

meanders between two points, A and B, provides the

minimum changes in direction for the blood flowing

through the tortuous vessel. Of course, the absolute mini-

mum change in direction would be a straight line segment

between points A and B, a course to which blood vessels

often adhere. We assume that when vessels deviate from

this straight-line course, this may be due to an anatomic

obstacle, or to a random change in direction, which begins

the vessel on a meandering path. The question is then to

specify the shape of this path according to the optimality

criterion presented above.

The derivation of the differential equation which spec-

ifies the desired curve is fully presented in Appendix A.

Briefly, assume that the curve has total length L. For any

point P(x,y) on this curve, if l is the path length to travel to

this point along the curve, then we let functions x(l) and

y(l) describe the position of a point on the curve and h(l)

describe the direction of the curve at that point. Under

these assumptions, the curve can be specified parametri-

cally as a function of the direction angle h(l) as

xðtÞ ¼
Z t

0

cos h ðlÞ dl yðtÞ ¼
Z t

0

sin h ðlÞ dl

where t is a variable parameter in the segment (0, L).

We can define the average curvature, �c; as the integral

square average of h0ðlÞ (see Appendix A):

�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

ZL

0

ðh0ðlÞÞ2 dl

vuuut ð1Þ

This is the continuous analog of the mean square value

of n numbers.

Our interest is to find the curve that has the minimum

average curvature, assuming a curved path.

This problem can be specified using the technique of

Lagrange multipliers, to yield the integral

ZL

0

ðh0ðlÞÞ2 þ k cos h ðlÞ � X1

L

� �
þ l sin h ðlÞ � Y1

L

� �
dl

where

X1 ¼ x ðLÞ ¼
ZL

0

cos h lð Þdl

Y1 ¼ y ðLÞ ¼
ZL

0

sin h lð Þdl

We are now searching for the function hðlÞ which

minimizes the above integral.

This problem can be solved using standard techniques of

the calculus of variations, e.g., the Euler–Lagrange equa-

tion and Lagrange multipliers (see Appendix B).

It is found that the required function satisfies the

following differential equation:

dh
dl
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h� cos x
p

The solution of this differential equation is a so-called

elliptic integral, which cannot be written in closed form.

However, it can be approximated by the following equation

which provides a tractable form for hðlÞ (see Appendix B):

hðlÞ ¼ x sin
2pl

L

� �
ð2Þ

This curve, known as a ‘‘sine-generated’’ curve, is

characterized by x, the maximal angle it makes with the

horizontal.

The average curvature per unit length, as defined above,

can now be rewritten as:

�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

ZL

0

ðh0ðlÞÞ2 dl

vuuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

ZL

0

4p2x2 cos 2pl
L

� �� �2
L2

dl

vuuut

The radius of curvature, R, of the sine-generated curve

at its peak (as shown in Fig. 2) can also be theoretically

Fig. 2 The parameters of interest in analyzing tortuosity. L is path

length, k wavelength, and R radius of curvature. The maximal

direction angle is x. This is considered as a given in the model—it

may be the result of chance, or local anatomy
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calculated. The answer comes out in very simple form:

R ¼ L
2px. In comparing the results of the model to vessel

data, we are interested in the ratio L/R (to normalize by

vessel length). This has the even simpler form:

L=R ¼ 2xp: ð3Þ

Not discussed further in this paper are a variety of

checks we performed against normalized sine curves and

spline curves to verify that the sine-generated curves given

by Eq. 2 indeed provide the curves of minimum average

curvature as defined by Eq. 1.

Blood vessel measurements

The mathematical parameters of interest, L/R, and L/k, can

all be measured on vessel segments for comparison to the

mathematical model (Fig. 3). For the model and the mea-

surements on vessels, the wavelength is defined as in a

sine/cosine wave, from trough to trough.

Thirty-four vessel segments were chosen from sequen-

tial angiograms performed at our hospital, including cor-

onary, superficial temporal, retinal, hepatic, renal, gastric,

splenic, and mesenteric arteries. Patient ages ranged from

Fig. 3 Angiographic images illustrating the measurement of path length L (a), wavelength k (b), radius of curvature R (c), and maximal

direction angle x (d) on a vessel segment in the superficial temporal artery
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19 to 97, with an average age of 59. Patients with coronary

angiograms were being worked up for angina and valvular

disease (mitral regurgitation). Abdominal angiograms were

performed primarily for hepatocellular carcinomas. Cere-

bral angiographic studies were performed for patients with

headache, CVA, and TIA, and one patient with moya

moya. In all cases, normal vessels were chosen away from

the region of disease (e.g., splenic, renal, or mesenteric

arteries from angiograms performed for hepatocellular

carcinoma).

Using Universal Ruler, the wavelength k, path length L,

radius of curvature R, and maximal angle of deflection

from the flow direction x, were manually measured and

tabulated as shown in Fig. 3. For each vessel segment, the

ratios L/R, and L/k were calculated. For each vessel seg-

ment, these values were then compared to the theoretical

values obtained from the corresponding sine-generated

curve (determined by the same value of x).

Results

Results of the mathematical model

Using the techniques of the calculus of variations (see

‘‘Mathematical modeling’’, above, and Appendices A and

B), a closed form mathematical function is derived which

provides a curve of minimum average curvature per unit

length. This is called a sine-generated curve (Eq. 2), whose

intrinsic form, h ðlÞ ¼ x sin 2pl
L

� �
; represents an infinite

family of curves, each specified by the value of x. Any

curve of this family can be transformed into a set of

parametric equations which represent the curve conven-

tionally on Cartesian coordinates:

x ðtÞ ¼
Z t

0

cosð/ ðlÞÞ dl ¼
Z t

0

cos x sin
2pl

L

� �	 

dl

y ðtÞ ¼
Z t

0

sin(/ ðlÞÞ dl ¼
Z t

0

sin x sin
2pl

L

� �	 

dl

The shape of the sine-generated curve will be essentially

uniquely determined by x. Figure 4 shows the appearance

of the sine-generated curves for several values of x. It is

noted that sinuosity (the ratio L/k) increases with

increasing x.

It is stressed that the sine-generated curve is not a sine

(or cosine) curve. The curve itself is not sinusoidal. Rather,

its direction angle varies in a sinusoidal fashion with dis-

tance along the curve. This is illustrated in Fig. 5.

Parameters of interest for the sine-generated curves are

the ratio of the path length L to the wavelength k, and the

ratio of L to R. These parameters are calculated using

Matlab. L/R is given directly by Eq. 3 (L=R ¼ 2xp), while

s = L/k is easily obtained as part of the Matlab program-

ming of the curves.

As can be seen from Fig. 4, both L/R and sinuosity,

s = (L/k), vary directly with x. For smaller values of x,

the curve is less steep, and hence the radius of curvature is

bigger. Thus, both L/k and L/R are smaller for smaller x.

Since vessels appear sinusoidal, some may assume that

they can be described by simple sine curves. To test the

standard sine curve for goodness of fit against the sine-

generated curve in comparison to real vessel data, both L/R

and sinuosity (L/k), need to be obtained for the sine curve.

This can be done by integration using the following for-

mulas from calculus, and recalling that for the sine curve,

k = 2p:

y ¼ sin x

L ¼
Z2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

RðxÞ ¼
1þ dy

dx

� �2
h i3=2

d2y

dx2

The radius of curvature, R, is calculated at the peak of

the sine curve, i.e. x = p/2. Using these formulas, we get

for the sine curve that sinuosity (L/k) = 1.216, and

L/R = 7.64.

Results of vessel analysis

As shown in Fig. 3, the same parameters that were calcu-

lated for the sine-generated curves can be measured for

actual vessel segments. Analysis of the tortuous segment of

superficial temporal artery shown in Fig. 3 yields the fol-

lowing results: the measured value of x is 42�. The cor-

responding sine-generated curve with an x of 42� has

an L/k of 1.14 and an L/R of 4.61. For the actual vessel,

measured values in pixel units are L = 78, k = 68, and

R = 16, leading to calculated values of L/k = 1.15 and

L/R = 4.88. This corresponds to absolute value errors of

0.62% in L/k and 5.44% in L/R.

In Fig. 6, the same analysis is undertaken for a left

coronary artery segment. The measured value of x is 24�.

The corresponding sine-generated curve with an x of 24�
has an L/k of 1.05 and an L/R of 2.64. For the actual vessel,

measured values in pixel units are L = 339, k = 311, and

R = 130, leading to calculated values of L/k = 1.09 and

L/R = 2.61. This corresponds to absolute value errors of

3.67% in L/k and 1.24% in L/R.

As can be seen from the above examples, a direct

comparison can be made between measurements on tortu-

ous vessel segments and theoretical results from the
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corresponding sine-generated curves, as determined by the

appropriate value of x, the maximal angle which the vessel

makes with the ‘‘horizontal’’, i.e., the direction of vessel

flow.

For all vessel segments, compared to their correspond-

ing sine-generated curves, the average absolute value per-

cent error for L/k is 5.53 ± 4.1%, and the average absolute

value percent error for L/R is 5.83 ± 4.3%.

Fig. 4 Sine-generated curves for x = 20 (a), 40 (b), 60 (c) and 90 (d). These curves are rendered in Matlab using numerical integration,

assuming a path length (L) of 10 and a step length of 0.1. It is noted that sinuosity (the ratio L/k) increases with increasing x

Fig. 5 a Sine-generated curve

for x = 110�. Points are

specified along the curve where

the direction angle u is

measured. b A graph of the

direction angle as a function of

distance along the sine-

generated curve in a. Modified

from original with the kind

permission of Brian Hayes and

American Scientist
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When the vessel data are compared to a standard sine

wave, the average absolute value percent error for L/k is

12 ± 11.6%, while for L/R, it is 52.8 ± 53%.

A Student’s t test for samples with unequal variance

shows that, in comparison to actual vessel data, the sine-

generated curve gives a better fit than a sine curve with

high statistical significance. For L/k, p = 0.001, while for

L/R, p = 3.93 9 10-6.

Discussion

The phenomenon of vascular tortuosity is so ubiquitous

across the vascular tree, and the appearance of tortuosity is

so similar across vessels of vastly different sizes and

locations within the same individual, as well as across

individuals at large, that the phenomenon does not appear

to be random or accidental. Rather, these similarities sug-

gest that there is some physical cause underlying and

governing the shape of vessel curves.

Given the emerging clinical significance of the study of

normal versus abnormal tortuosity, it becomes important to

investigate whether valid mathematical models can be

developed which reasonably describe the shape of blood

vessels as they curve. If such models can be found, it not

only opens the door to understanding why normal tortu-

osity has the shape it does (as an interesting physiological

question) but also to investigating and quantifying the

phenomenon of abnormal tortuosity. For example, as noted

by Bullit et al. [7], ‘‘vessel shape analysis could provide an

important means of assessing tumor activity’’. Such an

analysis, however, would optimally require some under-

standing of the shape of the normal, or physiologic, tor-

tuosity ubiquitously found in vessels. If such modeling

Fig. 6 a–d Tortuous segment of a left coronary artery. x is measured

at 24�. Based on this, the theoretical value of L/k is 1.05 and of L/R is

2.64. For the vessel segment, calculated values of L/k are 1.09 and of

L/R are 2.61. This corresponds to absolute value errors of 3.67% in L/

k and 1.05% in L/R
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efforts are fruitful, then the analysis of vessel tortuosity

could move from the binary realm of ‘‘increased’’ or

‘‘decreased’’ tortuosity, as is present in much of the current

literature, to asking the additional question of ‘‘normal’’

versus ‘‘abnormal’’ tortuosity, as astutely posed by Bullit

et al.

Thus, modeling would facilitate more accurately posing

and answering such questions as whether disease states

produce a type of tortuosity which deviates from normal,

and perhaps quantifying, according to specific parameters

derived from modeling, the degree of deviation from phys-

iologic tortuosity. It is important to note that such deviations

do not always imply increased tortuosity. As cited above,

decreased retinal tortuosity may correlate with the increased

risk of death from ischemic heart disease, while decreased

cerebral vessel tortuosity is a phenotype associated with

premature birth, and which does not recover when age is

adjusted to term. Furthermore, Saba and Mallarini [13] have

investigated the relationship of the tortuosity of cervical

internal carotid arteries and the risk of stroke, finding that

increased ‘‘coils,’’ do not lead to greater stroke risk, but that

increased ‘‘kinks’’ do increase the risk of ischemic stroke.

Clearly, these qualitative findings imply that ‘‘more,’’ or

‘‘less,’’ tortuosity are insufficient descriptors, and that the

shape of the tortuosity matters. Such analyses, including the

important analysis of tumor vascularity, would thus be

greatly enhanced by the availability of valid mathematical

models of physiologic tortuosity, which describe the shape

of the normal meandering of vessels.

A key question in building a model de novo is to specify

the main physical principle or principles which are

believed to govern the shape of normal tortuosity. It is, of

course, understood that no single principle or set of prin-

ciples will be sufficient to fully specify the shape of

tortuosity, as in the human body there will be enormous

complexities given the variability of anatomic structures,

random physical variations, etc., which will influence

vessel shape and course. Thus, the model is by necessity an

idealization and simplification of the true course of blood

vessels. However, given the significance of blood vessels to

higher life forms, and the sheer enormity of the vascular

network, it is assumed that such a system would obey some

principles of optimal design. Such a notion is not entirely

novel, and principles of optimality have been previously

used to model the branching patterns within the vascular

tree [14]. Such models relied on the notion of cost mini-

mization, attempting to minimize the work done in

pumping blood through a branching vascular network.

This paper models the phenomenon of physiologic tor-

tuosity with the assumption that the underlying physical

principles which govern the shape of tortuosity also obey

constraints of optimality. Knowing that vessels curve, the

model is based on finding the curved path of minimal

average curvature between two points. In other words, the

model gives the path for which the sum of the squares of

changes in angular direction that a particle would make

when traveling this path is minimized. In theory, this

should minimize the shear stress against vessel walls

caused by blood having to change direction. Also, it should

help minimize the energy needed to accelerate blood

through the vessel.

Our analysis is based on prior studies of tortuosity in

nature, which formulated this model to analyze the phe-

nomenon of meandering in flowing rivers, which somewhat

resembles the tortuosity of vessels. While the original

derivations of Leopold, Langbein and Luna [15] used a

probabilistic analysis to derive the sine-generated curves,

this paper presents the river meandering analysis of Mov-

shovitz-Hadar and Shmukler (see Appendices A and B for

their derivation), setting up the optimization problem as a

deterministic problem in the calculus of variations, and

solving the resulting differential equation [16].

The model shows that the optimal curve in terms of

minimizing average curvature per unit length can be clo-

sely approximated by a function known in mathematics as

a ‘‘sine-generated’’ curve (Eq. 2). This belongs to a class of

intrinsic functions which describe a curve by specifying its

‘‘direction angle,’’ i.e., by describing how the direction of

the curve changes in terms of the angle it makes with

respect to the horizontal at each point along its path. For

the sine-generated curve, the direction angle of the curve

varies in a sinusoidal fashion along the length of the curve.

Once again, it is important to stress that such a curve is not

a sine curve, wherein the curve itself is sinusoidal. Rather,

for a sine-generated curve, the direction angle of the curve,

as a function of distance along the curve, varies in a

sinusoidal fashion.

Having found this curve, we can see that if the sine-

generated curve is a good approximation to the vessel

shape, then there will be a good correspondence between

the theoretical values of L/k and L/R as calculated for the

sine-generated curves and as measured for the vessels. If,

on the other hand, the vessel tortuosity is of a significantly

different shape than the sine-generated curve, there will be

a significant discordance between these values.

Our results demonstrate that this curve, according to the

parameters extracted from the model, provides a good

description of vessel tortuosity, with average absolute

value percent errors of 5–6%, and a significantly better fit

than that provided by a standard sine curve. Given the

almost infinite variety of the microstructures through which

these vessels course, this is an excellent agreement, sug-

gesting that a model such as this is a reasonable charac-

terization of vessel tortuosity.

Interestingly, it is noted that a probabilistic approach to

mathematical modeling leads to the same mathematical

140 J Physiol Sci (2012) 62:133–145
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model as the deterministic calculus of variations model we

employed. If a particle takes a random walk from point A

to point B in a fixed number of steps, while able to change

its direction at random at each step, it is possible to search

for the most probable resulting curve. This leads to the

same result as the deterministic calculus of variations

analysis [17]. Thus, the sine-generated curve derived by the

model possesses simultaneously three remarkable proper-

ties which, on theoretical grounds, suggest that it may

reflect nature’s way of shaping blood vessel tortuosity:

1. It is the curve with the minimum average curvature as

described above.

2. It is the curve of minimal total work in bending

(because the sum of the squares of changes in direction

is minimized). Thus, if an elastic rod is bent by

pushing its two ends together, the shape of the

resulting curve will be nearly identical to the sine

generated curve [18].

3. It is the curve which represents the average, or most

probable path, taken by a random walk of fixed length

[17]. Thus, if we assume that vessels, as they are

budding or coursing through tissue, are choosing their

direction randomly at each infinitesimal increment of

length, constrained to start at point A and end at point

B, the resulting ‘‘average’’ path will lead to the same

equations which produced the sine-generated curve

deterministically.

These results are important in seeking an understanding

of the phenomenon of physiologic tortuosity. More impor-

tant, though, is the potential impact of this sort of modeling

in the study of how tortuosity can deviate from normal in

disease states, particularly in tumors. Understanding the

shape of physiologic tortuosity can provide a framework to

identify and quantify deviations from normal.

Although entirely anecdotal, this approach is tested on 6

retinal vessel segments from a case of Fabry’s disease [19],

known to cause abnormal vascular tortuosity (see Fig. 7

and compare with Fig. 1a). In these vessel segments, there

is a significant deviation from the parameters calculated for

the corresponding sine-generated curves, with absolute

value average percent errors of 21.4% in L=k and 33.2% in

L=R. This indicates that these vessels deviate from the

normal or physiologic pattern of tortuosity (i.e., do not

follow the shape of sine-generated curves). This retinal

angiogram was obtained as part of depersonalized data

submitted to the Fabry Outcome Survey (FOS), a European

patient registry with the most comprehensive existing data

base on Fabry patients [19]. From this database, it is known

that retinal vessel tortuosity is present in 48.7% of male

patients, with this finding presenting at an average age of

31.9 ± 13.1 years [20]. Fabry’s disease is an X-linked

lipid storage disease secondary to deficiency of the enzyme

alpha galactosidase A; thus, it has broad systemic mani-

festations, most notably with cardiac, renal, ocular, and

neurologic abnormalities. The most common ocular man-

ifestation is cornea verticillata, reported in 73.1% of male

patients [21]. However, this finding was not found to cor-

relate either with disease severity or the likelihood of dis-

ease progression. The presence of retinal vascular

tortuosity, conversely, was found to be strongly correlated

both with disease severity at presentation (p = 0.01), as

well as with disease progression [21]. For example, patients

with retinal vessel tortuosity showed a more progressive

deterioration of renal function (p = 0.01) and a more rapid

increase in cardiac size (p \ 0.01) [21]. Furthermore, the

mean age at presentation of left ventricular hypertrophy

was 39.4 years, and for renal disease requiring dialysis was

39.6 years, i.e., approximately 8 years after the detection

of retinal vascular tortuosity [20], suggesting that the

detection of retinal vascular tortuosity has prognostic sig-

nificance. This conclusion was reached by the FOS inves-

tigators, who stated that the FOS data ‘‘suggest a positive

predictive value in performing regular eye examinations

(particularly focusing on vessel tortuosity) in patients with

systemic involvement’’. [21]. Thus, this case, while only

illustrative of method, along with the FOS data, under-

scores the importance of detecting retinal vessel tortuosity,

and provides an example of the potential utility of models

such as the one presented here.

Clearly, the current work has a variety of limitations,

including an ad hoc way in which vessel segments were

Fig. 7 Retinal fluorescein angiogram from a patient with Fabry’s

disease showing increased vascular tortuosity with abnormal ‘‘cork-

screw’’ vessels. Reproduced from: Fabry disease: Perspectives from

5 years of FOS (2006) with permission from Oxford PharmaGenesis

Ltd.
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chosen for analysis. For the purposes of this initial investi-

gation, smoothly curved, regular-appearing, sinusoidal-type

vessel segments were chosen for analysis, with the rationale

that, if these segments cannot be successfully modeled, then

it would be futile to attempt to model the more irregular

vessel courses sometimes seen in the body. Certainly, it

would be possible to pick other vessels with irregular

shapes, kinks, etc., which would show the same deviations

from the sine-generated model as do the abnormal retinal

vessels analyzed above. Also, there is bound to be some

distortion in vessel shape as three-dimensional vessels are

rendered as two-dimensional images for the purposes of

angiograms, and there is some variability in manually des-

ignating the radius of curvature, providing a significant

range of variability in possible results. Overall, however, it

is hoped that the results of this preliminary work, which

provides the first model in the literature attempting to

explain physiologic tortuosity in terms of optimal design

criteria, serves as a useful starting point for more detailed

work, and a springboard for further investigation of tortuosity

in health versus disease states, augmenting the pioneering

efforts begun by the other groups cited herein.

Appendix A: Deriving the equation of a smooth path

of minimal curvature

Consider the x–y plane. Let us say that point C is a point in

this plane and that we will connect point O to point C by a

smooth path of length L (see Fig. 8). Our goal will be to

derive parametric equations that will allow us to describe

the path from O to C.

Let us say that point P(x,y) is a point on the path from O

to C. The length of the path from O to P will be denoted by

l. Additionally, let us define h to be the angle between the

positive direction of the x-axis and the line tangent to the

path at point P. Next, we will say that point P0 ðxþ Dx; yþ
DyÞ is a point on the path that is close to point P. If the

distance between P and P0 is made small enough, it

becomes reasonable to use the tangent at point P to

approximate the location of P0.
If we say that P and P0 can be connected by a straight

line (approximately) then we can say:

Dx

Dl
� cos h

Dy

Dl
� sin h

where Dl is the O to C in going from P to P0. If we take the

limit for Dl! 0, then

dx

dl
¼ cos h ð1aÞ

dy

dl
¼ sin h ð1bÞ

These equations are satisfied by each value l in

0 \ l \ L. We can see that, when the value of l changes,

the values of x, y, and h will change in response and so we

can think of x, y, and h as functions of l. The functions x(l)

and y(l) describe the position of a point on the curve and

h(l) describes the direction of the curve at that point.

To find functions for x and y, we can integrate the two

above equations with respect to l. This gives us:

xðtÞ ¼
Z t

0

cos hðlÞ dl ð2aÞ

yðtÞ ¼
Z t

0

sin hðlÞ dl ð2bÞ

where t is a variable parameter in the segment (0,L). The

above two equations are the parametric equations that

describe the path from O to C, where h(l) is the direction

function of the path.

We will say that the length of the path from O to P is l

and that the length of the path from O to P0 is lþ Dl. We

can now define the average curvature of the path between P

and P0 to be:

hðlþ DlÞ � hðlÞ
Dl

If we take the limit of this expression as Dl! 0; we can

find the curvature at point P. Because the direction angle at

any point is a function of l, we can also express the curvature

as a function of l. We will denote this function by c(l):

cðlÞ ¼ lim
Dl!0

hðlþ DlÞ � hðlÞ
Dl

¼ h0ðlÞ

Fig. 8 Region around P showing P0 along with tangent at P
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We can now write that the average curvature, �c; as the

integral square average of h0ðlÞ:

�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

ZL

0

ðh0ðlÞÞ2 dl

vuuut

This is the continuous analog of the mean square value

of n numbers.

Our interest is to find the curve from point O to point C

that has the minimum average curvature, assuming a

curved path. By examining our expression for �c; and

remembering that the square root function always increases

along its domain, then we can simplify our problem by

noting that we will minimize �c if we minimize the integral:

ZL

0

ðh0ðlÞÞ2 dl ð3Þ

Before we can do this, however, we must realize that

there are two constraints that must be imposed on the

integral above: the x and y coordinates of the path’s

endpoint C. Attempting to minimize the above integral

would allow us to find the minimum curvature for any path

of length L. However, we are looking for the minimum

average curvature of a path of length L that ends in point C.

The constraints can be specified by saying that the

coordinates of point C are X1 and Y1. Using the

parametric equations (Eqs. 2a and 2b) that we developed

for the x and y coordinates of any point on the curve, we

can say that:

X1 ¼ xðLÞ ¼
ZL

0

cos hðlÞ dl

Y1 ¼ yðLÞ ¼
ZL

0

sin hðlÞ dl

Equivalently,

ZL

0

cos hðlÞ dl� X1 ¼ 0 ð4aÞ

ZL

0

sin hðlÞ dl� Y1 ¼ 0 ð4bÞ

Conceptually, our minimization problem can now be

rephrased as the following: minimize Eq. 3 given the

functions h(l) that are continuous, have a continuous

derivative, and satisfy Eqs. 4a and 4b.

We can incorporate the two constraints imposed by the

path’s endpoint C by using the technique developed by

Lagrange. We can begin by writing a new expression that

incorporates the integral that we wish to minimize as well

as our two constraints:

ZL

0

ðh0ðlÞÞ2 dlþ k
ZL

0

cos hðlÞ dl� X1

0
@

1
A

þ l
ZL

0

sin hðlÞ dl� Y1

0
@

1
A

which simplifies to

ZL

0

ðh0ðlÞÞ2 þ k cos hðlÞ � X1

L

� �
þ l sin hðlÞ � Y1

L

� �� �
dl

ð5Þ

Appendix B: Solving the differential equation

As was discussed above, our model is based on finding a

function h(l) that produces a curve from O to C with

minimal average curvature. We concluded that such a

function, h(l), must minimize the integral shown in Eq. 5:

ZL

0

ðh0ðlÞÞ2 þ k cos hðlÞ � X1

L

� �
þ l sin hðlÞ � Y1

L

� �� �
dl

Using this integral to find the desired function h(l) is a

problem in the calculus of variations and requires what is

known as the Euler–Lagrange equation, which is one of the

fundamental theorems of the calculus of variations.

We begin by designating the integrand in Eq. 5 as:

FðhÞ ¼ ðh0ðlÞÞ2 þ k cos hðlÞ � X1

L

� �
þ l sin hðlÞ � Y1

L

� �

Now let us call F0h and F0h0 the partial derivatives of F

with respect to h and h0 respectively. The Euler–Lagrange

equation states that a function h(l) that minimizes Eq. 5

will satisfy the following differential equation:

F0h ¼
d

dl
ðF0

h
0 Þ

From the equation for FðhÞ; we get that:

F0h ¼ �k sin hðlÞ þ l cos hðlÞ
d

dl
ðF0h0 Þ ¼ 2ðh00ðlÞÞ

By substituting these equations into to Euler equation,

we get:

2ðh00ðlÞÞ ¼ �k sin hðlÞ þ l cos hðlÞ
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This gives us a second degree differential equation with

h(l) being the unknown function.

Ideally, we would now like to solve this differential

equation to find the function h(l) that will minimize the

curvature of the path from point O to point C. However it

has been shown to be impossible to find an explicit closed

form solution to our differential equation. We can, how-

ever, find an approximate solution which, when tested,

proves to be quite a good approximation. The derivation of

the approximate solution is presented below.

We begin by multiplying the differential equation by dh
dl

:

2
dh
dl
ðh00ðlÞÞ ¼ �k

dh
dl

sin hðlÞ þ l
dh
dl

cos hðlÞ

By integrating this equation with respect to l, we get:

d

dl

dh
dl

� �2

¼ k
d

dl
ðcos hðlÞÞ þ l

d

dl
ðsin hðlÞÞ

which can be rewritten as:

d

dl

dh
dl

� �2

�k cos hðlÞ � l sin hðlÞ
 !

¼ 0

In the above form, we can clearly see that this equation

implies that:

dh
dl

� �2

�ðk cos hðlÞ þ l sin hðlÞÞ ¼ C

where C is an arbitrary constant.

We now note that the use of a few algebraic manipu-

lations allows us to transform the expression:

k cos hðlÞ þ l sin hðlÞ

to

U cosðhðlÞ � hÞ þ C

where U and h are constants that depend on the values of

k and l. We can then rewrite the previous equation as:

dh
dl

� �2

¼ U cosðhðlÞ � hÞ þ C ð6Þ

As has been discussed earlier, it is reasonable to assume,

based on the shape of the blood vessels as they curve, that
dh
dl

is not a linear function. This implies that the value of U

must be non-zero.

Let us also assume that h(l) changes in the range:

�x� 0�x

where x is the maximal angle that h(l) can reach. We will

now choose the value of h to be the average value of h(l),

and we will assume that this value is 0. This is a reasonable

assumption for a blood vessel wave that has an

approximate line of symmetry at l = L/2. The blood ves-

sels used for this paper have been chosen to assure the

validity of this assumption. Now, we will choose the values

of C and U such that the following two conditions are met:

1. The right-hand side of Eq. 6 must be non-negative.

2. The solution of Eq. 6 is a periodic function in the

variable l. We impose this condition based on consid-

eration of what we already know to be the shape of the

blood vessels.

By inspection, we find that we can meet these two

conditions by choosing the following values for C and U:

U ¼ a2

C ¼ �U cos x

Plugging the values of h, C, and U into Eq. 6, we get:

dh
dl
¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h� cos x
p

as noted above. This can be rewritten as:Z
dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h� cos x
p ¼ a� l ð7Þ

Equation 7 specifies in an implicit form an infinite set of

solutions. As mentioned earlier, it is impossible to find an

explicit form for this equation. We can, however, calculate

an approximation to the integral which will then allow us to

find explicit solutions to the integral. We will start with the

trigonometric identity:

cos h� cos x ¼ �2 sin
hþ x

2
� sin

h� x
2

Let us assume that x is relatively small. We can then use

the approximation that sin x & x which applies for only

small values of x. Then, we can say that:

cos h� cos x � �2
hþ x

2
� h� x

2
¼ x2 � h2

2

We can then rewrite Eq. 7 as:
Z

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � h2
p ¼ a� l ð8Þ

Calculating the integral, we get:

arcsin
h
x
¼ a� lþ b

where b is an arbitrary constant. Rearranging gives:

h ¼ x sinða� lþ bÞ ð9Þ

The above equation gives an infinite number of explicit

solutions to the differential equation derived using the

Euler–Lagrange equation. We now wish to assign values to

the constants a and b. In order to do this, we must make
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one final assumption. We will assume that the path is

tangent to the x-axis at the endpoints of the path (i.e. when

l = 0 and l = L). With this assumption and the equation

above, we get:

0 ¼ x sinða� 0þ bÞ ¼ x sinðbÞ and thus b ¼ 0

Equation 9 then simplifies to:

h ¼ x sinða� lÞ

from which we can say that:

0 ¼ x sinða� LÞ and thus a ¼ 2p
L

Plugging in this value for a into Eq. 9 gives us the

approximate solution to the differential equation derived

using the Euler–Lagrange equation:

hðlÞ ¼ x sin
2pl

L

� �
ð10Þ

where 0� l� L:

The model shows that the sine-generated curve (Eq. 10)

is a reasonable and tractable closed-form approximation to

the elliptic integrals which represent the curve of minimal

average curvature.
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