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Abstract Physical performance of youth is influenced by

various factors, including body composition, biological

maturity status, level of habitual physical activity, and mus-

cular strength. Muscular strength has been largely attributed to

genetic effects. To exclude possible confounding effects from

various acquired factors, this study examined the relationships

between polymorphisms of the angiotensin-converting

enzyme (ACE), a-actinin-3 (ACTN3), peroxisome prolifera-

tor-activated receptor delta (PPARD), and peroxisome pro-

liferator-activated receptor gamma coactivator-1 alpha

(PPARGC1A) genes and performance as measured by six

fitness tests (handgrip strength of dominant hand, 30- and 60-s

sit-ups, standing long jump, 60-m dash, and 800-m run) in

170 sedentary adolescent girls with the adjustment of

anthropometric characteristics. We found that subjects with

the ACE DD genotype were significantly heavier than those

with I allele, while those with the ACTN3 RR genotype had

higher fat-free mass percentage (FFM%) than those with the

XX genotype. In addition, those with the PPARD TT genotype

were significantly taller, heavier, and had a greater FFM than

those with the CC genotype. Subjects with the ACE DD,

ACTN3 RR and PPARD TC genotype had better performance

in handgrip strength, 30- and 60-s sit-up tests, and standing

long jump, respectively, when individual gene was analyzed

independently after adjusting anthropometric characteristics.

In the gene combination analysis, subjects with ACE DD,

ACTN3 RR and PPARD TT genotype had significantly greater

performance in handgrip strength. Overall, the results indicate

that the genes studied have a modest influence on individual

performance as assessed by specific fitness and strength tests

in female late adolescents.
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Body composition � FFMI � Handgrip strength

Introduction

It has been reported that the physical performance of youth is

influenced by a variety of factors, including age, sex, body

size, and composition, biological maturity status, level of

habitual physical activity and muscular strength [1, 2].

Among them, muscular strength can be attributed to genetic

effects varying from 0.27 to 0.58 based on family studies and

between 0.14 and 0.83 based on twin studies [3]. Recently,

the development of technology for rapid DNA sequencing

and genotyping has allowed the identification of some

individual genetic variations that contribute to physical

performance. Bray et al. [4] has comprehensively reviewed
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genes and markers that show evidence of association with

performance or fitness phenotypes in sedentary or active

people, in responses to acute exercise, and in terms of

training-induced adaptation. Among the 214 listed autoso-

mal genes, angiotensin-converting enzyme (ACE) and

a-actinin-3 (ACTN3) are the genes with the highest number

of positive findings. Most studies have linked the ACE I

allele to endurance performance [5] and the D allele to

muscle strength and power-oriented performance [6–8]. The

ACTN3 R allele is prevalent among sprint athletes and

the X allele is less common among sprinters, particularly in

the homozygous form (XX) [9–13].

In addition to ACE and ACTN3, there is emerging evi-

dence that the peroxisome proliferator-activated receptor

delta (PPARD) [14, 15] and peroxisome proliferator-acti-

vated receptor gamma coactivator-1 alpha (PPARGC1A)

[16] gene may play an important role in physical perfor-

mance. Recently, Eynon et al. [17] found that the PPARD

T294C polymorphism together with peroxisome prolifera-

tor-activated receptor c coactivator-1a (PPARGC1A) play

an important role in endurance-type performance.

There are few data available on the combined influence

of polymorphisms of ACE, ACTN3 and other genes on

physical capability phenotypes, especially in non-athletic

populations [18–21]. Furthermore, physical performance is

also determined by a range of acquired factors such as age,

body composition, and physical training. To exclude pos-

sible confounding effects from these factors, the present

study was carried out to examine the relationships between

the ACE, ACTN3, PPARD, and PPARGC1A genotypes and

performance in fitness tests by sedentary female adoles-

cents (16–18 years).

Methods

Subjects

This study was conducted according to the Harriss and

Atkinson Statement [22] and approved by the Institutional

Review Board of Chang Gung Memorial Hospital. To

exclude the possible influences of menstrual and disease

status on physical performances, we first surveyed the

disease history as well as the menstrual cycle length and

the first day of the latest menstrual bleeding for all the 11th

grade (16–18 years old) female students. Only those stu-

dents with a regular menstrual cycle length of 28–30 days

and the first day of their latest menstrual bleeding were

within just 3 days were asked to participate the present

study. Finally, a total of 170 sedentary female students

without cardiovascular, metabolic, or musculoskeletal dis-

eases were included for the present analysis. All parents

gave written consent and each girl also provided individual

written assent. Body mass index (BMI) was calculated as

weight (kg) divided by square of the height (m2). The

percentage of body fat was estimated by bioelectrical

impedance analysis using an OMRON (HBF-355) hand-to-

foot body composition monitor (Omron Healthcare, Kyoto,

Japan) [23] and was used to calculate the fat-free mass

FFM (kg) and the fat-free mass percentage (FFM%). The

fat-free mass index (FFMI) was calculated as the FFM (kg)

divided by the square of the height (m2).

According to the Taiwan physical fitness test manual

[24], six fitness tests were carried out without any prior

training. They were (1) handgrip strength of the dominant

hand, (2) 30- and 60-s sit-ups, (3) a standing long jump, (4)

a 60-m dash, and (5) a 800-m endurance run. All the tests

were executed in the morning and all the subjects com-

pleted the same test on the same day. In addition, 5 mL of

saliva was collected from each participant and centrifuged

at 800g for 10 min at room temperature to obtain oral

mucosa cells for genotyping.

Genotyping

Genomic DNA was purified from oral mucosa cells by

digestion with proteinase K and then extracted using a

conventional phenol/chloroform procedure. Genotyping of

the ACE I/D (rs1799752) was performed using polymerase

chain reaction (PCR) as previously described [25]. The

genotypes ACTN3 R577X (rs1815739) and PPARD T294C

(rs2016520) were determined by PCR restriction fragment

length polymorphism (RFLP) as described by Mills et al.

[26] and Ahmetov et al. [14], respectively. The conditions

for PCR were as shown in Table 1. Since it has been

reported that amplification of the ACE I allele is sometimes

suppressed in ID heterozygotes and mistyped as the DD

genotype [27], all the samples classified as DD genotype

were checked with a second PCR reaction using an I-spe-

cific primer pair: 50-TGGGACCACAGCGCCCGCCACT

AC-30 (forward) and 50-TCGCCAGCCCTCCCATGCCCA

TAA-30 (reverse) [28]. The ACTN3 and PPARD genotypes

were determined by enzymatic digestion of their amplicons

with Dde I and Bsc4I, respectively. The PPARGC1A

Gly482Ser (rs8192678) genotype was determined as

described previously [29] using TaqMan-based allelic

discrimination assay on a 7500 Real-Time PCR System

(Applied Biosystems, Foster City, CA, USA).

Total genotype score (TGS) determination

The combined influence of the four studied polymorphisms

was determined in a similar manner to the previous study

by Ruiz et al. [20]. A genotype score (GS) for the ‘optimal’

or preferable endurance genotype in each polymorphism

was assigned as 2, whereas a GS of 0 was assigned to the
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least optimal genotype (Table 2). The sum of the GS from

the genes studied (i.e. GSACE ? GSACTN3 ? GSPPARD) was

designated as the TGSACE?ACTN3?PPARD.

Statistical analysis

All statistical analyses were performed using SPSS v.13.0

(SPSS, Chicago, IL, USA). The distribution of genotypes

studied was tested for the fulfilment of Hardy–Weinberg

equilibrium status by using a Chi-square test with one

degree of freedom. The differences in anthropometric

characteristics among the different genotypes were com-

pared by one-way analysis of variance (ANOVA) or the

Kruskal–Wallis test depending on the normality of the

variables. The differences in physical performance among

the different genotypes were compared by analysis of

covariance (ANCOVA) adjusted for height, body weight,

BMI, FFM%, FFM, and FFMI. The level of significance

was set at 0.05. All reported p values are 2-sided.

Results

The distribution of genotype for these four genes studied was

not deviated from Hardy–Weinberg equilibrium (all p values

[0.05). The association between anthropometric charac-

teristics and ACE, ACTN3, PPARD, and PPARGC1A poly-

morphisms were shown in Table 3. Subjects with the ACE

DD genotype (61.6 kg) were significantly heavier than those

with the ID (54.9 kg) and the II (55.4 kg) genotype. Subjects

with the ACTN3 RR genotype (71.0%) had higher FFM%

values than those with the XX genotype (68.6%). In addition,

those with the PPARD TT genotype were significantly taller

(161.0 cm), heavier (57.1 kg), and had a greater FFM

(39.3 kg) than those with the CC genotype (157.1 cm,

51.8 kg, and 36.2 kg). On the other hand, BMI and FFMI

themselves were not significantly associated with the ACE,

ACTN3, PPARD, and PPARGC1A polymorphisms.

After adjustment of anthropometric characteristics

(height, weight, BMI, FFM%, FFM and FFMI), subjects

with the ACE DD genotype had greater handgrip strength

(28.3 kg) than those with the ID (25.0 kg) and the II

(25.6 kg) genotype (Table 4). Individuals with the ACTN3

RR genotype performed better in the 30- and 60-s sit-up

tests (18.7 and 34.1 counts) than those with the RX geno-

type (17.0 and 30.3 counts). Subjects with the PPARD TC

genotype (150.1 cm) performed significantly better in the

standing long jump test than those with the CC genotype

(136.9 cm). Subjects with the PPARGC1A Gly/Gly geno-

type (34.4 counts) performed significantly better in the 60-s

sit-up test than those with the Gly/Ser genotype (30.5

counts). However, there were no associations between the

genotypes and either 60-m dash or 800-m endurance run

test.

The combined gene influence on physical performance

was further explored. As shown in Table S1 (supplementary)

Table 1 Forward/reverse primers and PCR conditions for ACE, ACTN3, and PPARD genotyping

Gene Forward primer Reverse primer PCR reaction conditions

(50–30) (50–30) Denaturation Annealing and cycles Final extension

ACE CTGGAGACCACTC

CCATCCTTTCT

GATGTGGCCATCA

CATTCGTCAGAT

95�C for 5 min 35 cycles of 95�C for 1 min,

58�C for 30 s, 72�C for 40 s

72�C for 10 min

ACTN3 (exon 16) CTGTTGCCTGT

GGTAAGTGGG

TGGTCACAGTAT

GCAGGAGGG

95�C for 5 min 35 cycles of 95�C for 1 min,

58�C for 30 s, 72�C for 40 s

72�C for 10 min

PPARD (exon 4) CATGGTATAGCAC

TGCAGGAA

CTTCCTCCTGTG

GCTGCTC

95�C for 5 min 35 cycles of 95�C for 1 min,

60�C for 30 s, 72�C for 40 s

72�C for 10 min

Table 2 Genotype score (GS) and frequency distribution of ACE, ACTN3, PPARD, and PPARGC1A studied in Taiwanese female late

adolescents

Gene Polymorphism Genotype score (GS) Frequency (%)

ACE 287-bp Ins(I)/Del(D) 0 = DD, 1 = ID, 2 = II 7, 44, 49

ACTN3 Arg(R)577Ter(X) 0 = RR, 1 = RX, 2 = XX 27, 53, 20

PPARD T294C 0 = TT, 1 = TC, 2 = CC 38, 45, 17

PPARGC1A Gly482Ser 0 = Ser/Ser, 1 = Gly/Ser, 2 = Gly/Gly 18, 58, 24

Genotype score: 0 = ‘‘optimal’’ sprint/power genotype

ACE Angiotensin-converting enzyme gene, ACTN3 a-actinin-3 gene, PPARD peroxisome proliferator-activated receptor delta gene, PPARGC1A
peroxisome proliferator-activated receptor gamma coactivator-1 alpha gene
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and Table 5, TGSACE?ACTN3?PPARD?PPARGC1A was only

marginally associated with handgrip strength, while

TGSACE?ACTN3?PPARD was associated with handgrip

strength and 60-s sit-up. Additionally, it is worth noting that

the maximum handgrip strength (41.4 kg) found among all

the subjects was an individual who did not have the ‘‘opti-

mal’’ gene profile for the least endurance group, namely a

TGS of 0.

Discussion

In this study, we found that performance in the handgrip

strength, 30-/60-s sit-up, standing long jump, and 60-s sit-up

test results were significantly associated with ACE, ACTN3,

PPARD, and PPARGC1A polymorphisms, respectively, in

sedentary female late adolescents after adjusting for

anthropometric characteristics (Table 4). The ACE D allele

is associated with higher ACE activity and thus an increased

angiotensin II level [30]. Therefore, this allele would theo-

retically favor performance in power-oriented exercise tasks.

Previous studies have reported a positive association of the

ACE D allele and baseline grip strength in healthy untrained

subjects [8], patients with chronic obstructive pulmonary

disease [31], advanced cancer patients [32], and elite

strength-trained athletes [33]. In contrast, some studies have

failed to support such findings [28, 34]. Surprisingly, the

Moran et al. [35] study of teenage Greeks reported that the

homozygous I-allele individuals exhibited higher perfor-

mance scores. In the present study, an association between

ACE polymorphism and standing long jump was not

observed. Similar phenomenon was also noted by Rodri-

guez-Romo et al. [36] in young non-athletic adults.

It has been reported that ACTN3 XX genotype precluded

top-level athletic performance in ‘‘pure’’ power and sprint

sports (sprinting, jumping, weightlifting, and throwing

events), especially among women [13]. In the present

study, we found that those with the ACTN3 RR genotype in

combination with the ACE DD genotype performed sig-

nificantly better in terms of handgrip strength than those

with other genotype combinations (Tables S2 and S3).

However, no effect on standing long jump was observed.

Previous studies have also demonstrated that the ACTN3

R577X polymorphism does not seem to influence explosive

leg muscle power (jumping, sprinting) alone or in combi-

nation with the ACE I/D polymorphism in a young non-

athletic population, irrespective of gender [36]. Clarkson

et al. [37] and Walsh et al. [38] reported that women with

the ACTN3 XX genotype have lower strength than those

with the RX genotype. Chiu et al. [39] reported that

Table 3 Association between anthropometric characteristics and ACE, ACTN3, PPARD, and PPARGC1A polymorphisms

Genotype Height (cm) Weight (kg) BMI (kg m-2) FFM% FFM (kg) FFMI (kg m-2)

ACE

DD (n = 12) 163.3 ± 2.2 61.6 – 2.2b,c 23.1 ± 0.8 67.5 ± 1.1 41.3 ± 1.0 41.3 ± 1.0

ID (n = 74) 160.5 ± 0.6 54.9 – 1.1b 21.2 ± 0.4 70.0 ± 0.5 38.0 ± 0.5 38.0 ± 0.5

II (n = 84) 159.9 ± 0.6 55.4 – 1.1c 21.6 ± 0.4 70.1 ± 0.4 38.1 ± 0.5 38.1 ± 0.5

p value 0.152 0.023 0.102 0.115 0.055 0.112

ACTN3

RR (n = 46) 160.5 ± 0.8 54.3 ± 1.1 21.0 ± 0.4 71.0 – 0.6e 38.6 ± 0.6 41.3 ± 1.0

RX (n = 90) 161.0 ± 0.7 56.0 ± 1.1 21.5 ± 0.4 69.8 ± 0.5 38.2 ± 0.5 38.0 ± 0.5

XX (n = 34) 158.7 ± 0.7 56.4 ± 1.7 22.3 ± 0.6 68.6 – 0.7e 37.8 ± 0.8 38.1 ± 0.5

p value 0.126 0.766 0.296 0.04 0.735 0.514

PPARD

TT (n = 65) 161.0 – 0.7a 57.1 – 1.2d 22.0 ± 0.4 69.4 ± 0.6 39.3 – 0.6f 41.3 ± 1.0

TC (n = 77) 161.1 ± 0.6 55.8 ± 1.2 21.4 ± 0.4 70.2 ± 0.5 38.2 ± 0.5 38.0 ± 0.5

CC (n = 28) 157.1 – 0.9a 51.8 – 1.3d 21.0 ± 0.5 70.1 ± 0.7 36.2 – 0.7f 38.1 ± 0.5

p value 0.002 0.025 0.166 0.454 0.009 0.130

PPARGC1A

Ser/Ser (n = 31) 159.6 ± 0.9 56.5 ± 2.0 22.1 ± 0.7 69.0 ± 0.7 38.0 ± 1.0 14.9 ± 0.3

Gly/Ser (n = 98) 160.3 ± 0.6 54.5 ± 0.9 21.2 ± 0.3 70.2 ± 0.4 37.9 ± 0.5 14.7 ± 0.1

Gly/Gly (n = 41) 161.6 ± 0.8 57.5 ± 1.6 22.0 ± 0.5 70.1 ± 0.8 39.6 ± 0.6 15.1 ± 0.2

p value 0.259 0.197 0.234 0.361 0.149 0.269

Values expressed as mean ± SE

BMI Body mass index, FFM% far-free mass percentage, FFM fat-free mass, FFMI fat-free mass index
a–f The bold values indicate that there is a significant difference in the post hoc test using the a,f Scheffe and b–e Mann–Whitney U tests
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pre-adolescents with the ACTN3 RR genotype exhibited the

best performance across all phases (before, during, and

after training) of 25-m swimming performance. However,

in older women (64 years), knee extensor concentric peak

power was found to be higher in X allele homozygote

individuals compared with RR genotype individuals [40].

These discrepancies may reflect that there is an interaction

between age and genotype [41].

There is compelling evidence indicating that a functional

T294C polymorphism of PPARD influences human physical

performance [15]. In the present study, we found that the

subjects with the TC genotype demonstrated a better per-

formance in the lower extremity explosive power standing

long jump test than those with CC genotype. This finding

supports the hypothesis that the PPARD C allele is associated

with a predisposition to endurance performance [17].

The combined effect of the ACE, ACTN3, PPARD, and

PPARGC1A polymorphisms on performance across the six

fitness tests was further evaluated using the TGS index as

described previously [20]. In the present study, since there

was no subject with homozygous ACE DD, ACTN3 RR,

PPARD TT, and PPARGC1A Ser/Ser genotype, the greatest

mean handgrip strength was observed in subjects with

TGSACE?ACTN3?PPARD?PPARGC1A = 1 as expected (Table

S1). Furthermore, subjects that were homozygous ACE

DD, ACTN3 RR, and PPARD TT had the greatest handgrip

strength, which suggests that these ‘‘strength/power’’

alleles do indeed confer a performance advantage

(Table 5). However, it is also interesting to note that the

subject with the best handgrip strength performance did not

belong to the ‘‘optimal’’ (TGS = 0) power genotype group.

These findings indicate that the relationships between the

genetic traits and physical performance are quite complex

and not yet completely understood [19, 21, 42].

Handgrip strength has been linked to premature mor-

tality, disability, and other health-related complications in

middle-aged and older people [43–45]. In the present

study, we demonstrated an association between three

genetic polymorphisms (ACE I/D, ACTN3 R577X, and

PPARD T294C) and handgrip strength in sedentary female

adolescents (16–18 years). These results may provide evi-

dence that helps the development of recommendations such

as early specific nutritional and/or functional interventions

(e.g., resistance training activity) for those with a high TGS

index. In the future, polygenic physical fitness profiling of

a larger general population linked to specific nutritional/

Table 4 Association between the fitness test results and ACE, ACTN3, PPARD, and PPARGC1A polymorphisms

Genotype Handgrip

strength (kg)

Standing long

jump (cm)

30-s sit-up

(counts)

60-s sit-up

(counts)

60-m

dash (s)

800-m

run (s)

ACE

DD (n = 12) 28.3 – 1.2 152.6 ± 6.1 18.0 ± 1.2 32.3 ± 2.3 11.6 ± 0.4 290.1 ± 10.0

ID (n = 74) 25.0 – 0.5 144.5 ± 2.5 17.5 ± 0.5 31.6 ± 1.0 11.9 ± 0.2 287.2 ± 4.1

II (n = 84) 25.7 ± 0.5 146.0 ± 2.3 18.0 ± 0.4 32.0 ± 0.9 11.8 ± 0.1 281.7 ± 3.8

p value 0.048 0.421 0.734 0.941 0.649 0.535

ACTN3

RR (n = 46) 26.7 ± 0.6 143.8 ± 3.2 18.7 – 0.5 34.1 – 1.2 12.1 ± 0.2 285.2 ± 5.2

RX (n = 90) 25.1 ± 0.5 145.9 ± 2.2 17.0 – 0.4 30.3 – 0.8 11.7 ± 0.1 285.1 ± 3.7

XX (n = 34) 25.3 ± 0.8 147.5 ± 3.7 18.3 ± 0.7 32.8 ± 1.4 11.7 ± 0.2 282.8 ± 6.1

p value 0.141 0.751 0.048 0.029 0.355 0.940

PPARD

TT (n = 65) 25.6 ± 0.5 144.5 ± 2.5 17.6 ± 0.5 31.7 ± 1.0 11.9 ± 0.2 281.6 ± 4.3

TC (n = 77) 25.6 ± 0.5 150.1 – 2.4 17.8 ± 0.5 31.8 ± 0.9 11.6 ± 0.1 283.8 ± 4.0

CC (n = 28) 25.5 ± 0.8 136.9 – 4.0 18.0 ± 0.8 32.2 ± 1.6 12.1 ± 0.2 294.4 ± 6.7

p value 0.996 0.018 0.930 0.969 0.158 0.274

PPARGC1A

Ser/Ser (n = 31) 25.8 ± 0.8 146.9 ± 3.8 18.3 ± 0.7 32.9 ± 1.4 11.7 ± 0.2 288.6 ± 6.2

Gly/Ser (n = 98) 25.4 ± 0.4 146.4 ± 2.1 17.3 ± 0.4 30.5 – 0.8 11.8 ± 0.1 284.9 ± 3.5

Gly/Gly (n = 41) 26.2 ± 0.7 144.1 ± 3.4 18.7 ± 0.6 34.4 – 1.3 11.9 ± 0.2 281.2 ± 5.6

p value 0.589 0.825 0.126 0.026 0.652 0.675

Values expressed as mean ± SE adjusted for height, body weight, BMI, FFM%, FFM, and FFMI by ANCOVA

The bold values indicate that there is a significant difference in the Bonferroni post hoc test
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functional intervention studies will be required to provide

valid information on the true role of genetic factors on

physical fitness and health.

In conclusion, the results indicate that the studied genes

have a moderate influence on performance as measured by

specific fitness tests and the effect of the ACE and ACTN3

polymorphisms on the strength type of fitness is greater

than the effect of PPARD and PPARGC1A polymorphism

among Taiwanese female late adolescents.
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