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Abstract Beta-hydroxy-beta-methylbutyrate (HMB), a

leucine metabolite, enhances the gain of skeletal muscle

mass by increasing protein synthesis or attenuating protein

degradation or both. The aims of this study were to

investigate the effect of HMB on molecular factors con-

trolling skeletal muscle protein synthesis and degradation,

as well as muscle contractile function, in fed and fasted

conditions. Wistar rats were supplied daily with HMB

(320 mg/kg body weight diluted in NaCl-0.9%) or vehicle

only (control) by gavage for 28 days. After this period,

some of the animals were subjected to a 24-h fasting, while

others remained in the fed condition. The EDL muscle was

then removed, weighed and used to evaluate the genes and

proteins involved in protein synthesis (AKT/4E-BP1/S6)

and degradation (Fbxo32 and Trim63). A sub-set of rats

were used to measure in vivo muscle contractile function.

HMB supplementation increased AKT phosphorylation

during fasting (three-fold). In the fed condition, no

differences were detected in atrogenes expression between

control and HMB supplemented group; however, HMB

supplementation did attenuate the fasting-induced increase

in their expression levels. Fasting animals receiving HMB

showed improved sustained tetanic contraction times (one-

fold) and an increased muscle to tibia length ratio (1.3-

fold), without any cross-sectional area changes. These

results suggest that HMB supplementation under fasting

conditions increases AKT phosphorylation and attenuates

the increased of atrogenes expression, followed by a

functional improvement and gain of skeletal muscle

weight, suggesting that HMB protects skeletal muscle

against the deleterious effects of fasting.
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ANOVA Analysis of variance
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AUC Area under the curve

CSA Cross-sectional area

DEXA Dexametasone
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EDL Extensor digitorum longus

FOXO Forkhead box O

HMB Beta-hydroxy-beta-methylbutyrate

HRT Half-relaxation time

LRT Late-relaxation time

mTOR Mammalian target of rapamycin
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TSI Time of sustained isometric contraction
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Introduction

Among nutritional strategies aiming to preserve skeletal

muscle mass and contractile function, hydroxy-beta-

methylbutyrate (HMB), a leucine derivative metabolite, is

recognized as a compound that prevents skeletal muscle

atrophy [1–3] and improves muscle function [4]. HMB

supplementation in different models of skeletal muscle

atrophy prevents proteolysis, mainly through inhibition of

catabolic pathways [5, 6]. It also improves sports perfor-

mance [7, 8].

The skeletal muscle mass is maintained by the balance

between protein synthesis and degradation, which is con-

trolled by the interaction of several intracellular pathways

[9]. Many pathological and physiological conditions affect

the homeostasis of skeletal muscle mass leading to atrophy;

i.e. cancer, AIDS, diabetes, aging, fasting, and others

[9–11]. However, there is a lack of investigation relating

the skeletal muscle atrophy and contractile function.

Understanding the mechanisms maintaining skeletal mus-

cle mass and contractile function is important in develop-

ing effective strategies to combat and prevent skeletal

muscle wasting. These strategies will ameliorate the well

being of many patients with chronic diseases as well as

improve rehabilitation and training strategies for athletes

[3, 5, 8, 12–14].

Fasting is a condition characterized by a simultaneous

increase in protein degradation and decrease in protein

synthesis, resulting in a loss of skeletal muscle mass. As

there is a known positive relationship between skeletal

muscle mass and force production, fasting may also impair

muscle contractile properties [15, 16]. Since the effect of

HMB supplementation on force production and acute

fatigue index in fasting is unknown, it seems attractive to

investigate this possibility.

The skeletal muscle atrophy during fasting has been

ascribed to the increased expression of FBXO32 by

Forkhead box O (FOXO) and decreased activity of the

PI3K/AKT pathway [9]. However, there is evidence that

suggests the involvement of nutrient-sensing pathways,

including reduced activation of the mammalian target of

rapamycin (mTOR) and, consequently, some of their

downstream proteins such as 4EBP1 and S6 [17].

Increased activation of the ubiquitin proteasome system is

seen in many skeletal muscle atrophy models. However,

there are studies pointing in the other direction [18].

Recently, Bodine et al. [19] showed that FBXO32 and

TRIM63 are two ubiquin E3 ligases that actively partic-

ipate in protein degradation; however, their role in the

regulation of skeletal muscle functional properties

remains unclear [20].

The present study aimed to investigate the effect of a

29-day HMB supplementation on the molecular mecha-

nisms involved in muscle protein synthesis and degra-

dation and associated contractile function in fed and

fasted rats.

Materials and methods

The experimental protocol (#93/02) was approved and

follows the ethical principles in animal research adopted by

the National Council for the Control of Animal Experi-

mentation of the Institute of Biomedical Sciences/Univer-

sity of São Paulo.

Fig. 1 Experimental design

Table 1 Time parameters and

acute fatigue index
Parameter (ms) Fed:control Fed:HMB Fasting:control Fasting:HMB

TTP 43.106 ± 6026 36.117 ± 3.816 48.435 ± 7.142 37.973 ± 2.200

HRT 24.122 ± 3.370 22.811 ± 2.759 30.415 ± 2.645 24.622 ± 1.071

LRT 17.141 ± 2.765 13.306 ± 1.579 20.608 ± 4.991 13.352 ± 1.896

TSI 5.103 ± 0.613 5.231 ± 0.835 6.032 ± 0.709a 9.373 ± 1.334a,b

Results are expressed as mean ± SEM of 6 observations

TTP time to peak of contraction, HRT half-relaxation time, LRT late-relaxation time, TSI time of sustained

isometric contraction
a Effects of fasting (p\ 0.05)
b p\ 0.05 vs. Fed:Control and Fed: HMB
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Animals

Male Wistar rats, of the same age (3 months), weighing

200–250 g were obtained from our own breeding colony

provided by the Central Animal Breeding House of the

Institute of Biomedical Sciences of the University of São

Paulo. The animals were maintained on rat chow, tap water

ad libitum and housed in a room kept at a constant tem-

perature (23 ± 1 �C) and on a 12-h light, 12-h dark cycle

plan (lights on at 0700 hours).

Experimental design

Animals of the same age (3 months), weighing 200–250 g

(n = 5–14 animals/group) were supplemented for 29 days

with HMB at 320 mg/kg body weight/day (Fed:HMB

group) (calcium salt: Laboratory Metabolic Technologies,

IA, USA) or vehicle (NaCl 0.9%) (Fed:Control group) by

oral gavage, as described [4, 21]. One day before the rats

were culled (at day 28), a group of animals from each

supplementation group and were fasted for 24 h (Fast-

ing:HMB and Fasting:Control groups) as a stimulus for

muscle proteolysis [22]. The remaining rats were kept on

rat chow and tap water ad libitum. During the fasting

period, the gavage was performed for all groups (Fig. 1).

Tissue samples

The rats were anesthetized with thiopental (6 mg/kg body)

and killed by decapitation. The extensor digitorum longus

(EDL) muscles were rapidly removed and transversely cut

in half. The segment was immersed in cold isopentane for

30 s, cooled in liquid nitrogen and stored at -80 �C for

histochemistry, and subsequently morphological analysis

was performed, using the eosin–haematoxylin staining

protocol, as described [23]. The other segment was snap-

frozen in liquid nitrogen and stored at -80 �C for RNA

and protein expression analysis. After excision of the

muscles, the left tibia was removed and freed from con-

nective tissue. Maximal tibia length was measured to verify

the ratio of muscle weight and tibia length [24].

Total mRNA extraction and real-time PCR

Total RNA was extracted from the EDL as described previ-

ously [21]. Two micrograms of total RNA were used to syn-

thesize the first strand complementary DNA (cDNA) using

oligo-dT primers and the MMLV reverse transcriptase kit

(Invitrogen, Carlsbad, CA, USA), according to the manufac-

turer’s recommendations. The reverse transcription reaction

was performed at 70 �C for 10 min, followed by 37 �C for

60 min, and 10 min at 95 �C.Real-time quantitative PCRwas

performed using the SYBR� Green PCR master mix kit

(Applied Biosystems, UK) and the primers for Fbxo32 (For-

ward: 5́TACTAAGGAGCGCCATGGATACT3́, Reverse:

5́GTTGAATCTTCTGGAATCCAGGAT3́); Trim63 (For-

ward:5́TGACCAAGGAAAACAGCCACCAG3́, Reverse:

5́TCACTCCTTCTTCTCGTCCAGGATGG3́) and Gapdh

(Forward: 50GATGGGTGTGAACCACGAGAAA30, Rev-

erse: 50ACGGATACATTGGGGGTAGGA30) as a reference
gene. The reaction conditions consisted of two steps at 50 �C
for 2 min and 95 �Cfor 10 min, followedby45cycles of three

steps: 20 s denaturation at 95 �C, 60 s annealing at 58 �C and

20 s at 72 �C, as described [21]. The relative abundance of

Fbxo32, Trim63 andGapdhmRNAwas calculated, using the

2DDCt method [25], and the results were expressed in arbitrary

units (AU).

Protein extraction and western blotting

EDL was homogenized in a buffer containing NaCl

137 mM, KCl 2.7 mM, MgCl2 1 mM, Tris pH 7.8 20 mM,

EDTA 1 mM, sodium pyrophosphate 5 mM, NaF 10 mM,

Triton X-100 1%,glycerol 10%, PMSF (phenylmethane-

sulfonylfluoride) 0.2 mM; Na3VO4 (sodium orthovanadate)

0.5 mM and PIC 1:100 (Protease Inhibitor Cocktail), and

centrifuged at 13,400g for 40 min at 4 �C [26]. Equal

amounts of protein (35 lg) were subjected to elec-

trophoresis and immunoblotted using antibodies for anti-

phospho (Ser473) and total-AKT (1:1000; Cell Signaling

Technology, MA, USA), anti-phospho (Thr37/46) and total

4EBP1 (1:1000; Cell Signaling Technology) and anti-

phospho (Ser240/244) and total S6 (1:1000; Cell Signaling

Technology) in 5% BSA/basal solution (100 mM Trizma,

pH 7.5; 150 mM NaCl; e 0.05% Tween 20). We used

appropriated secondary peroxidase conjugated antibodies

for band detection (1:5000; Santa Cruz Biotechnology,

Dallas, TX, USA) and the Enhanced Chemiluminescence

(ECL) kit (Amersham Biosciences, Buckinghamshire,

UK). Scion Image software was used to analyze the

intensity of blots (Scion, Frederick, MD, USA). The Pon-

ceau-stained nitrocellulose membrane was used for nor-

malization, and the results were expressed as arbitrary units

(AU).

Analysis of fiber cross-sectional area (CSA)

The morphological analysis of the EDL muscle was per-

formed, using the eosin–haematoxylin staining protocol as

described [23, 27].

Analysis of skeletal muscle strength and contractile

properties

For this evaluation, both hindlimbs were removed and fixed

on an acrylic platform. The stimulated limb was placed on
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the platform with the hip and knee joint at a 60� angle. A
hook was placed under the Achilles tendon and connected

to an isometric force transducer (Grass Technologies, West

Warwick, RI, USA). The skin was excised and a platinum

electrode was placed at the sciatic nerve. The maximum

isotonic contractions (muscle twitches) and tetanic force

were induced by electrical stimulation at a low (1 Hz) and

high (100 Hz) stimulation frequency, respectively [4, 28]

(Fig. 2). The muscle strength and contractile properties

were analyzed using the AqAnalysis� software (v.4.16;

Lynx Tecnologia Eletrônica, São Paulo, Brazil). The

twitches time parameters such as time to peak tension

(TTP), half-relaxation time (HRT) and late-relaxation time

(LRT) were evaluated at 1 Hz as we have described pre-

viously [4].

Analysis of acute skeletal muscle fatigue

The acute muscle fatigue was evaluated using the curve

decline of the initial tetanic force (100%) during ten suc-

cessive tetanic contractions, and fatigue index was deter-

mined as the area under the muscle tension, as described by

Fig. 2 Myogram representative images. Isotonic contractions were analyzed and are shown in Fig. 6 and time parameters (TTP, HRT, LRT) in

Table 1. Tetanic contractions were analyzed and shown in Fig. 7 and times of sustained isometric contraction (TSI) in Table 1
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Pinheiro et al. [4]. The time of sustained isometric con-

traction (TSI) was considered as the maximum time (mil-

lisecond) to develop and sustain 100% of the tetanic force.

Statistical analysis

The results are presented as mean ± SEM and analyzed

using GraphPad Prism 6.0 (GraphPad Software, San Diego,

CA, USA). Two-way ANOVA was used for comparison

between the groups, followed by Tukey’s post-test. Dif-

ferences between values were considered statistically sig-

nificant for p\ 0.05.

Results

Effect of fasting on morphometric parameters

No differences were detected in muscle to tibia length ratio

in the fed condition (control vs. HMB) (Fig. 2). However,

as expected, fasting condition reduced the muscle mass

around 1.3-fold while HMB supplementation preserved it.

Effect of HMB supplementation on Fbxo32

and Trim63 gene expression

In the fed condition, no differences were detected in atro-

genes expression between the control and the HMB-sup-

plemented group. In the fasting condition, the Fbxo32 and

Trim63 gene expression of the control groups were

increased by approximately 4-fold and 3-fold, respectively.

The effect of fasting was attenuated in the HMB-treated

group, which presented a reduced expression of Fbxo32

(*50%) and Trim63 (*32%) versus the control group

(Fig. 3a, b).

Effect of HMB supplementation on protein synthesis

In fed condition, no differences were observed in the

pAKT/tAKT ratio between control and HMB supple-

mented group. Fasting condition did not alter the pAKT/

tAKT ratio in control group. However, this ratio was

increased by 3-fold in HMB fasted group, as shown in

Fig. 4a. Regarding p4EBP-1/t4EBP-1 ratio, in the fed

condition no alterations were detected between HMB and

control group. However, in the fasting condition, a signif-

icant enhancement of p4EBP-1/t4EBP-1 ratio was detected

and this effect was attenuated in HMB supplemented

group, as shown in Fig. 4b. Considering pS6/tS6 ratio, no

differences were observed among the experimental groups

(Fig. 4c).

Effect of HMB supplementation on CSA

No alterations in CSA were observed between groups in

fed and fasting conditions, and the HMB supplementation

did not change this, as shown in Fig. 5a, b.

Effect of HMB supplementation on contractile

muscle function

The absolute muscle twitch and tetanic forces (mN) did not

change between control and HMB groups in the alimentary

conditions studied (Fig. 6a, b). Likewise, the specific

muscle twitch and tetanic forces (mN/mm2) remained

unaltered (Fig. 6c, d).An increase was detected in the

parameters studied in the HMB-fed group; however, it

failed to reach statistical significance. The resistance to the

fatigue index, shown by muscle tension development along

10 successive muscle tetanic contractions (Fig. 7a) and the

area under the curve (Fig. 7b)was not changed between

groups and alimentary states, even though a tendency to

increase was detected in the fasting:HMB-supplemented

group (p = 0.0878). Additional parameters of contractile

muscle function are illustrated in Table 1. No significant

changes were detected regarding the the twitch parameters

between fed and fasting conditions in all experimental

groups (TTP, HRT, LRT). There was a significant increase

in the time of sustained isometric contraction (TSI) in the

fasting:control (*1.2-fold) and in fasting:HMB groups

(*1.8-fold), in comparison to the fed:control condition

(Table 1).

Discussion

Skeletal muscle hypertrophy occurs when the rate of pro-

tein synthesis exceeds the rate of protein degradation,

whereas skeletal muscle atrophy occurs when protein

Fig. 3 Weight of EDL muscle; in white Fed:Control and Fast-

ing:Control and in black Fed:HMB and Fasting:HMB; values are

mean ± SEM (n = 9–14 animals/group); asterisk vs. Fed:HMB;

Control (p\ 0.0001) and Fasting:HMB (p\ 0.001); effect of

supplementation (p\ 0.05); effect of fasting (p\ 0.0001) and

interaction: supplementation and fasting (p\ 0.001)
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Fig. 4 Real-time PCR analysis of Fbxo32 and Trim63 mRNA

expression, respectively, in EDL muscle normalized to Gapdh. Data

are expressed as mean ± SEM (n = 8–10 animals/group), in arbi-

trary units (AU). In white Fed:Control and Fasting:Control and in

black Fed:HMB and Fasting:HMB; double asterisks vs. Fed

(p\ 0.001); in (a) asterisk vs. Fed:Control and HMB (p\ 0.05)

and in (b) asterisk vs. Fed:Control (p\ 0.05)

Fig. 5 Western blotting analysis of AKT, 4EBP1 and S6; content of

phosphorylation/total (a, b, c) for each protein, respectively. Quan-

titative representation obtained by densitometric analysis is shown.

Data are expressed as mean ± SEM (n = 6–9 animals/group), in

arbitrary units (AU). in white Fed:Control and Fasting:Control and in

black Fed:HMB and Fasting:HMB. Asterisk effect of supplementa-

tion (p = 0.0316) (a); hash interaction supplementation and fasting

(p = 0.0281) and asterisk effect of fasting (p = 0.0329) (b)

Fig. 6 Fiber cross-sectional

area (CSA) analysis of EDL

muscle. In white Fed:Control

and Fasting:Control and in

black Fed:HMB and

Fasting:HMB. a Quantitative

analysis of the CSA in lm2,

measuring the circumference of

no less than 800 adjacent fibers

per animal (n = 5

animals/group); b showing the

distribution of CSAs
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degradation exceeds synthesis. This can be observed in

numerous conditions, such as sarcopenia, cancer, AIDS,

immobilization, absolute rest and increase production/use

of glucocorticoids [9, 19]. Fasting condition simultane-

ously increases the rate of skeletal muscle protein degra-

dation and decreases protein synthesis [10, 29]. However,

this rate changes accordingly to muscle specificity and

contractile properties [10, 30].

HMB is a leucine metabolite and considered an impor-

tant muscle mass inducer [31, 32]. Here, we found out that

chronic HMB supplementation in fasting increased AKT

phosphorylation in EDL muscle and prevented the increase

of atrogenes expression (Fbxo32 and Trim63) usually

observed in this condition, thus preventing muscle weight

loss, as shown by Whitehouse et al. [33] and Lecker et al.

[34]. Fasting is known to induce a decline in IGF-I content,

which leads to a reduction in the PI3 K and AKT activity,

while the opposite is observed in muscle hypertrophy

[10, 35]. In this study, as pointed out, we detected a 3-fold

increase in pAKT content in animals subjected to fasting

plus HMB supplementation. In fact, previous data from our

group and others demonstrated that HMB supplementation

was able to activate the GH-IGF-I axis [21, 36], which

could justify the increased pAKT levels.

In this study, we hypothesize that the AKT activation

could exert two different actions: (1) an increase in protein

synthesis and/or improvement of intramuscular metabo-

lism, and (2) an increase in FoxO phosphorylation, which

decreases Fbxo32 and Trim63 expression.

Considering the first possibility, HMB supplementation

was shown to increase p70S6K1 and 4EBP1 phosphory-

lation which are related to an enhancement of protein

synthesis [12, 37]. However, in our study, we did not find

any alteration in these proteins. In contrast, fasting led to an

increase of p4EBP1 content, which might be related to the

increased atrogenes expression [38]. Muscle atrophy is

characterized by a decrease in overall protein. On the other

hand, if even protein synthesis is reduced, the atrophy

program has to maintain or increase the expression of key

proteins [34].

Moreover, AKT activation could lead to the inactivation

of glycogen synthase kinase-3 (GSK-3), thereby increasing

glycogen synthase activity, which in turn increases the

intramuscular glycogen content [4, 39]. Indeed, a previous

study by our group showed that HMB supplementation

increased muscle glycogen content [4]. This could con-

tribute to explain the trend of an increasing acute fatigue

index (Fig. 7; p = 0.08) and the increase in skeletal muscle

time of development force (TDF) observed when fasted

rats were supplemented with HMB (Table 1). In fact, HMB

supplementation has been associated with reduced exer-

cise-induced muscle damage and increased resistance to

acute fatigue [7, 8]. Moreover, the fasting group supple-

mented with HMB presented an increased time of sustained

isometric contraction (TSI), supporting our evidence of

beneficial effects of HMB supplementation under muscle

atrophy situations. The second possible effect of AKT

activation involves the regulation of atrogenes expression

by FoxO phosphorylation. The phosphorylation of tran-

scription factors FoxO1 and FoxO3 prevents their migra-

tion to the nucleus, which in turn reduces atrogenes

expression [40]. As mentioned before, HMB supplemen-

tation attenuated the increase on the Fbxo32 and Trim63

expression in fasting muscle (Fig. 3a, b), which could

account for the maintenance of skeletal muscle mass.

Aversa et al. [41] demonstrated similar HMB effects in

Fig. 7 Data of maximum

skeletal muscle strength

production in EDL. Muscle

twitch force was determined at

1 Hz and tetanic force was at

100 Hz electrical stimulation

frequency. a Muscle twitch

force; b muscle tetanic force;

c specific muscle twitch force

normalized per CSA (fed vs.

fasting, p = 0.07); d muscle

tetanic force normalized per

CSA. Results are expressed as

mean ± SEM (n = 6

animals/group); in white

Fed:Control and

Fasting:Control and in black

Fed:HMB and Fasting:HMB
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muscle cells incubated with dexametasone (DEXA), thus

indicating that HMB supplementation was able to attenuate

DEXA-induced increases in the atrogenes expression,

preventing protein degradation. Eley et al. [6] also

observed similar effects in a rodent model of sepsis. In a

classic study, Li and Goldberg [42] suggested that fast and

slow muscles exhibit different protein synthesis and

degradation rates. In the former, the rate of protein syn-

thesis and degradation is more affected than the latter under

acute fasting conditions. Corroborating these data, in the

present study, an increase in both atrogenes (Fbxo32 and

Trim63) was detected in EDL muscle, which suggests a rise

of proteolysis in the fasting model. The effects were less

expressive in the soleus muscle (data not shown). Addi-

tionally, our group has found that HMB supplementation in

animal models under normal nutritional conditions without

an imbalance between protein synthesis and degradation

has been able to stimulate an insulin resistance state in

soleus muscle [27]. These different effects in distinct

muscles could make it difficult to draw overall conclusions

about HMB effects in muscle (Fig. 8).

In the fasting condition, therewas also a dramatic reduction

in themuscleweight in the rats,whichwas prevented byHMB

supplementation; however, this effect did not induce an

improvement in the specific twitch force. Consequently, this

effect might explain the weight muscle gain without any

changes in CSA (Fig. 5). This was the second study that used

HMB supplementation and in vivo electrical stimulation in

rats. The first study found similar effects of HMB supple-

mentation in muscle with mixed glycolytic and oxidative

fibers (gastrocnemius) showing improved effects in parame-

ters of isometric contractions [4].The current study usedEDL,

a glycolytic muscle that exhibits a distinct balance between

protein synthesis and degradation [10, 42] with chronic HMB

supplementation and fasting.

In conclusion, these findings and observations indicate

that HMB supplementation prevents the increase of atro-

genes expression following fasting, while at the same time

improves muscle contractions performance, suggesting an

improvement of intramuscular metabolism. HMB supple-

mentation results in metabolic and skeletal muscle function

changes which may have a beneficial effect in patients with

diseases, as well as improving rehabilitation or athlete

performance. However, more investigations with HMB

supplementation are required to identify more details about

this strategy as well as possible different effects between

the muscles.
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