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Abstract It remains unclear whether immune response to

viral infection is inhibited by severe exercise. We deter-

mined whether exhaustive exercise inhibits interferon

(IFN)-b and tumor necrosis factor (TNF)-a production after

injection of synthetic double-stranded (ds) RNAs, a

polyriboinosinic polyribocytidylic acid (poly I:C), as viral

infection model. Male C3H/HeN mice, which were divided

into exhaustive-exercised and non-exercised groups, were

injected with poly I:C (5 mg/kg). Although TNF-a in

response to poly I:C was significantly inhibited by

exhaustive exercise, IFN-b was no different in both groups.

In in-vitro experiments, catecholamines inhibited poly I:C-

induced TNF-a, but not IFN-b, production in macrophages.

These results suggest that anti-virus cytokine IFN-b in

response to poly I:C might be maintained despite severe

stressful exercise.
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Introduction

It is believed by open-window theory that intense exercise

induces immune suppression [1]. In fact, we and other

researchers have found that high concentrations of pro-

inflammatory cytokines, for example tumor necrosis factor

(TNF)-a, in plasma were strongly inhibited by exhaustive

exercise before challenge of rodents with lipopolysaccha-

ride (LPS), a gram-negative bacteria component [2–4]. In

addition, it has been reported that exercise stress might be

associated with increased susceptibility to viral infections

[5, 6]. However, changes in pathogen-induced type I

interferons (IFN-a/b), which are very important in anti-virus

response, after severe exercise are little known, although

we reported that exhaustive exercise induced depression of

IFN-a against injection of imidazoquinoline resiquimod

(R-848), a ligand of the toll-like receptor (TLR)7 which

responds to single-stranded (ss) RNA viruses to trigger IFN

production in mice [7].

Polyriboinosinic polyribocytidylic acid (poly I:C) is a

potent inducer of IFN-b [8]. Poly I:C-induced immune

activation is very similar to virus double-stranded (ds)

RNA-induced immune activation, because both poly I:C

and viral dsRNA bind to TLR3 and then activate IFN-b [9].

The dsRNA can be generated during viral infection as a

replication intermediate for ssRNA viruses or as a by-

product of symmetrical transcription in DNA viruses [10].

In fact, TLR3 protects against infection by ssRNA viruses

[11, 12]. Thus, the role of TLR3 in antiviral response after

exhaustive exercise might be important, and it is possible

that changes in immune function after viral infection with

exercise can be observed to study poly I:C injection in

exercised or non-exercised animals.

The purpose of this study was to determine whether

exhaustive exercise attenuates the increase in plasma

concentration of IFN-b and TNF-a after poly I:C injection

in mice. We hypothesized that exhaustive exercise could

attenuate the increase in IFN-b and TNF-a in response to

poly I:C.
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Materials and methods

Ten-week-old male C3H/HeN mice (n = 23) were housed

individually in cages and maintained on a 12:12 h

light:dark cycle with free access to food and water. The

experimental procedures followed the guidelines set forth in

the Care and Use of Animals in the Field of Physiological

Sciences approved by the Council of the Physiological

Society of Japan, and the experimental procedures and

housing conditions were approved by the DHSS (Animal

Care and Use Committee) of Kawasaki University of

Medical Welfare (#HSS070006). The mice were randomly

divided into two groups. One group contained exhaustive

exercising mice (EX, n = 12), and the other group con-

tained non-exercising mice (N-EX, n = 11). The EX mice

were run on a treadmill to exhaustion, and N-EX mice were

kept at rest [4, 7]. Mean time to exhaustion for EX mice

was 65 ± 2 min. Each group was injected with poly I:C

(5 mg/kg) [13] immediately after the exhaustive exercise

or rest. Each mouse was lightly anesthetized with inhalant

isoflurane before i.v. injection via the orbital eye vessel.

Blood samples were collected from each eye vessel pre-

exercise and 1, 3, and 6 h after poly I:C injection in mice.

RAW264 cells, a mouse-derived macrophage cell line,

were obtained from the Cell Bank Riken Bioresource

Center (Ibaraki, Japan). These cells were cultured in

DMEM containing 10% FCS supplemented with 200 U/ml

penicillin and 100 lg/ml streptomycin at 37�C in 5% CO2.

The RAW 264 cells (2 9 104/well) in 96-well plates were

pre incubated for 24 h and then stimulated for 30 min with

phosphate-buffered saline (PBS) containing DMSO, as

vehicle, epinephrine (1 lM), norepinephrine (1 lM), and

dopamine (1 lM). They were then challenged with poly

I:C (10 lg/ml) for 6 h.

The plasma and supernatants were collected and then

stored at -40�C until analysis of TNF-a, IFN-a, and IFN-b
using mouse ELISA kits.

Results and discussion

The plasma TNF-a concentration in N-EX mice was

greatly increased 1 and 3 h after poly I:C injection

(p \ 0.01 and p \ 0.05, respectively, Fig. 1a). In EX mice,

however, elevation of the TNF-a concentration in plasma

was not as high as that in the N-EX group 1 and 3 h after

poly I:C injection (p \ 0.01 for both). This phenomenon,

that the poly I:C-induced increase in plasma TNF-a con-

centration is attenuated by prior exhaustive exercise, seems

to be very similar to that of LPS-induced TNF-a response

in plasma [2–4]. Therefore, intense exercise might inhibit

poly I:C-induced pro-inflammatory cytokine production,

and might then increase the risk of infection with viruses.

In fact, however, activation of the type I IFNs is very

important in anti-virus response [9]. We also focused on poly

I:C-induced type I IFNs, i.e. on IFN-a and b production.

Interestingly, plasma IFN-b concentration in EX mice

obviously increased 3 h after poly I:C challenge, as did that

in N-EX mice (p \ 0.01 for both; Fig. 1b), although plasma

IFN-a in both EX and N-EX mice, was not detected in this

experimental model (data not shown). This is, to our

knowledge, the first study to demonstrate that IFN-b pro-

duction in response to poly I:C is maintained, even though

the mice are subjected to exhaustive exercise stress. A pre-

vious study showed that exhaustive exercise inhibited INF-a
production in mice when the mice were treated by R-848 as

activator of TLR7 [7]. A difference function between poly

I:C/TLR3 and R-848/TLR7 might have occurred via a
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Fig. 1 Changes in TNF-a (a) and IFN-b (b) concentration in plasma

before and after poly I:C injection in exhaustive exercised (EX: filled
circles, n = 12) and non-exercised (N-EX: open circles, n = 11)

mice. Data are expressed as means ± SEM. The data were analyzed

by two-way repeated-measures analysis of variance (ANOVA) and

post-hoc Bonferroni’s tests were performed. #p \ 0.05 and ##p \ 0.01

vs. pre-injection of poly I:C in each group, and **p \ 0.01 vs. N-EX

at each point
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myeloid differentiation factor (MyD)88-independent or

dependent pathway. Moreover, TLR3 protects against

infection by ssRNA viruses [11, 12] despite viral ssRNA

binding to TLR7 [10]. One possibility is that TLR3 signaling

is not attenuated, despite strenuous exercise as the most

important second defense system, because the dsRNA can be

generated during viral infection as a replication intermediate

for ssRNA viruses or as a by-product of symmetrical tran-

scription in DNA viruses [10]. These results suggest that

exhaustive exercise may do little to affect viral infection-

induced anti-viral cytokine production.

However, it remains unclear why exhaustive exercise

inhibits TNF-a, but not IFN-b, in response to poly I:C. It is

well known that exercise induces production of catechol-

amine and other hormones. Furthermore, Kitamura et al. [3]

suggested that exercise-induced catecholamines are

responsible for exercise-induced suppression of pro-

inflammatory cytokine production. Thus, one possibility is

that intense exercise-induced pro-inflammatory cytokine

suppression is regulated by catecholamines. Therefore, in the

next experiment, to clarify whether catecholamine regulated

viral infection-induced anti-viral cytokine production, we

studied the effect of epinephrine, norepinephrine, and

dopamine on poly I:C induced IFN-b production in vitro.

Poly I:C-induced TNF-a production by RAW264 cells was

significantly inhibited by treatment with epinephrine

(p \ 0.05) and dopamine (p \ 0.01) (Fig. 2a, c). It has been

reported that b-adrenergic agonists suppress, and a-adren-

ergic agonists augment, pathogen-stimulated TNF-a pro-

duction and its gene expression [14]. Norepinephrine has

high affinity for both a and b-adrenergic receptors, whereas

epinephrine has high affinity for b-adrenergic receptors only

[15]. Therefore, b-adrenergic receptors, which have affinity

for both epinephrine and norepinephrine, may modulate the

effects of catecholamines on the exercise-induced changes in

TNF-a in response to poly I:C. Our results with dopamine

also accorded well with recent studies which discovered that

dopamine suppresses production of pro-inflammatory cyto-

kines (IL-12 and TNF-a) via the b-adrenergic receptor, but

not the dopamine receptor [16, 17].

However, we did not observe a significant difference

between IFN-b production in cells treated with several

catecholamines and vehicle. Although high-dose treatment

(10–100 lM) with catecholamines inhibits IFN-b synthesis

and/or its mRNA expression after LPS or CpG DNA

stimulation [18, 19], in our experimental model we did not

observe inhibition of poly I:C-induced INF-b production by

catecholamine treatment (Fig. 2d–f). In addition, the doses

of epinephrine, norepinephrine, and dopamine (1 lM) might

be similar to exercise-induced plasma catecholamine levels

Fig. 2 Effects of catecholamine on poly I:C-induced TNF-a
(a–c) and IFN-b (d–f) production in RAW 264 cells. RAW264 cells

(n = 8–11) were treated with epinephrine (1 lM; a, d), norepineph-

rine (1 lM; b, e), dopamine (1 lM; c, f), or vehicle 30 min before

poly I:C (10 lg/ml) stimulation for 6 h. Results are expressed as the

means ± SEM. *p \ 0.05 and **p \ 0.01 vs. vehicle. Statistical

analysis was performed with the Student t test
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[3, 20]. There was common evidence that poly I:C-induced

INF-b production is maintained despite intense exercise in

vivo and the phenomenon is reproduced in an in-vitro

experiment, which is a test of catecholamine treatment of

poly I:C stimulated macrophages. Indeed, it has been

reported that exercise did not inhibit both IFN-b mRNA

expression and its protein on infection with herpes simplex

virus type I or influenza virus [21, 22].

It remains to be determined which specific cell type is

responsible for the major source of IFN-b in response to poly

I:C, because TLR3 is expressed in a variety of cells [10], and

IFN-b is also secreted by many cell types, including

macrophages, fibroblasts, epithelial cells, dendritic cells, and

others [23, 24]. Moreover, poly I:C-induced IFN-b produc-

tion by retinoic acid-inducible gene (RIG)-I and/or mela-

noma differentiation-associated gene (MDA) 5, in addition

to TLR3 [10], during and after exercise, are quite intriguing

issues that remain to be clarified.

In summary, this study set out to determine whether

exhaustive exercise attenuates the increase in plasma

concentrations of IFN-b and TNF-a after poly I:C injection

in mice. Although TNF-a concentration in exercised mice

was significantly lower than that in non-exercised mice, the

poly I:C induced increase in IFN-b concentration was not

significantly different in both groups. Furthermore, in in-

vitro experiments, previous treatment with both adrenaline

and dopamine inhibited poly I:C-induced TNF-a produc-

tion but not IFN-b production in macrophages. Taken

together, these results suggest that anti-virus cytokine

IFN-b production in response to pathogen stimulation

might not be affected by severe stressful exercise.
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