ORIGINAL PAPER

HCO₃⁻-dependent transient acidification induced by ionomycin in rat submandibular acinar cells

Hideyo Yoshida · Chikao Shimamoto · Shigenori Ito · Eriko Daikoku · Takashi Nakahari

Received: 8 April 2010/Accepted: 27 April 2010/Published online: 22 May 2010 © The Physiological Society of Japan and Springer 2010

Abstract Ionomycin (IM, 5 µM), which exchanges 1 Ca^{2+} for 1 H⁺, changed intracellular pH (pH_i) with Ca^{2+} entry into rat submandibular acinar cells. IM-induced changes in pH_i consisted of two components: the first is an HCO3⁻-dependent transient pHi decrease, and the second is an HCO3⁻-independent gradual pH_i increase. IM (1 μ M), which activates store-operated Ca²⁺ channels, induced an HCO₃⁻-dependent and transient pH_i decrease without any HCO₃⁻-independent pH_i increase. Thus, a gradual pH_i increase was induced by the Ca^{2+}/H^+ exchange. The HCO_3^{-} -dependent and transient pH_i decrease induced by IM was abolished by acetazolamide, but not by methyl isobutyl amiloride (MIA) or diisothiocyanatostilbene disulfonate (DIDS), suggesting that the Na^+/H^+ exchange, the Cl⁻/HCO₃⁻ exchange, or the Na^+ -HCO₃⁻ cotransport induces no transient pH_i decrease. Thapsigargin induced no transient pH_i decrease. Thus, IM, not Ca²⁺ entry, reduced pH_i transiently. IM reacts with

H. Yoshida · C. Shimamoto · S. Ito · E. Daikoku · T. Nakahari Nakahari Project of Central Research Laboratory, Osaka Medical College, 2-7 Daigaku-Cho, Takatsuki 569-8686, Japan

H. Yoshida · E. Daikoku · T. Nakahari (⊠) Department of Physiology, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki 569-8686, Japan e-mail: takan@art.osaka-med.ac.jp

C. Shimamoto Department of Medical Education, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki 569-8686, Japan

S. Ito

Department of Physiological Chemistry, Osaka Medical College, 2-7 Daigaku-cho, Takatsuki 569-8686, Japan Ca²⁺ to produce H⁺ in the presence of CO₂/HCO₃⁻ : [H –IM]⁻ + Ca²⁺ + CO₂ \rightleftharpoons [H – Ca – IM]⁺·HCO₃⁻ + H⁺. In this reaction, a monoprotonated IM reacts with Ca²⁺ and CO₂ to produce an electroneutral IM complex and H⁺, and then H⁺ is removed from the cells via CO₂ production. Thus, IM transiently decreased pH_i. In conclusion, in rat submandibular acinar cells IM (5 µM) transiently reduces pH_i because of its chemical characteristics, with HCO₃⁻ dependence, and increases pH_i by exchanging Ca²⁺ for H⁺, which is independent of HCO₃⁻.

Introduction

Ionomycin (IM) is widely used in experiments to increase intracellular Ca^{2+} concentration ($[Ca^{2+}]_i$), and is reported to increase intracellular $[Ca^{2+}]_i$ via two Ca^{2+} entry pathways. One is electrogenic Ca^{2+}/H^+ exchange (1 Ca^{2+} for 1 H^+), which is mediated by IM in phospholipid membranes and vesicles [1–4] and in PC12 cells and lymphocytes [5, 6]. The other is the store-operated Ca^{2+} channels (SOCs), which is activated in many cell types by depleting Ca^{2+} from the intracellular stores. In salivary cells [7–15], IM is used to activate SOCs, similarly to thapsigargin (TG) and acetylcholine (ACh).

However, it remains uncertain which concentration of IM activates Ca^{2+}/H^+ exchange in rat submandibular acinar cells. We examined Ca^{2+} entry via SOCs in rat submandibular acinar cells, using many agonists including IM. In the course of the experiments, a high concentration of IM, for example 5 μ M, increased intracellular Ca²⁺

concentration ($[Ca^{2+}]_i$) to an extremely high value, which is not inhibited by 1 μ M Gd³⁺, and induced depolarization (Yoshida, unpublished observation). However, a low concentration of IM, for example 1 μ M, increased $[Ca^{2+}]_i$ moderately, which was inhibited by 1 μ M Gd³⁺. These findings suggest that 5 μ M IM may mediate the Ca²⁺/H⁺ exchange. A previous report also showed that 6 μ M IM induced electrogenic Ca²⁺ entry into lymphocytes, suggesting that 6 μ M IM mediates the Ca²⁺/H⁺ exchange [6].

To clarify whether 5 μ M IM exchanges 1 Ca²⁺ for 1 H^+ , we measured pH_i in rat submandibular acinar cells stimulated with 5 µM IM. Unexpectedly, 5 µM IM induced a transient pH_i decrease: a rapid pH_i decrease followed by a pH_i increase. Moreover, the transient pH_i decrease induced by 5 μ M IM was HCO₃⁻-dependent, because no transient pH_i decrease was noted and only a gradual pH_i was observed in the presence of a carbonic anhydrase inhibitor $(200 \ \mu M \ acetazolamide)$. Thus, a gradual pH_i increase seems to be induced by the Ca^{2+}/H^+ exchange. There are two possible means of inducing a transient pH_i decrease. One is activation of ion transporters, for example H^+ extrusion, HCO₃⁻ secretion, and HCO₃⁻ uptake. The other is a chemical characteristic of IM [5]. In this study, we examined why IM induced a transient pH_i decrease in rat submandibular acinar cells.

Materials and methods

Solutions and chemicals

The control solution contained (mM): NaCl 121, KCl 4.5, MgCl₂ 1, CaCl₂ 1.5, NaHCO₃ 25, NaHEPES 5, HHEPES 5, and glucose 5. The control solutions were aerated with 95% O_2 and 5% CO_2 . To prepare Ca^{2+} -free solution, $CaCl_2$ was excluded from the solution (nominally Ca^{2+} -free). We did not use EGTA to chelate Ca2+, because EGTA also chelates Gd^{3+} . There was no difference between $[Ca^{2+}]_i$ increases after re-introduction of Ca2+ using Ca2+-free solution with or without EGTA. HCO₃⁻-free solution contained (mM): NaCl 146, KCl 4.5, MgCl₂ 1, CaCl₂ 1.5, NaHEPES 5, HHEPES 5, and glucose 5, and was aerated with 100% O₂. The pHs of the solutions were adjusted to 6.8, 7.4, or 8.0 by the addition of 1 M HCl or 1 M NaOH, as appropriate. Ionomycin, TG, methyl isobutyl amiloride (MIA) and diisothiocyanatostilbene disulfonate (DIDS), bovine serum albumin (BSA), and collagenase were obtained from Wako Pure Chemical Industries (Osaka, Japan). The reagents were dissolved in dimethyl sulfoxide (DMSO) and stored for stock solutions. Stock solutions were diluted to their final concentrations just before the experiments. DMSO concentrations never exceeded 0.1%.

DMSO (0.1%) has no effects on $[Ca^{2+}]_i$ and pH_i . All the experiments were performed at 37°C.

Cell preparation and fluorescence measurements

Male rats (Slc:Wistar/ST; Japan SLC, Hamamatsu, Japan) weighing 150-200 g were purchased and fed a standard pellet diet and water. The rats were anesthetized by intraperitoneal injection of pentobarbital sodium (60-70 mg kg^{-1}). The submandibular glands were removed from the rats for cell isolation, and the rats were then killed by the additional injection of pentobarbital sodium (100 mg kg^{-1}) . The experiments were approved by the Animal Research Committee of Osaka Medical College, and the rats were cared for according to the guidelines of this committee. The procedures for the cell preparations have already been described in detail [13]. The submandibular glands were minced with a collagenase solution (0.1%) and then incubated $(37^{\circ}C)$ for 15 min. The digested tissue was filtered through a Nylon mesh $(150 \ \mu m^2)$. The filtrate was centrifuged at 300 rpm (20g) for 1 min, washed three times, with centrifugation, and suspended in the control solution containing 2% BSA.

The isolated cells were loaded with fura 2-AM (2.5 μ M; Dojindo, Kumamoto, Japan) or BCECF-AM (2.5 µM; Dojindo, Kumamoto, Japan) for 25 min at room temperature (23°C) and washed with the control solution. They were then mounted on a coverslip precoated with neutralized Cell-Tak (Becton-Dickinson Labware, Bedford, MA, USA) to allow cells to firmly adhere to the coverslip. The coverslip with cells was set in a perfusion chamber, which was mounted on the stage of an inverted microscope (TE2000; Nikon, Tokyo, Japan) connected to an image-analysis system (AQUA COSMOS; Hamamatsu Photonics, Hamamatsu, Japan). The capacity of the chamber was approximately 100 µl and the perfusion rate was 500 μ l min⁻¹. The fura 2 (340:380 nm) and BCECF (490:450 nm) fluorescence ratios were calculated and stored in the image-analysis system [13–15]. The calibration curve for pH_i was obtained from the F_{490}/F_{450} values of the BCECF-loaded cells, which were perfused with solution II containing nigericin (10 µg/ml). The pH of solution II was set at 6.6, 7.0, 7.2, 7.4, 7.8, or 8.0. Solution II contained (mM): KCl 130, NaCl 20, MgSO₄ 1, and HEPES 10. One experiment was performed using 6-12 coverslips from 3 to 4 animals. A typical response obtained from 7 to 9 cells in a coverslip is shown in the figures. To compare values among experiments, mean values obtained from 3 to 6 coverslips were used.

Activation of Ca²⁺ entry

Before addition of IM, cells were perfused with a Ca^{2+} -free solution for 5 min. IM was then added and cells were

Table 1 Time constants of $\ensuremath{pH_i}$ increase following the re-introduction of $\ensuremath{Ca^{2+}}$

Experiments	τ_1 (min)	τ_2 (min)	п
IM (5 μM)	0.55 ± 0.10	1.73 ± 0.27	6
IM (5 μ M) + MIA	$0.95 \pm 0.13^{*}$	2.36 ± 0.42	4
IM (5 μ M) + DIDS	0.37 ± 0.04	$0.81 \pm 0.11^{*}$	4
IM (5 μ M) + ACZ	-	1.15 ± 0.02	4
IM (5 μ M) + HCO ₃ ⁻ - free	$0.92 \pm 0.12^{*}$	3.01 ± 0.56	7
IM (1 µM)	0.62 ± 0.4	_	7
IM $(1 \ \mu M) + \text{HCO}_3^{-}$ - free	$1.58 \pm 0.34^{*}$		3

Values are expressed as means \pm SE

* Significantly different compared with values obtained by use of IM alone (5 μ M) (p < 0.05)

incubated for an additional 10 min. The Ca²⁺-free solution was suddenly replaced with the control solution (1.5 mM Ca²⁺) maintaining an IM concentration (re-introduction of Ca²⁺). The re-introduction of Ca²⁺ enables us to observe only a Ca²⁺ entry, because intracellular stores have already been depleted [11–13].

Calculation of time constant (τ)

To compare pH_i increase among different experiments, we calculated the time constant (τ) of changes in $[H^+]_i$. The changes in $[H^+]_i$ are expressed by Eq. 1:

$$([\mathbf{H}^+]_{it} - [\mathbf{H}^+]_{i\infty}) = ([\mathbf{H}^+]_{i0} - [\mathbf{H}^+]_{i\infty}) \cdot \exp(-t/\tau)$$
(1)

where "t" is the time, and the subscripts "0" and " ∞ " indicate $[H^+]_i$ at t = 0 and $t = \infty$, respectively.

Equation 1 can be rewritten as Eq. 2:

$$\operatorname{Ln}(([\mathrm{H}^{+}]_{\mathrm{it}} - [\mathrm{H}^{+}]_{\mathrm{i\infty}}) / ([\mathrm{H}^{+}]_{\mathrm{i0}} - [\mathrm{H}^{+}]_{\mathrm{i\infty}})) = -1/\tau \cdot t \qquad (2)$$

When "ln (($[H^+]_{i\tau} - [H^+]_{i\infty}$)/($[H^+]_{i0} - [H^+]_{i\infty}$))" is plotted against *t* (τ plot), the slope is $-1/\tau$. In this study we used τ as an index of the rate of pH_i increase. Therefore, we compared the pH_i increases following the re-introduction of Ca²⁺ among experiments by using τ (Table 1).

The statistical significance of the differences between the means was assessed using paired and unpaired Student's *t* tests, as appropriate. Differences were considered significant at p < 0.05.

Results

Intracellular pH changes induced by IM in the presence and the absence of HCO_3^-

Changes in intracellular pH (pH_i) were measured in submandibular acinar cells using 5 and 1 μ M IM (Fig. 1). In the control solution, the pH_is of rat submandibular acinar cells were \sim 7.4 (Fig. 1).

In the presence of HCO_3^- , the switch to Ca^{2+} -free solution did not induce any pH_i change; then, further addition of 5 µM IM induced a small transient pH_i decrease, the duration of which was $\sim 10 \text{ min}$ (Fig. 1a). Re-introduction of Ca²⁺ induced a rapid and transient pH_i decrease followed by a gradual pH; increase. The pH;s 1 and 3 min after re-introduction of Ca^{2+} were 6.89 \pm 0.04 and 7.50 \pm 0.03 (n = 6), respectively. The pH_i 3 min after re-introduction of Ca^{2+} was higher than that before re-introduction of Ca^{2+} (Fig. 1a). The time constant of the pH_i increase was calculated from the τ plot (Fig. 1b). The τ plot showed that the pH_i increase consisted of two components; a rapid increase (the first phase within 0.5 min after the rapid pH_i decrease) followed by a gradual increase (the second phase within 0.5-2.5 min after the rapid pH_i decrease). The time constants of the first phase (τ_1) and the second phase (τ_2) are shown in Table 1.

Similar experiments were carried out using 1 μ M IM. The switch to Ca²⁺-free solution and addition of 1 μ M IM did not change pH_i. The re-introduction of Ca²⁺ induced a rapid transient pH_i decrease followed by a plateau. The pH_is 1 and 4 min after the re-introduction of Ca²⁺ were 7.02 \pm 0.03 and 7.32 \pm 0.03 (n = 7), respectively (Fig. 1c). The final pH_i during 1 μ M IM stimulation was low compared with that during 5 μ M IM stimulation (p < 0.05). The τ plot showed that the pH_i increase consisted of one component without any gradual increase (Fig. 1d; Table 1). The value of τ_1 obtained by use of 1 μ M IM was not significantly different from that obtained by use of 5 μ M IM (p > 0.05) (Table 1).

The experiments were also performed in the absence of HCO_3^- (Fig. 2). The switch to HCO_3^- -free solution transiently increased pH_i, which then plateaued. The pH_is 2 and 5 min after the switch were 7.60 \pm 0.04 and 7.41 \pm 0.03 (n = 7), respectively. Then, the switch to the Ca²⁺-free solution and addition of 5 µM IM did not change pH_i. The re-introduction of Ca^{2+} induced a rapid transient pH_i decrease followed by a gradual pH_i increase (Fig. 2a). The pH_is 1 and 5 min after the re-introduction of Ca²⁺ were 7.15 ± 0.03 and 7.48 ± 0.04 (*n* = 7), respectively. The τ plot showed that the pH_i increase still consisted of two components (Table 1) (data not shown). The τ_1 in the absence of HCO₃⁻ was significantly greater than that in the presence of HCO₃⁻ (p < 0.05), whereas τ_2 was not affected by HCO_3^{-} -free solution (p > 0.05) (Table 1). Thus, the gradual pH_i increase stimulated by 5 μ M IM is not induced by HCO_3^- entry, because there is no HCO_3^- outside the cells.

The experiments were also carried out using 1 μ M IM (Fig. 2b). The switch to HCO₃⁻-free solution increased pH_i transiently. Then, the switch to Ca²⁺-free solution and

Fig. 1 Intracellular pH (pH_i) changes induced by ionomycin (IM) in the presence of HCO₃⁻. **a** 5 μ M IM in HCO₃⁻-containing solution. IM (5 μ M) induced no pH_i decrease in Ca²⁺-free solution. The re-introduction of Ca²⁺ induced a large transient pH_i decrease followed by a rapid pH_i increase. The plateau pH_i was slightly higher than that before re-introduction of Ca²⁺. **b** τ Plot of **a**. The pH_is for 4 min after re-introduction of Ca²⁺ were used for the τ plot. The τ plot clearly shows that the pH_i increase following the rapid pH_i

further addition of 1 μ M IM induced no pH_i change. The re-introduction of Ca²⁺ induced a rapid pH_i decrease followed by a small pH_i increase. The pH_is 1.5 and 5 min after re-introduction of Ca²⁺ were 7.17 ± 0.03 and 7.25 ± 0.02 (*n* = 7), respectively (Fig. 2b). The τ plot showed that the first phase was still observed during 1 μ M IM in the absence of HCO₃ and the τ_1 was significantly greater than that in the presence of HCO₃⁻ (*p* < 0.05) (Table 1). Moreover, the extent of the rapid pH_i decrease was less in the absence of HCO₃⁻ than in the presence of HCO₃⁻. These observations suggest that the transient pH_i decrease is accelerated by the presence of HCO₃⁻.

Experiments were carried out using thapsigargin (TG, 4 μ M). In HCO₃⁻-containing solution, the switch to the Ca²⁺-free solution and the addition of TG did not change pH_i. On re-introduction of Ca²⁺ pH_i decreased gradually and plateaued within 3 min (Fig. 3a). In HCO₃⁻-free solution, the switch to Ca²⁺-free solution and addition of TG did not change pH_i. On re-introduction of Ca²⁺ pH_i decreased gradually (Fig. 3b). Thus, TG did not induce any rapid transient pH_i decrease after re-introduction of Ca²⁺.

decrease consisted of two phases: the first phase followed by the second phase. c 1 μ M IM in HCO₃⁻-containing solution. The reintroduction of Ca²⁺ induced a large transient pH_i decrease followed by a rapid pH_i increase. The plateau pH_i was slightly lower than that before the re-introduction of Ca²⁺. d τ plot of c. The pH_is for 4 min after re-introduction of Ca²⁺ were used. The τ plot revealed that the pH_i increase following the rapid pH_i decrease consisted of the single component during 1 μ M IM stimulation

Thus, the transient pH_i decrease induced by IM is not caused by an $[Ca^{2+}]_i$ increase.

Effects of acetazolamide on the transient pH_i decrease

We also examined the effects of acetazolamide (100 μ M), an inhibitor of carbonic anhydrase. Because the absence of HCO_3^{-} decreased the extent of rapid transient pH_i decrease and increased the value of τ_1 (Figs. 1, 2; Table 1). Experiments were carried out in the presence of HCO_3^{-} . In Ca²⁺-free solution, the addition of acetazolamide and the further addition of 5 µM IM induced no pH_i change. Reintroduction of Ca²⁺ induced only a small pH_i decrease followed by a gradual pH_i increase (Fig. 4a). The τ plot showed that the pH_i increase consisted of one component (Fig. 4b). The time constant of the gradual pH_i increase was similar to τ_2 obtained by use of 5 μ M IM alone (Table 1). Experiments were carried out using 1 µM IM (Fig. 4c). In a Ca²⁺-free solution, addition of acetazolamide and IM $(1 \mu M)$ induced no pH_i change. The re-introduction of Ca²⁺ induced no transient pH_i decrease,

Fig. 2 Intracellular pH (pH_i) changes induced by ionomycin (IM) in the absence of HCO₃⁻. **a** 5 μ M IM in HCO₃⁻-free solution. IM (5 μ M) induced no change in pH_i in Ca²⁺-free solution. The re-introduction of Ca²⁺ induced a rapid pH_i decrease followed by a gradual pH_i increase. **b** 1 μ M IM in HCO₃⁻-free solution. When control solution was switched to HCO₃⁻-free solution, pH_i transiently increased from 7.4 to 7.7 and then plateaued (pH_i 7.5). The switch to Ca²⁺-free solution and addition of IM (1 μ M) did not change pH_i. The re-introduction of Ca²⁺ induced a rapid pH_i decrease without any pH_i increase

and then pH_i decreased slightly. Thus, acetazolamide abolished the transient pH_i decrease after the re-introduction of Ca^{2+} in IM-treated cells, suggesting that the rapid transient pH_i decrease induced by IM was coupled with the reaction $(H^+ + HCO_3^- \rightleftharpoons CO_2)$.

Effects of Na⁺/H⁺ exchange, Na⁺-HCO₃⁻ cotransport, and HCO₃⁻ on the transient pH_i decrease

To examine the effects of Na⁺/H⁺ exchange on the rapid pH_i decrease followed by the rapid increase in the presence of HCO₃⁻, an inhibitor of the Na⁺/H⁺ exchange (MIA, 10 μ M) was used (Fig. 5a). After switching to Ca²⁺-free solution, addition of MIA and IM induced no pH_i change. Re-introduction of Ca²⁺ induced a large rapid pH_i decrease (pH_i 6.53 ± 0.03, *n* = 3), followed by a pH_i increase (pH_i 7.38 ± 0.03, 5 min after re-introduction of Ca²⁺). The τ plot showed that the pH_i increase consisted of two components (Table 1), and the value of τ_1 is significantly

Fig. 3 Intracellular pH (pH_i) changes induced by thapsigargin (TG). **a** HCO₃⁻ containing solution. TG (4 μ M) induced no pH_i decrease in Ca²⁺-free solution. The re-introduction of Ca²⁺ induced a gradual pH_i decrease without any rapid pH_i increase. **b** HCO₃⁻-free solution. The switch to HCO₃⁻-free solution, increased pH_i transiently, and it then plateaued (pH_i 7.5). The switch to Ca²⁺-free solution and addition of IM (1 μ M) did not change pH_i. The re-introduction of Ca²⁺ induced a gradual pH_i decrease without any pH_i increase

greater than that obtained by use of 5 μ M IM alone (p < 0.05) (Table 1). Thus, MIA enhanced the extent of rapid pH_i decrease (Fig. 5a) and delayed a pH_i recovery in the rapid transient pH_i decrease, although MIA did not significantly increase τ_2 (p > 0.05). An increase in [Ca²⁺]_i may activate H⁺ extrusion via Na⁺/H⁺ exchangers in submandibular acinar cells, the inhibition of which enhances acidification.

We examined the effects of the Cl⁻/HCO₃⁻ exchange on the rapid transient pH_i decrease followed by a gradual pH_i increase by using an inhibitor of Cl⁻/HCO₃⁻ exchange (DIDS, 200 μ M) (Fig. 5b). After the switch to Ca²⁺-free solution, addition of DIDS and IM induced no pH_i change. Re-introduction of Ca²⁺ induced a rapid transient pH_i decrease followed by pH_i recovery. The pH_is 1.5 and 5 min after the re-introduction of Ca²⁺ were 6.84 ± 0.01 and 7.54 ± 0.01 (*n* = 4), respectively. The τ plot showed that the pH_i increase consisted of two components (Table 1). The value of τ_1 was similar to that for 5 μ M IM alone (*p* > 0.05), but that of τ_2 was significantly reduced (*p* < 0.05). A decrease in τ_2 value induced by DIDS may

Fig. 4 Effects of 100 μ M acetazolamide (ACZ, an inhibitor of carbonic anhydrase) on pH_i changes induced by IM. **a** 5 μ M IM. The addition of ACZ and the further addition of 5 μ M IM have no effect on pH_i in Ca²⁺-free solution. The re-introduction of Ca²⁺ induced a small pH_i decrease followed by a gradual pH_i increase. **b** τ plot of **a**. The pH_is for 4 min after the re-introduction of Ca²⁺ were used. The τ plot revealed that the pH_i increase after re-introduction of Ca²⁺ consisted of the single component with ACZ. **c** 1 μ M IM. ACZ abolished the pHi changes induced by 1 μ M IM

be caused by inhibition of Cl^{-}/HCO_{3}^{-} exchange. Inhibition of the Cl^{-}/HCO_{3}^{-} exchange by DIDS increases $[HCO_{3}^{-}]_{i}$ which accelerates pH_{i} increase.

DIDS also inhibits Na^+ -HCO₃⁻ cotransport. If Na^+ -HCO₃⁻ cotransport is active in submandibular acinar cells, inhibition of the cotransport increases the extent of rapid pH_i decrease and delays pH_i increase. Because DIDS did not increase the extent of rapid pH_i decrease and accelerated pH_i increase in this study, activity of Na⁺-HCO₃⁻ cotransport seems to be low in rat submandibular acinar cells.

Fig. 5 Effects of MIA and DIDS on pHi changes induced by 5 μ M IM. **a** MIA (10 μ M, an inhibitor of Na⁺/H⁺ exchange) has no effect on pH_i. Re-introduction of Ca²⁺ induced a rapid pH_i decrease followed by a rapid pH_i increase. The pH_i decrease stimulated by 5 μ M IM was enhanced by MIA in submandibular acinar cells. **b** DIDS (200 μ M, an inhibitor of Cl⁻/HCO₃⁻ exchange and Na⁺-HCO₃⁻ cotransport). DIDS did not inhibit the rapid transient pHi decrease. The pH_i increase after the pH_i decrease seems to be faster with DIDS than that without DIDS

IM-induced Ca²⁺ entry

 $[Ca^{2+}]_i$ was measured in rat submandibular acinar cells using 5 and 1 µM IM (Fig. 6). Experiments were carried out in the presence of HCO₃⁻. Cells were first perfused with control solution, and then with Ca²⁺-free solution. The switch to Ca²⁺-free solution slightly reduced $[Ca^{2+}]_i$, which plateaued within 3 min (data not shown). Addition of 5 µM IM induced a transient $[Ca^{2+}]_i$ increase in the Ca²⁺-free solution. The reintroduction of Ca²⁺ immediately increased $[Ca^{2+}]_i$, which plateaued within 3 min. The F_{340}/F_{380} plateau was extremely high (Fig. 6a). The large $[Ca^{2+}]_i$ increase following reintroduction of Ca²⁺ was not inhibited by 1 µM Gd³⁺, although 1 µM Gd³⁺ reduced the rate of Ca²⁺ entry and the sustained $[Ca^{2+}]_i$ by ~ 10% (Fig. 6a).

Similar experiments were carried out using 1 μ M IM and 4 μ M TG. Addition of 1 μ M IM induced a small transient increase in $[Ca^{2+}]_i$ in Ca^{2+} -free solution. The re-introduction of Ca^{2+} induced a biphasic $[Ca^{2+}]_i$ increase, that is, a rapid transient increase followed by a

Fig. 6 IM-induced $[Ca^{2+}]_i$ increases after re-introduction of Ca^{2+} . **a** IM (5 μ M). Experiments were carried out using HCO₃⁻⁻-containing solution. Addition of 5 μ M IM induced a large transient increase in fura 2 fluorescence ratio (F_{340}/F_{380}) in Ca^{2+} -free solution. Re-introduction of Ca^{2+} increased F_{340}/F_{380} , which plateaued within 3 min. The plateau level was extremely high. This increase was not inhibited by 1 μ M Gd³⁺. **b** and **c** IM (1 μ M, **b**) and TG (4 μ M, **c**). Addition of 1 μ M IM or 4 μ M TG induced a small transient increase in F_{340}/F_{380} in Ca^{2+} -free solution. Re-introduction of Ca^{2+} induced a single transient increase in F_{340}/F_{380} in Ca^{2+} -free solution. Re-introduction of Ca^{2+} induced a biphasic increase in F_{340}/F_{380} , which was inhibited by 1 μ M Gd³⁺

sustained increase in $[Ca^{2+}]_i$ (Fig. 6b). The biphasic $[Ca^{2+}]_i$ increase after re-introduction of Ca^{2+} was inhibited by 1 μ M Gd³⁺ (Fig. 6b). The sustained F_{340}/F_{380} stimulated with 1 μ M IM was much less than that stimulated with 5 μ M IM (Fig. 6a, b). Similar results were obtained by use of 4 μ M TG (Fig. 6c).

Effects of pH_o on the rate of $[Ca^{2+}]_i$ increase

Experiments were carried out using the same procedure as shown in Fig. 6. The pHos used were 6.8, 7.4, and 8.0. When 5 µM IM was used for stimulation, re-introduction of Ca^{2+} immediately increased and plateaued $[Ca^{2+}]_i$ (F_{340}/F_{380}) . The final plateaus of $[Ca^{2+}]_i$ were similar at the three pH_0s . The rate of Ca^{2+} entry was calculated from the rate of F_{340}/F_{380} increase (/min). The rate of Ca²⁺ entry increased with changing pHo from 6.8 to 8.0 (Fig. 7a, c). In contrast, when 1 µM IM was used for stimulation, re-introduction of Ca²⁺ immediately increased and then gradually reduced F_{340}/F_{380} . Increases in $[Ca^{2+}]_i$ and the rates of Ca^{2+} entry were almost the same at the three pH_os (Fig. 7a, c). The rates of Ca^{2+} entry were plotted against pH_0s . In cells stimulated with 5 μ M IM, a pH_0 increase enhanced Ca²⁺ influx whereas in cells stimulated with 1 μ M IM or 4 μ M TG, it did not affect Ca²⁺ influx (Fig. 7c). Thus, Ca^{2+} influxes stimulated by 5 μ M IM were because of the Ca^{2+}/H^+ exchange.

Ca²⁺ entry induced by IM in the absence of HCO₃⁻

 $[Ca^{2+}]_i$ was also measured using 5 and 1 μ M IM in HCO₃⁻-free solution (Fig. 8). The switch to Ca²⁺-free solution slightly reduced $[Ca^{2+}]_i$, which plateaued within 3 min (data not shown). Addition of 5 μ M IM induced a transient $[Ca^{2+}]_i$ increase in the Ca²⁺-free solution. Re-introduction of Ca²⁺ immediately increased $[Ca^{2+}]_i$ to an extremely high value within 3 min (Fig. 8a). The large $[Ca^{2+}]_i$ increase with 5 μ M IM was not inhibited by 1 μ M Gd³⁺, similarly to Fig. 6a (data not shown).

Addition of 1 μ M IM induced a small transient increase in [Ca²⁺]_i in the Ca²⁺-free solution. The re-introduction of Ca²⁺ induced a biphasic [Ca²⁺]_i increase, that is, a rapid transient increase followed by a sustained increase in [Ca²⁺]_i (Fig. 8b). The biphasic [Ca²⁺]_i increase following to the re-introduction of Ca²⁺ was inhibited by 1 μ M Gd³⁺, similarly to Fig. 6b (data not shown). Similar results were obtained by addition of 4 μ M TG (data not shown). Thus, HCO₃⁻-free solution did not affect [Ca²⁺]_i increases after re-introduction of Ca²⁺ during stimulation with 1 or 5 μ M IM. The rates of Ca²⁺ entry in the absence of HCO₃⁻ at 7.4 pH_o are plotted in Fig. 7. The rates of [Ca²⁺]_i increase in the absence of HCO₃⁻ were similar to those in the presence of HCO₃⁻ at pH_o 7.4.

Discussion

This study demonstrated that IM increases $[Ca^{2+}]_i$ via two pathways depending on its concentration. One is the SOCs activated by depletion of intracellular stores, which are

Fig. 7 Effects of extracellular pH (pH_o) on the rate of F_{340}/F_{380} increase (Ca²⁺ influx) stimulated by IM. Experiments were carried out using a HCO₃⁻-containing solution. **a** 5 μ M IM: increases in F_{340}/F_{380} after re-introduction of Ca²⁺ at pH_o of 8.0 and 6.8. Increases in F_{340}/F_{380} were enhanced at a pH_o of 8.0. **b** 1 μ M IM. Increases in F_{340}/F_{380} after re-introduction of Ca²⁺ at pH_o of 8.0 and 6.8. Increases in F_{340}/F_{380} after re-introduction of Ca²⁺ at pH_o of 8.0 and 6.8. Increases in F_{340}/F_{380} after re-introduction of Ca²⁺ at pH_o of 8.0 and 6.8. Increases in F_{340}/F_{380} increase were plotted against pH_o. Upon stimulation with 5 μ M IM, the rates increased with increasing pH_o. However, upon stimulation with 1 μ M IM, the rates remained almost constant with increasing pH_o. The rates of F_{340}/F_{380} increase obtained in HCO₃⁻-free solution (data calculated from Fig. 8) are also plotted in this figure

sensitive to Gd^{3+} and activated by a low concentration of IM (1 μ M). The other is Ca^{2+}/H^+ exchange, which is Gd^{3+} -insensitive, accelerated by an increase of pH_o, and mediated by a high concentration of IM (5 μ M), [5, 6, 17].

Fig. 8 IM-induced $[Ca^{2+}]_i$ increase after re-introduction of Ca^{2+} in HCO₃⁻⁻-free solution. The re-introduction of Ca^{2+} increases $[Ca^{2+}]_i$ in rat submandibular acinar cells stimulated with 5 μ M or 1 μ M IM. Increases in $[Ca^{2+}]_i$ in the absence of HCO₃⁻⁻ were similar to those in the presence of HCO₃⁻⁻. **a** 5 μ M IM, **b** 1 μ M IM

This study also demonstrated that 5 μ M IM induced a large transient pH_i decrease after re-introduction of Ca²⁺. The pH_i changes induced by 5 μ M IM consisted of two phases. The first phase is a rapid transient pH_i decrease, and the second phase is a gradual pH_i increase. The rapid transient pH_i decrease was reduced by HCO₃⁻-free solution and abolished by ACZ, whereas the gradual pH_i increase was not affected by HCO₃⁻-free solution or ACZ. Thus, the rapid transient pH_i decrease was HCO₃⁻-independent and the gradual pH_i increase was HCO₃⁻-independent.

IM (1 μ M) induced a rapid transient pH_i decrease, but not a gradual pH_i increase. Because 5 μ M IM, not 1 μ M IM, mediates Ca²⁺/H⁺ exchange, the gradual pH_i increase is induced by the Ca²⁺/H⁺ exchange. Moreover, TG, which increased [Ca²⁺]_i, induced no rapid transient pH_i decrease and no gradual pH_i increase, although it gradually reduced pH_i. Thus, the rapid transient pH_i decrease was induced by IM, not by an [Ca²⁺]_i increase.

On the other hand, the rapid transient pH_i decrease followed by the gradual pH_i increase was not abolished by MIA and DIDS, although MIA enhanced the extent of rapid pH_i decrease and delayed the pH_i recovery (an increase in τ_1), and DIDS accelerated the pH_i recovery (a decrease in τ_2). Thus, Na⁺/H⁺ exchangers (H⁺ extrusion) or Cl^{-}/HCO_{3}^{-} exchangers (HCO₃⁻ extrusion) do not cause the transient pH_i decrease stimulated by IM, although they modified the pH_i changes induced by IM. The pH_i changes in DIDS-treated cells also suggest that the activity of Na^+ -HCO₃⁻ cotransporters (HCO₃⁻ uptake) in rat submandibular acinar cells is low, because DIDS did not enhance the rapid pH_i decrease and did not delay pH_i recovery. Moreover, an increase in $[Ca^{2+}]_i$ induced by TG did not induce any rapid transient pH_i decrease. especially in the absence of HCO_3^{-1} . If a $[Ca^{2+}]_{i}$ increase stimulates HCO₃⁻ secretion via anion channels, TG should reduce pH_i rapidly, similarly to IM. These observations indicate that the rapid pH_i decrease is not induced by HCO_3^- secretion. The extent of pH_i decrease may affect pH_i recovery. The extent of rapid pH_i decrease with DIDS was less than that with MIA. However, pH_i recovery with DIDS was faster than with MIA. This may suggest that the gradients of H^+ between intra-cellular and extra-cellular spaces do not directly affect H⁺ extrusion.

As mentioned above, the gradual pH_i increase was induced by the Ca^{2+}/H^+ exchange mediated by 5 μ M IM. However, the rapid transient pH_i decrease induced by IM is not explained by cellular ion transporters activated by an $[Ca^{2+}]_i$ increase. An increase in $[Ca^{2+}]_i$, which stimulates cellular metabolisms, increases CO_2 production, resulting in a pH_i decrease. However, the pH_i decrease induced by TG was much slower than that induced by 1 μ M IM. These results suggest that a rapid transient pH_i decrease is induced by a chemical characteristic of IM.

The rapid transient pH_i decrease induced by IM was HCO_3^- -dependent as described above. The reactions of IM were considered as follows in the absence of both Ca^{2+} and HCO_3^- [5, 17].

 $[H_2 - IM] \rightleftharpoons [H - IM]^- + H^+$ (3)

$$[\mathbf{H} - \mathbf{I}\mathbf{M}]^{-} \rightleftharpoons \mathbf{I}\mathbf{M}^{2-} + \mathbf{H}^{+} \tag{4}$$

Given that the highest alkaline pk_a of IM is >8 [18–20], the complex [H–IM]⁻ should be the most abundant species at a physiological pH. These IM complexes are considered to be membrane-permeable [5].

For IM interacting with Ca^{2+} , relatively lipophilic complexes that bear a positive charge are monoprotonated forms of the 1:1 species ([H–Ca–IM]⁺). Therefore, addition of Ca^{2+} induces reaction 5 at a physiological pH.

$$[H - IM]^{-} + Ca^{2+} \rightleftharpoons [H - Ca - IM]^{+}$$
(5)

Thus, addition of Ca^{2+} (re-introduction of Ca^{2+}) does not change pH_i in the absence of HCO_3^- . However, in the presence of HCO_3^- , reaction 5 is coupled with reaction 6.

$$\operatorname{CO}_2 \rightleftharpoons \operatorname{HCO}_3^- + \operatorname{H}^+$$
 (6)

The coupling of two reactions (5 and 6) produces an electroneutral Ca^{2+} complex, [[H–Ca–IM]⁺·HCO₃⁻] [20] as shown in reaction 7.

$$\begin{array}{l} \mathrm{H}-\mathrm{IM}]^{-}+\mathrm{Ca}^{2+}+\mathrm{CO}_{2}\rightleftarrows\left[[\mathrm{H}-\mathrm{Ca}-\mathrm{IM}]^{+}\cdot\mathrm{HCO}_{3}^{-}\right]\\ +\mathrm{H}^{+}\end{array}\tag{7}$$

Thus, in the presence of HCO_3^- , a monoprotonated IM reacts with Ca^{2+} and CO_2 to produce an electroneutral Ca^{2+} complex and H^+ , which rapidly reduces pH_i after re-introduction of Ca^{2+} . Previous reports suggest that, in IM-induced Ca^{2+} transport, electroneutral and electrogenic Ca^{2+} transports may occur, involving [[H–Ca–IM]⁺·X⁻] and [H–Ca–IM]⁺ species, respectively [5, 20]. Then, H⁺ reacts with HCO₃⁻ to produce CO₂ (reaction 6). CO₂ is removed from the cell, which results in the rapid pH_i increase. Our hypothesis, in which IM induces a rapid transient pH_i decrease mediated via reactions 6 and 7, was supported by the experiments using ACZ: inhibition of reaction 6 abolished the rapid transient pH_i decrease.

The presence of HCO_3^- has been reported to enhance a transient pH_i decrease after removal of NH_4^+ pulse in alveolar type II cells [16]. The CO_2/HCO_3^- reaction also enhanced the transient pH_i decrease after removal of the NH_4^+ pulse in ATII cells. Thus, the CO_2/HCO_3^- reaction (reaction 6) seems to be important role in pH_i regulation in cells, especially on acute acid loading.

TG or 1 μ M IM caused a transient increase in $[Ca^{2+}]_i$ after re-introduction of Ca^{2+} , whereas 5 μ M IM caused a sustained plateau increase in [Ca2+]i. During TG stimulation, an immediate increase in $[Ca^{2+}]_i$ after re-introduction of Ca^{2+} is considered to be due to Ca^{2+} entry but the plateau level is affected by Ca²⁺ extrusion pathways, most notably mitochondrial Ca^{2+} uptake and Ca^{2+} extrusion via plasma membrane Ca²⁺-ATPase (PMCA). Because IM does not inhibit SERCA (sarcoendoplasmic reticulum Ca²⁺ ATPase), the transient increase in $[Ca^{2+}]_i$ induced by 1 μ M IM seems to reflect the activation of mitochondrial Ca^{2+} uptake and PMCA. However, during stimulation with 5 µM IM, these clearance pathways seem to be inhibited. PMCA activities are known to be inhibited by cytosolic acidification [21, 22]. In this study, 5 µM IM was demonstrated to induce marked cytosolic acidification, which may inhibit PMCA. Moreover, at pHo 6.8, the sustained $[Ca^{2+}]_i$ responses were similar to those at pH_o 7.4 and pH_o 8.0, that is, not transient. This may suggest that the sustained plateau is caused by the inhibition of PMCA by 5 µM IM-induced cytosolic acidification. However, in the presence of HCO_3^{-} , the cytosolic acidification induced by 5 µM IM was transient. After pH_i recovery, the sustained plateau [Ca²⁺]_i was not reduced. A high concentration of IM, for example 5 μ M, may induce acidification inside the mitochondria by H⁺ uptake coupled with Ca²⁺ release via the IM-mediated Ca²⁺/H⁺ exchange. This may inhibit ATP synthesis resulting in inhibition of PMCA and SERCA. IM (5 μ M) seems to inhibit Ca²⁺ extrusion pathways. Further studies will be needed to clarify this.

Acknowledgments This work is carried out in the Nakahari Project of the central research laboratory (Osaka Medical College), and is partially supported by Grants-in Aid for Scientific Research from the Japan Society of the Promotion of Science, to TN (21590243).

References

- Pfeiffer DR, Taylor RW, Lardy HA (1978) Ionophore A23187: cation binding and transport properties. Ann NY Acad Sci 307:402–423
- Kolber MA, Haynes DH (1981) Fluorescence study of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membrane. Biophys J 36:369–391
- Liu C-M, Hermann TE (1978) Characterization of ionomycin as a calcium ionophore. J Biol Chem 253:5892–5894
- Prabhananda BS, Kombrabail MH (1998) Evidence for dimer participation and evidence against channel mechanism in A23187-mediated monovalent metal ion transport across phospholipid vesicular membrane. Biophys J 75:1749–1758
- Fasolato C, Pozzan T (1989) Effect of membrane potential on divalent cation transport catalyzed by the "Electroneutral" ionophores A23187 and ionomycin. J Biol Chem 264(33):19630–19636
- Mason MJ, Grinstein S (1993) Ionomycin activates electrogenic Ca²⁺ influx in rat thymic lymphocytes. Biochem J 296:33–39
- 7. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12
- Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930
- Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810
- Elliott AC (2001) Recent developments in non-excitable cell calcium entry. Cell Calcium 30:73–93
- Watson EL, Wu Z, Jocobson KL, Storm DR, Singh JC, Ott SM (1998) Capacitative Ca²⁺ entry is involved in cAMP synthesis in mouse parotid acini. Am J Physiol Cell Physiol 43:C557–C565

- Watson EL, Jacobson KL, Singh JC, Ott SM (1999) Nitric oxide acts independently of cGMP to modulate capacitative Ca²⁺ entry in mouse parotid acini. Am J Physiol Cell Physiol 46:C262–C270
- 13. Yoshida H, Yoshinori M, Nakahari T (2003) $[Ca^{2+}]_i$ oscillations induced by high $[K^+]_o$ in acetylcholine-stimulated rat submandibular acinar cells: regulation by depolarization, cAMP and pertusis toxin. Exp Physiol 88:369–379
- 14. Saad AH, Shimamoto C, Nakahari T, Fujiwara S, Katsu K, Marunaka Y (2006) cGMP modulation of ACh-stimulated exocytosis in guinea pig antral mucous cells. Am J Physiol Gastrointest Liver Physiol 290:G1138–G1148
- 15. Shimamoto C, Fujiwara S, Kato M, Ito S, Katsu K, Mori H, Nakahari T (2005) Inhibition of ACh-stimulated exocytosis by NSAIDs in guinea pig antral mucous cells: autocrine regulation of mucin secretion by PGE₂. Am J Physiol Gastrointest Liver Physiol 288:G39–G47
- 16. Tokuda S, Shimamoto C, Yoshida H, Murao H, Kishima G, Ito S, Kubota T, Hanafusa T, Sugimoto T, Niisato N, Maranaka Y, Nakahari T (2007) HCO₃-dependent pHi recovery and over acidification induced by NH4⁺ pulse in rat lung alveolar type II cells: HCO₃-dependent NH₃ excretion from lung? Pflugers Arch 455:223–239
- Erdahl WL, Chapman CJ, Taylor RW, Pfeiffer DR (1994) Ca²⁺ transport properties of ionophores A23187, ionomycin, and 4-BrA23187 in well defined model system. Biophys J 66:1678– 1693
- Bennett JP, Cockcroft S, Gomperts BD (1979) Ionomycin stimulates mast cell histamine secretion by forming a lipid-soluble calcium complex. Nature 282(5714):851–853
- Chapman CJ, Puri AK, Talor RW, Pfeiffer DR (1990) General features in the stoichiometry and stability of ionophore A23187cation complexes in homogenous solution. Arch Biochem Biophys 281:44–57
- Stiles MK, Craig ME, Gunnell SLN, Pfeiffer DR, Taylor RW (1991) The formation constants of ionomycin with divalent cations in 80% methanol/water. J Biol Chem 266:8336–8342
- 21. Thomas RC (2009) The plasma membrane calcium ATPase (PMCA) of neurons is electroneutral and exchange $2H^+$ for each Ca^{2+} or Ba^{2+} ion extruded. J Physiol 587:315–327
- 22. Niggli V, Sigel E, Carafoli E (1982) The purified Ca²⁺ pump of human erythrocyte membranes catalyzes an electroneutral Ca²⁺-H⁺ exchange in reconstituted liposomal systems. J Biol Chem 257:2350–2356