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Abstract b-Phorbol esters (BPE), synthetic analogues of

diacylglycerol (DAG), induce the potentiation of trans-

mission in many kinds of synapses through activating the C1

domain-containing receptors. However, their effects on

synaptic vesicle exocytosis have not yet been investigated.

Here, we evaluated the vesicular exocytosis directly from

individual large mossy fiber boutons (LMFBs) in hippo-

campal slices from transgenic mice that selectively express

synaptopHluorin (SpH). We found that the activity-depen-

dent increment of SpH fluorescence (DSpH) was enhanced

by 4b-phorbol 12,13-diacetate (PDAc), one of the BPEs,

without influencing the recycled component of SpH. These

PDAc effects on DSpH were almost completely inhibited by

staurosporine, a non-selective antagonist of protein kinases.

However, intermittent synaptic transmission was still

potentiated through a staurosporine-resistant mechanism.

The staurosporine-sensitive cascade may facilitate the

vesicle replenishment, thus maintaining the fidelity of

transmission at a high level during repetitive firing of the

presynaptic neuron.

Keywords Exocytosis � Synaptic transmission �
Presynaptic mechanism � PKC � Munc13-1 �
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Introduction

In the central nervous system (CNS) signals are transmitted

from neuron to neuron at synapses. Synapses are also the

principal sites of short- and long-term changes of neuronal

networks. In the hippocampus, the axon of a dentate

granule cell (mossy fiber, MF) provides robust excitatory

inputs on 11–18 CA3 pyramidal cells at their proximal

dendrites [1, 2]. Each transmission is mediated by a large

MF bouton (LMFB), which forms a complex of tens of

excitatory synapses. The MF-CA3 transmission is also

highly dynamic over a large range during short- and long-

term plasticity. These peculiar morphological and physio-

logical features led to the proposal that the MF input might

be involved in filtering out context for building the com-

plete episodic memory [3]. Pharmacological studies using

b-phorbol esters (BPE), synthetic analogues of diacyl-

glycerol (DAG), one of the signaling messengers produced

by phospholipases, showed that they induced the potenti-

ation of transmission in many kinds of synapses through

activating the C1 domain-containing receptors [4, 5]. The

BPEs are amongst the most potent in up-regulating the

transmission at the MF-CA3 synapse, suggesting that the

DAG/BPE-dependent cascade is involved in the plasticity

of this synapse [6–10]. However, their effects on synaptic

vesicle exocytosis have not yet been investigated.

The inside of a secretory vesicle is acidic (pH 5.6),

whereas it becomes neutral (pH 7.4) instantaneously upon

exocytosis [11]. The intravesicular change of pH is opti-

cally detected by a fluorescence change of a pH-sensitive
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derivative of green fluorescent protein (pHluorin) when it

is expressed inside the secretory vesicles by fusing to the

lumenal domain of a vSNARE-type vesicular membrane

protein synaptobrevin/VAMP-2 [11–13]. In this paper we

optically evaluated the exocytosis-dependent changes of

fluorescence from individual LMFBs in acute hippocampal

slices from transgenic mice that express this fusion protein

(synaptopHluorin, SpH) only in the MF boutons [14]. We

found that one of the BPEs, 4b-phorbol 12,13-diacetate

(PDAc) enhanced the activity-dependent SpH response in a

single LMFB without influencing the SpH recycling rate.

This effect of PDAc was almost completely blocked by

staurosporine, which inhibits a broad spectrum of protein

kinases at their ATP-binding sites, but not the non-PKC C1

domain-containing receptors. It is suggested that BPEs

enhance the activity-dependent exocytosis of synaptic

vesicles through mechanisms involving protein kinases.

Methods

Hippocampal slice preparation

The experiments were carried out using 14–21-day-old

heterozygous mice from one of the thy-1 promotor-syna-

ptopHluorin (SpH) transgenic lines with the background of

C57BL/6, TV-42, RIKEN BRC, acc. no. 01519 (http://

www.brc.riken.jp/lab/animal/en/), which express SpH

selectively in the mossy fiber (MF) boutons of the hippo-

campus [14]. The mice were decapitated under ether-

anesthesia, and hippocampal slices (300–400 lm) were

prepared as described [15]. For the dissection, a cutting

solution containing (in mM) 229 mannitol, 3 KCl, 26

NaHCO3, 1 H3PO4, 7 MgCl2, 0.2 lidocaine HCl, pH 7.4

(0�C) with 95% O2 and 5% CO2 mixed gas was used.

Experiments were done at 23–25�C, while the slices were

superfused (2 ml/min) with artificial cerebrospinal fluid

(ACSF) containing (in mM) 114 NaCl, 2.5 KCl, 26

NaHCO3, 1 NaH2PO4, 10 mannitol, 2.5 CaCl2, 1.3 MgCl2,

10 glucose (pH 7.4 with 95% O2 and 5% CO2 mixed gas).

All animal procedures were conducted in accordance with

the guiding principles of the Physiological Society of Japan

and NIH.

Extracellular recordings

Field excitatory postsynaptic potentials (fEPSPs) were

recorded in the stratum lucidum of the CA3 region using

glass microelectrodes with a pipette resistance of 0.7–

2 MX filled with 1.75% Na2SO4 solution. A tungsten

bipolar stimulating electrode was placed in the dentate

hilus, and two electrical pulses (200 ls duration, 150–250

lA intensity, 100 ms inter-stimulus interval) were

delivered intermittently every 30 s. At the end of the

experiments, we examined the sensitivity of fEPSP to

either 1 lM DCG-IV or 10 lM L-CCG-1, an agonist for

the group-II metabotropic glutamate receptors, which are

selectively expressed in the MF presynaptic terminals [16,

17]. Although the MF synaptic transmission is only slightly

attenuated by these drugs after b-phorbol ester-induced

potentiation [18], a reduction of fEPSPs was actually

observed in the range of 10–60%. Recordings were made

with a Gene Clamp amplifier (Axon Instruments, Foster

City, CA) and amplified and filtered at 10 kHz with an

FLA-01 amplifier (Cygnus Technology, Inc., Delaware

Water Gap, PA), digitized at 20 kHz with a DigiData 1320

A/D converter (Axon Instruments). Data were analyzed

with Clampfit 9.2 software (Axon Instruments).

Optical imaging of exocytosis

SpH was excited with an argon laser at 488 nm, and fluo-

rescence was collected through a 505-nm long-pass filter

under conventional confocal microscopy equipped with a

639 0.95 NA objective (LSM 510 META, Carl Zeiss,

Oberkochen, Germany). Individual MF boutons were iden-

tified in the stratum lucidum of acute slices of hippocampus

by SpH fluorescence (Fig. 1a, b) as some SpH molecules are

distributed in the plasma membrane [13, 14, 19]. Through-

out every experiment the fluorescence intensity of a region

of interest (ROI) was measured with fixed sensitivity and

was expressed in arbitrary fluorescence units (AFU), while

the laser power was also set at a fixed intensity. The sam-

pling frequency of images was set at 2 Hz (Figs. 1, 2, 3, 4c,

and 5) or 1 Hz (Fig. 4a). Since only a small subset of LMFBs

was responsive to the MF stimulation, they were detected by

the following protocol. The LMFBs were electrically stim-

ulated at 10 Hz for 10 s, while confocal images (512 9 512

pixels) were sampled (Fig. 1c, d). To identify the LMFBs,

three bright fluorescent spots in the same focal plane were

used as landmarks. Once one of the landmarks went out of

focus, the experiment was no longer included in the analysis.

Both baseline and responsive images were median-filtered at

5 pixels, and the difference image was calculated by sub-

tracting the baseline image from the response image

(Supplementary movie). Subsequently, the difference image

was median-filtered at 8 pixels, and the signals derived from

small-sized boutons or non-specific intrinsic fluorescence

was largely removed. Each spot with brightness greater than

a threshold of 10 AFU was defined as a responsive LMFB

(Fig. 1e). Circular ROIs of 2.24-lm diameter were set at the

responsive LMFBs, and the time series data of ROIs were

acquired from raw image stacks. At least ten other ROIs

were also set at non-responsive MF regions of the same

image, and the background fluorescence changes were

recorded. The background fluorescence changes, which
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were mainly derived from the fluorescence bleaching, were

averaged, normalized to the value at time 0 (the normalized

background fluorescence). For each ROI the effect of

fluorescence bleaching was removed by dividing the SpH

florescence value by the normalized background fluores-

cence value of the same time point. The time-dependent

change of the SpH fluorescence intensity was thus obtained

for each ROI (Fig. 1f, thin lines). These ratio data were also

digitally filtered by applying a weighted moving-average

protocol as described [15] (Fig. 1f, thick lines). The weights,

0.080251, 0.137137, 0.182615, 0.2, 0.182615, 0.137137

and 0.080251, were designed by the Kaiser window finite

impulse response (FIR) algorithm so that the sum of

the squares of errors was minimized, while the sum of the

weights was equal to 1. The mean noise amplitude was

calculated as the average of the absolute difference between

the raw ratio data and the filtered ratio data. The signal range

was calculated by subtracting the minimal filtered ratio

value during another 10 s just before stimulation from the

maximal filtered ratio value during 10-s repetitive stimula-

tion. The signal-to-noise ratio (S/N) was thus obtained by

dividing this signal range by the mean noise amplitude. If S/

N \ 5, the data were not employed for the subsequent

analyses. The time-dependent change of the ratio data

(DSpH) was obtained by subtracting the minimal filtered

ratio value from the ratio data. In the following figures

showing the DSpH, the thin lines represent ratio data before

filtering and the thick lines those after filtering. Averaged

DSpH are also shown as in Fig. 1g. Image analysis was

performed with ImageJ software (http://rsb.info.nih.gov/ij/),

and the time series data of ROIs were sampled in digits and

analyzed with Excel software (Microsoft, USA) and R

software (http://cran.r-project.org/).

Chemicals

Pharmacological reagents were bath-applied in the

recording chamber (2 ml) at a constant flow rate (2 ml/

min). Reagents used in this study and their sources were as

follows: kynurenic acid (Sigma-Aldrich, St. Louis, MO),

lidocaine HCl (Sigma-Aldrich), (2S,20R,30R)2-(20,30-di-

carboxycyclopropyl)glycine (DCG-IV, Tocris Cookson,

Bristol, UK); (2S,10S,20S)-2-(2-carboxycyclopropyl)glycine

(L-CCG-1, Tocris), bafilomycin A1 (Wako, Osaka, Japan);

4b-phorbol 12,13-diacetate (PDAc, Wako); 4a-phorbol

(Sigma-Aldrich); staurosporine (Sigma-Aldrich). Bafilo-

mycin A1 was dissolved in DMSO containing 20%

pluronic acid, then diluted. PDAc, 4a-phorbol and stauro-

sporine were dissolved in DMSO, then diluted. Stocks of

these were preserved at -20�C.

Statistical analysis

Values are expressed as mean ± SEM (number of exper-

iments) unless otherwise noted. Statistical significance was

tested by the Wilcoxon signed-ranks test for paired data
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Fig. 1 Synaptic vesicle dynamics in individual large MF boutons

(LMFBs) in the hippocampus. a A synaptopHluorin (SpH) fluores-

cence image of an acute slice of TV-42 transgenic mouse

hippocampus. The MFs were stimulated at the dentate hilus (right)
and recorded from the distal CA3 region (left square). b An enlarged

view of the stratum lucidum included in the square in a. Individual

LMFBs are identifiable by the SpH fluorescence in the plasma

membrane. c A sample averaged image of the SpH fluorescence of

LMFBs before nerve stimulation. d Similar to c, but the images were

sampled near the end of repetitive stimulation of 10 Hz for 10 s. e
The digital subtraction of both images (difference image). The

magnitude is shown as a pseudocolor rating. f Time-dependent

profiles of SpH fluorescence signals of the ROIs indicated in e. The

stimulation period is indicated by a red stripe. g Average SpH signal

profile of sample records in f. Note that the fluorescence intensity

steadily increased during repetitive stimulation, but recovered to the

baseline after the cessation of stimulation
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and by the Mann–Whitney U-test or the Kolmogorov–

Smirnov test for unpaired data. The significance limit was

set at P = 0.05 in any test.

Results

Ca2?-sensitivity of DSpH

In this study we measured the basal synaptic transmission

using the first fEPSPs of paired stimuli at 0.033 Hz. On the

other hand, the DSpH is the cumulative response to the

repetitive stimulation (10 Hs for 10 s). The first fEPSP is

dependent on the size of the readily releasable pool (RRP),

where the vesicles are docked/primed to the active zone

membrane at each synapse [20–22] and the vesicle fusion

probability (see Appendix). During repetitive stimulation at

10 Hz, the vesicular exocytosis is in equilibrium with the

vesicle replenishment from the reserve subpopulation of

vesicle pool [23] because of the relatively small size of

RRP [15, 24]. Therefore, the DSpH is expected to be more

dependent on the vesicle replenishment than the RRP. To

test this, the effects of vesicle fusion probability were

investigated by changing [Ca2?]o. When [Ca2?]o was

increased from 2.5 mM ([Mg2?]o, 2.5 mM) to 5 mM

([Mg2?]o, 0 mM), the fEPSP amplitude was enhanced by

4.94 ± 0.93-fold (n = 8 slices) (Fig. 2a). This enhance-

ment was accompanied with the reduction of paired-pulse

ratio from 3.04 ± 0.26 to 2.08 ± 0.11 (n = 8 slices). In

summary, the fEPSP followed a nonlinear relationship with

[Ca2?]o (Fig. 2b). On the other hand, the DSpH was less

sensitive to the same change of [Ca2?]o (Fig. 2c). The

mean DSpH was 22.3 ± 1.3 AFU at 2.5 mM [Ca2?]o and

25.8 ± 1.8 AFU at 5 mM [Ca2?]o with significant differ-

ence (n = 24 boutons, 6 slices, P \ 0.05 Wilcoxon signed-

ranks test). Since the DSpH was undetectable when [Ca2?]o

was 0 mM ([Mg2?]o, 5 mM; EGTA, 1 mM), its relation-

ship to [Ca2?]o was different from that of fEPSP in the

[Ca2?]o sensitivity (Fig. 2d). These results are consistent

with the notion that the first fEPSP and the DSpH are

distinct in their aspects of the exocytosis.

BPE-dependent enhancement of DSpH

Previously, it was shown that the fEPSP is augmented by

PDAc at the stratum lucidum of the hippocampus at the

concentration of 0.5–10 lM [6, 7, 9, 10, 18]. This was also

the case in the present study, and the fEPSP was potentiated

by 10 lM PDAc to, on average, 533 ± 64% (n = 8 slices)

of control (Fig. 3a, filled circles). On the other hand, the

PDAc treatment did not affect the amplitude of the fiber

volley response preceding the fEPSP, which is an indication
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of the number of stimulated axons (open diamonds, mean

110 ± 4%, n = 3 slices). As shown in the Fig. 3a insets,

the PDAc treatment significantly reduced the paired-pulse

ratio from 2.1 ± 0.14 to 1.2 ± 0.03 (n = 8 slices,

P \ 0.01, Wilcoxon signed-ranks test), suggesting the

involvement of presynaptic mechanisms [10]. The SpH

images were sampled twice before (Fig. 3a, red double line

no. 1) and after PDAc treatment (red double line no. 2).

Figure 3b shows representative DSpH images (10 Hz for

10 s) before (left, sampling 1) and after (right, sampling 2)

the treatment with PDAc. The PDAc treatment obviously

enhanced the DSpH in some LMFBs (white arrows) as

shown in the sample records in Fig. 3c. The effects of PDAc

on the individual MF boutons were variable from bouton to

bouton, and the boutons that responded to the repetitive

stimulation with negligibly small DSpH often became

obvious after PDAc (Fig. 3d). Figure 3e summarizes the

effects of PDAc in which the DSpH values at sampling 2

were plotted to those at sampling 1 (blue diamonds, n = 65

boutons, 10 slices). The maximal DSpH at the end of a train

of stimulation was 18.3 ± 1.5 AFU at sampling 1 and

26.5 ± 1.7 AFU at sampling 2, and the difference was

significant (P \ 0.0001, Wilcoxon signed-ranks test). We

also plotted in the same figure the effects of the vehicle

(DMSO) alone (white circles, n = 31 boutons, 5 slices,

22.0 ± 2.0 AFU at sampling 1 and 21.2 ± 1.9 AFU at

sampling 2) and those of 4a-phorbol (10 lM), one of the

inactive phorbol esters (yellow square, n = 30 boutons, 6

slices, 25.5 ± 1.5 AFU at sampling 1 and 27.1 ± 2.0 AFU

at sampling 2). The DSpH at sampling 2 was virtually

unchanged from that at sampling 1 by these control treat-

ments. The effects of PDAc were more clearly shown by

comparing the ratio value of the DSpH at sampling 2 divi-

ded by that at sampling 1 (ratio-2/1 of DSpH) in cumulative

probability plots (Fig. 3f). Although the PDAc significantly

enhanced the DSpH (P \ 0.0005, Kolmogorov–Smirnov

test), the effects of 4a-phorbol were indistinguishable from

the vehicle alone control. This is consistent with the notion

that the 4a-phorbol esters are biologically inactive [4] and

that the PDAc-dependent enhancement of the DSpH

appeared to be specific to the C1 domain-containing

receptors such as PKC and Munc13s [4, 5, 25].

Evaluation of SpH recycling

After fusion, the SpH molecules in the vesicular membrane

are exposed to the extracellular space (pH 7.4) and
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de-protonated to become fluorescent [11–13]. The synaptic

vesicles are then recycled into a vesicular pool, refilled

with transmitter and reutilized for the following transmis-

sion [22, 26]. The SpH molecules are retrieved from the
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plasma membrane with the new vesicles during the process

of endocytosis and are protonated to become non-fluores-

cent with the progress of the reacidification of the

intravesicular space by the activity of V-type H? ATPase

[19, 27]. Therefore, the rising phase of the DSpH represents

the difference between the exocytosis and the molecule’s

recycling through the process of endocytosis-reacidifica-

tion, whereas the falling phase kinetics are solely

dependent on the recycling [15, 27, 28]. The PDAc can

enhance the DSpH either through increasing the exocytosis

rate or through decreasing the recycling rate.

When the intravesicular reacidification is completely

blocked by bafilomycin A1, a potent inhibitor of the V-type

H? ATPase [13, 15], the recycling vesicles are expected to

be trapped in alkaline. To evaluate the contribution of the

recycled SpH, the DSpH was normalized to the value at the

end of the train stimulation (10 Hz for 10 s) in the absence

of bafilomycin A1, and the effects of bafilomycin A1 were

examined as shown in Fig. 4a. As expected the falling rate

of the SpH response was almost null in the presence of

5 lM bafilomycin A1. Therefore, the contribution of

recycled SpH was estimated by subtraction of the DSpH

before bafilomycin A1 from that after (Fig. 4b). This ba-

filomycin A1-sensitive component steadily increased

during the train stimulation, and was 10 ± 6% (n = 30

boutons, 7 slices) at the end of the train stimulation. The

bafilomycin A1-sensitive component was again examined

in the presence of PDAc, was 16 ± 8% (n = 26 boutons, 3

slices), and was insignificantly different from the value in

the absence (P [ 0.5, Mann–Whitney U-test).

The recycling rate of SpH during the train stimulation

can also be approximated by the initial rate of the fluo-

rescence reduction after the last stimulation (Fig. 4b) [28].

As the first step, the filtered DSpH was normalized to the

value at the end of the train stimulation (10 Hz for 10 s).

Next, a regression line was fitted to the data of 0–5 s after

the last stimulation, and its slope was adopted as the SpH

recycling rate (Fig. 4c). As shown in Fig. 4d, the effects of

PDAc on the SpH recycling rate were almost negligible

and were similar to the effects of vehicle alone (P [ 0.5,

Mann-Whitney U-test).

Taken together, there was no evidence that PDAc

decreased the SpH recycling rate. The PDAc-dependent

enhancement of the SpH response is well attributable to the

change of the exocytosis rate.

Effects of staurosporine

Since the SpH response was specifically enhanced by

PDAc, but not by 4a-phorbol, the PDAc-dependent

enhancement of the SpH response appeared to be specific

to the C1 domain-containing receptors such as PKC and

Munc13s [4, 5, 25]. To investigate the downstream

mechanisms of BPE, we examined the effects of stauro-

sporine, which inhibits a broad spectrum of protein kinases

at their ATP-binding sites [29, 30]. As shown in Fig. 5a,

the PDAc potentiated the fEPSP to a mean 232 ± 20%

(n = 12 slices) of control in the presence of staurosporine

(1 lM). Although the magnitude of this potentiation was

significantly smaller than in the absence of staurosporine

(P \ 0.0001, Mann–Whitney U-test), it was still signifi-

cantly greater than the control (vehicle alone and

4a-phorbol treatments, P \ 0.01, Mann–Whitney U-test)

(Fig. 5b). During the PDAc-induced fEPSP potentiation,

the paired-pulse ratio was always decreased from its initial

value. However, this was not the case in the presence of

staurosporine (Fig. 5c), and the paired-pulse ratio was on

average 2.3 ± 0.09 (n = 12 slices), which is insignifi-

cantly different from the control (2.4 ± 0.17, Wilcoxon

signed-ranks test).

As shown in Fig. 5d, the average profiles of the DSpH

(n = 65 boutons, 15 slices) were compared before and

after PDAc (10 lM), while the slices were pretreated with

staurosporine (1 lM). The maximal DSpH at the end of a

train of stimulation was 26.7 ± 1.3 AFU at sampling 1 and

26.4 ± 1.4 AFU at sampling 2, and the difference was

insignificant (P [ 0.7, Wilcoxon signed-ranks test). The

subtracted curve (difference) indicates that PDAc was

almost ineffective on the DSpH in the presence of stauro-

sporine. Figure 5e shows the cumulative probability plots

of the ratio-2/1 values of DSpH. The effects of PDAc were

almost completely blocked by staurosporine (P \ 0.0001,

Kolmogorov–Smirnov test) and indistinguishable from the

vehicle alone control. The staurosporine-sensitive cascade

appears to be one of the major downstream reactions of

PDAc in the case of exocytosis during repetitive activa-

tion of the LMFBs. This is in contrast to the case of

intermittent synaptic transmission (e.g., 0.033 Hz) where a

significant potentiation remained even in the presence of

staurosporine.

Discussion

The BPEs, such as 4b-phorbol-12,13-dibutyrate (PDBu,

10 lM) and PDAc (2 lM), increased the MF-dependent

population spike with negligible effects on the glutamate

sensitivity [6]. The PDAc increased the quantum content

with little changes in the quantum size [7], and its poten-

tiation was accompanied by a reduction of the paired-pulse

ratio [10]. In the present study the PDAc-dependent

enhancement of fEPSP was not accompanied by an

enhancement of the fiber volley response as previously

noted [18], suggesting the up-regulation of synaptic trans-

mission. These lines of electrophysiological evidence

suggest that the BPEs would enhance the quantal

J Physiol Sci (2009) 59:263–274 269

123



transmitter release from the LMFBs. However, the validity

of this interpretation has to be re-investigated taking into

consideration the nonuniform probability of release, the

concentration of glutamate in the synaptic cleft, the effects

of the rapid desensitization of the glutamate AMPA

receptors and the unsilencing of postsynaptic responsive-

ness [31–36]. This paper presents additional evidence in a

more direct way that the BPEs enhance the exocytosis in a

single LMFB in acute hippocampal slices using the SpH

transgenic mice. The DSpH was enhanced on average

2.2-fold by the PDAc (10 lM), although the magnitude of

potentiation was variable from bouton to bouton. On the

other hand, its effect on the recycled component of DSpH,

which is regulated by the endocytosis and the subsequent

reacidification of the vesicles, was negligible. Therefore,

the PDAc-dependent change of the DSpH could be attrib-

uted to the change of the exocytosis rate. However, its

effects on the endocytosis have to be further investigated

since the synaptobrevin/VAMP-2, which can be detected

by the SpH fluorescence, was retrieved from the plasma

membrane in a way kinetically differentiated from other

vesicle marker proteins, such as the synaptophysin and the

vesicular glutamate transporters [37, 38].

It should be noted that our DSpH measurement evalu-

ated a different aspect of exocytosis from the previous

electrophysiological measurements of synaptic transmis-

sion. Since the DSpH showed small sensitivity to [Ca2?]o

between 2.5 and 5 mM, the contribution of the vesicle

fusion probability is small. Rather, it could be dependent

on the magnitude of the vesicle replenishment [15].

However, in the CA3-CA1 synapses of hippocampus, the

SpH fluorescence change evoked by a train of repetitive

stimulation (10 Hz for 5 s) is dependent on [Ca2?]o (0.5–

5 mM) like fEPSP [39]. It is possible that these two syn-

apses are different in the [Ca2?]o–DSpH relationship, but

the underlying mechanisms of this difference should be

investigated in future.

Staurosporine-sensitive and -resistant mechanisms

DAG is a key messenger regulating the efficacy of synaptic

transmission. The effects of DAG and its analogues, BPEs,

are partly mediated by the activation of protein kinase C

(PKC), which facilitates exocytosis in a wide variety of

cells and presynaptic terminals [40–42]. They also regulate

the efficacy of synaptic transmission through activating

non-PKC C1 domain-containing receptor proteins, such as

Munc13s, which are presynaptic vesicle priming proteins

[43–45]. It has been suggested that the PKC-dependent and

Munc13-1-dependent pathways synergistically modulate

the exocytosis [4, 5]. In this study the PDAc-dependent

enhancement of the DSpH was almost completely blocked

by staurosporine, one of the broad spectrum protein kinase

inhibitors. This suggests the involvement of some protein

kinases in a cascade downstream of the C1 domain-con-

taining receptors. However, the effects of more specific

inhibitors have to be studied to identify the key molecules.

A previous study described that the PDAc-induced poten-

tiation of MF synaptic transmission is partially antagonized

by a PKC-selective inhibitor, bisindolylmaleimide I (BIS-

I), but a BIS-I resistant component of potentiation

remained [10]. However, we found that BIS-I and its

derivatives, which differentiate PKC from other kinases,

were strongly fluorescent at the SpH emission spectra when

included in the cell. Therefore, it will be necessary in the

future to study the possible involvement of PKC using

mice in which one of PKC isoforms is knocked out [46] or

RNAi-dependent knockdown of one of the PKC isoforms

[47].

We also found that the basal synaptic transmission (e.g.,

0.033 Hz) was still potentiated in the presence of stauro-

sporine, whereas the effects on the DSpH, which is induced

by a train of repetitive stimulation, were completely

inhibited. Therefore, during a train of repetitive stimulation

of LMFB, the response to the first stimulation, which is

detectable by fEPSP, and the integrated exocytosis mea-

sured by the DSpH would be different in the sensitivity to

staurosporine. The effects of staurosporine were almost

quantitatively equivalent to those of BIS-I in the case of

fEPSP. The PDAc (10 lM) treatment potentiated the

fEPSP to 232 ± 20% of control in the presence of

staurosporine, but to 533 ± 64% of control in the absence.

The same treatment potentiated the fEPSP to 258 ± 34%

in the presence of BIS-I [10]. Since the staurosporine-

resistant component of potentiation was not accompanied

by a reduction of the paired-pulse ratio, an indication of

increased vesicle fusion probability (see Appendix), other

mechanisms are suggested to be involved. The possibility

should be investigated that the staurosporine-resistant fE-

PSP potentiation is accompanied by the enhancement of

postsynaptic sensitivity to glutamate. The spatio-temporal

changes of glutamate concentration are also under the

regulation of the amount of transmitter release per vesicle,

the speed of glutamate release, the synaptic cleft mor-

phology and the speed of glutamate clearance from the

synaptic cleft [48, 49]. The BPEs have been demonstrated

to increase the RRP size in other synapses [50–52] as well

as in the slow exocytosis of endocrine cells [53], although

it remains undetermined whether these effects are actually

PKC-dependent or not. Since the RRP is fractionally small

in an LMFB [15, 24] and would be depleted in 10–20

action potentials if it is not replenished, its increase would

hardly be detectable in our SpH study.

The presence of a staurosporine-resistant component of

fEPSP potentiation suggests that the signaling cascade via

the non-PKC C1 domain-containing receptors is involved
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in the facilitation of synaptic transmission through these

mechanisms. Recently, it has been suggested that Munc13-

1, one of the non-PKC C1 domain-containing receptors,

localized to active zones in the presynaptic terminal, may

also be involved in the regulation of synaptic efficacy by

BPEs [54–56]. When the DAG/BPE-binding site of

Munc13-1 is genetically deficient or non-functional, the

effects of BPEs are largely impaired [56, 57]. Although the

present study did not prove whether BPEs potentiate MF

synaptic transmission through Munc13-1, it does not con-

flict with the notion that the PKC-dependent and Munc13-

1-dependent pathways synergistically modulate the exo-

cytosis [4, 5].

The DSpH unsilencing

We found that the DSpH, which was negligibly small at

sampling 1, become obvious at sampling 2 after the PDAc

in some LMFBs. These synapses are possibly presynapti-

cally silent or weak in the release ability before PDAc [34].

Alternatively, the transmitter release might be rapidly

depressed during repetitive stimulation. These possibilities

should be clarified in future studies, e.g., the simultaneous

recordings of EPSC and SpH fluorescence. Recent studies

using cultured networks of developing hippocampal neu-

rons have described the presence of presynaptically silent

synapses, which become transmittable through mecha-

nisms dependent on cAMP-protein kinase A (PKA) or

BDNF-Cdc signaling cascades [58–62]. At the CA3-CA1

synapses of the mouse hippocampus, the slow presynaptic

component of long-term potentiation (LTP), which is

detected by the change of SpH fluorescence, is mediated by

the PKA and the L-type Ca2? channels [39]. It is possible

that some boutons are unsilenced in the DSpH. Since MF-

LTP is dependent on the AC-PKA cascade [63, 64], it is

probably accompanied with the increased DSpH. The un-

silencing of DSpH might be related to the accumulation and

organization of the large arrays of vesicular and non-

vesicular molecules required for exocytosis as they are

during synaptogenesis [65, 66]. PKC is one of the protein

kinases involved in these processes. For example, PKC

phosphorylates GAP-43, one of major proteins of the pre-

synaptic and growth cone membrane, during synaptic

potentiation [67]. Another PKC substrate is myristoylated

alanine-rich C kinase substrate (MARCKS), which is

involved in both synaptic maturation and the synaptic

plasticity [68, 69].

In the hippocampus of a living animal the signals are

usually a train of impulses of variable frequencies [70],

sometimes at around 10 Hz (a theta rhythm) [71, 72].

When DAG/BPEs facilitate the fusion probability by

increasing the Ca2? influx and the Ca2? sensitivity of

exocytosis [10], they up-regulate the transmission efficacy

for impulses arriving early in a train, but down-regulate it

for impulses arriving later because of the depletion of RRP.

This effect could explain the reduction of the paired-pulse

ratio. Even if the RRP were to be increased, the potentia-

tion should be transient if it is not replenished. On the other

hand, the staurosporine-sensitive enhancement of exocy-

tosis followed a more prolonged time course. Therefore,

the DAG/BPE-dependent signaling cascade is suggested to

be involved in the facilitation of the vesicle replenishment

through a staurosporine-sensitive mechanism and to

maintain the fidelity of transmission at a high level during a

train of repetitive firings of the presynaptic neuron.
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Appendix

Reduction of the paired-pulse ratio

According to the quantal hypothesis [36, 73], a postsyn-

aptic response (E) is related to the following relationship.

E ¼ Npq; ð1Þ

where q is the postsynaptic response by a single quantum

(quantal size). The meanings of N and p are definition-

dependent. If p is regarded as the probability of vesicle

fusion to the plasma membrane, then N refers to the

number of vesicles drawn from the next action potential,

the readily releasable pool (RRP) or the release-ready pool

[20–22]. On the other hand, if p is regarded as the release

probability of a release site, N should be the number of

release sites, the morphological correlates of which are the

number of active zones of a presynaptic terminal. When a

presynaptic axon is stimulated by two pulses of a short

interval, the vesicle fusion probability by the second action

potential (p0) is generally increased by some mechanisms

dependent on the residual Ca2? [74–78]. On the analogy of

the Eq. 1, the second postsynaptic response (E0) will be

expressed as,

E0 ¼ N 1� pð Þ þ Rf gp0q0: ð2Þ

Here, R is the number of vesicles replenished to the RRP

during the interval between the first and the second action

potentials, and q0 is the quantal size of the second response.
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The paired-pulse ratio (r) is thus the function of p with the

relationship,

r ¼ E0=E ¼ 1� pþ R=Nð Þ p0=pð Þ q0=qð Þ: ð3Þ

The value R/N is dependent on the vesicle recycling

mechanisms. The value p0/p is dependent on the underlying

mechanisms of facilitation. The value q0/q is mainly

influenced by the postsynaptic factors, such as the desen-

sitization of transmitter receptors. It is also influenced by

the synaptic geometry, such as the narrowness of the syn-

aptic cleft, the transmitter clearance activities, such as the

glutamate uptake by the astrocytes as well as the presyn-

aptic factors, such as the transmitter density in the vesicle

[48, 49]. Although these values appear to be less variable

than p, their effects have to be taken into consideration.

Since r is negatively related to p, the enhancement of the

vesicle fusion probability at the first action potential (p) is

expected to be accompanied with the reduction of r.
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